Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Biopolymeric Systems Used in This Work
2.2. Fabrication of Biopolymer Solutions and Thin Films
2.3. Processing of Biopolymer Thin Films via C-SVA Method
2.4. Characterization of Thin Films of Biopolymers Using the Optical and AFM Techniques
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Biswal, T. Biopolymers for Tissue Engineering Applications: A Review. Mater. Today Proc. 2021, 41, 397–402. [Google Scholar] [CrossRef]
- Aggarwal, J.; Sharma, S.; Kamyab, H.; Kumar, A. The Realm of Biopolymers and Their Usage: An Overview. J. Environ. Treat. Tech. 2020, 8, 1005–1016. [Google Scholar]
- Biswal, T.; BadJena, S.K.; Pradhan, D. Sustainable Biomaterials and Their Applications: A Short Review. Mater. Today Proc. 2020, 30, 274–282. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A Review on Chitosan and Chitosan-Based Bionanocomposites: Promising Material for Combatting Global Issues and Its Applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef] [PubMed]
- Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef]
- Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A Review of Natural Polysaccharides for Drug Delivery Applications: Special Focus on Cellulose, Starch and Glycogen. Biomed. Pharmacother. 2018, 107, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Mehetre, S.S.; Shankar, R.K.; Ameta, R.K.; Behere, S.S. Chapter 1—An Introduction to Protein-Based Biopolymers. In Protein-Based Biopolymers; Kalia, S., Sharma, S., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, MA, USA, 2023; pp. 1–40. ISBN 978-0-323-90545-9. [Google Scholar]
- Werten, M.W.T.; Eggink, G.; Cohen Stuart, M.A.; de Wolf, F.A. Production of Protein-Based Polymers in Pichia pastoris. Biotechnol. Adv. 2019, 37, 642–666. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Kundu, S.C. Silk Protein-Based Hydrogels: Promising Advanced Materials for Biomedical Applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int. J. Mol. Sci. 2018, 19, 1717. [Google Scholar] [CrossRef]
- Praetorius, F.; Kick, B.; Behler, K.L.; Honemann, M.N.; Weuster-Botz, D.; Dietz, H. Biotechnological Mass Production of DNA Origami. Nature 2017, 552, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tang, J.; Geng, J.; Luo, D.; Yang, D. Polymeric DNA Hydrogel: Design, Synthesis and Applications. Prog. Polym. Sci. 2019, 98, 101163. [Google Scholar] [CrossRef]
- Valencia, G.A.; Zare, E.N.; Makvandi, P.; Gutiérrez, T.J. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2009–2024. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.M.; Amer, A.M.; Osman, N.H.; Sedikc, M.Z.; Hussein, M.H. Effects of Different Gelling Agents on the Different Stages of Rice Regeneration in Two Rice Cultivars. Saudi J. Biol. Sci. 2021, 28, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, X.; Payne, G.F.; Zhang, C.; Zhang, Y.; Li, J.; Ren, J.; Hong, H.; Liu, C. Biospecific Self-Assembly of a Nanoparticle Coating for Targeted and Stimuli-Responsive Drug Delivery. Adv. Funct. Mater. 2015, 25, 1404–1417. [Google Scholar] [CrossRef]
- Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers 2018, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Suresh, D.; Suresh, A.; Kannan, R. Engineering Biomolecular Systems: Controlling the Self-Assembly of Gelatin to Form Ultra-Small Bioactive Nanomaterials. Bioact. Mater. 2022, 18, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Besford, Q.A.; Cavalieri, F.; Caruso, F. Glycogen as a Building Block for Advanced Biological Materials. Adv. Mater. 2020, 32, 1904625. [Google Scholar] [CrossRef] [PubMed]
- Nita, L.E.; Croitoriu, A.; Serban, A.M.; Bercea, M.; Rusu, A.G.; Ghilan, A.; Butnaru, M.; Mititelu-Tartau, L.; Chiriac, A.P. New Hydrogels Based on Agarose/Phytagel and Peptides. Macromol. Biosci. 2023, 23, 2200451. [Google Scholar] [CrossRef]
- Das, D.; Pal, S. Modified Biopolymer-Dextrin Based Crosslinked Hydrogels: Application in Controlled Drug Delivery. RSC Adv. 2015, 5, 25014–25050. [Google Scholar] [CrossRef]
- Ke, H.; Yang, H.; Zhao, Y.; Li, T.; Xin, D.; Gai, C.; Jiang, Z.; Wang, Z. 3D Gelatin Microsphere Scaffolds Promote Functional Recovery after Spinal Cord Hemisection in Rats. Adv. Sci. 2023, 10, 2204528. [Google Scholar] [CrossRef] [PubMed]
- Sukpaita, T.; Chirachanchai, S.; Pimkhaokham, A.; Ampornaramveth, R.S. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar. Drugs 2021, 19, 551. [Google Scholar] [CrossRef] [PubMed]
- Kozusko, S.D.; Riccio, C.; Goulart, M.; Bumgardner, J.; Jing, X.L.; Konofaos, P. Chitosan as a Bone Scaffold Biomaterial. J. Craniofac. Surg. 2018, 29, 1788. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zharkinbekov, Z.; Raziyeva, K.; Tabyldiyeva, L.; Berikova, K.; Zhumagul, D.; Temirkhanova, K.; Saparov, A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023, 15, 807. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-H.; Wei, W.; Qi, X.-T.; Shan, Y.-H.; Zhang, F.-J.; Chen, X.; Zhu, Q.-Y.; Yu, L.; Liang, W.-Q.; Gao, J.-Q. Epidermal Stem Cells Manipulated by pDNA-VEGF165/CYD-PEI Nanoparticles Loaded Gelatin/β-TCP Matrix as a Therapeutic Agent and Gene Delivery Vehicle for Wound Healing. Mol. Pharm. 2013, 10, 3090–3102. [Google Scholar] [CrossRef] [PubMed]
- Teijeiro-Valiño, C.; González Gómez, M.A.; Yáñez, S.; García Acevedo, P.; Arnosa Prieto, A.; Belderbos, S.; Gsell, W.; Himmelreich, U.; Piñeiro, Y.; Rivas, J. Biocompatible Magnetic Gelatin Nanoparticles with Enhanced MRI Contrast Performance Prepared by Single-Step Desolvation Method. Nano Express 2021, 2, 020011. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Thuy, V.T.T.; Kim, D. Integration of Iron Oxide Nanoparticles and Polyaspartamide Biopolymer for MRI Image Contrast Enhancement and an Efficient Drug-Delivery System in Cancer Therapy. Nanotechnology 2020, 31, 335712. [Google Scholar] [CrossRef]
- Han, Z.; Liu, G. Sugar-Based Biopolymers as Novel Imaging Agents for Molecular Magnetic Resonance Imaging. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1551. [Google Scholar] [CrossRef]
- Hussain, I.; Ma, X.; Luo, Y.; Luo, Z. Fabrication and Characterization of Glycogen-Based Elastic, Self-Healable, and Conductive Hydrogels as a Wearable Strain-Sensor for Flexible e-Skin. Polymer 2020, 210, 122961. [Google Scholar] [CrossRef]
- Jacques, C.N.; Hulbert, A.K.; Westenskow, S.; Neff, M.M. Production Location of the Gelling Agent Phytagel Has a Significant Impact on Arabidopsis Thaliana Seedling Phenotypic Analysis. PLoS ONE 2020, 15, e0228515. [Google Scholar] [CrossRef]
- Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities. Int. J. Mol. Sci. 2015, 16, 13973–13988. [Google Scholar] [CrossRef]
- Marei, N.H.; El-Samie, E.A.; Salah, T.; Saad, G.R.; Elwahy, A.H.M. Isolation and Characterization of Chitosan from Different Local Insects in Egypt. Int. J. Biol. Macromol. 2016, 82, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Nirmala Devi, G.; Chitra, S.; Selvasekarapandian, S.; Premalatha, M.; Monisha, S.; Saranya, J. Synthesis and Characterization of Dextrin-Based Polymer Electrolytes for Potential Applications in Energy Storage Devices. Ionics 2017, 23, 3377–3388. [Google Scholar] [CrossRef]
- Islamipour, Z.; Zare, E.N.; Salimi, F.; Ghomi, M.; Makvandi, P. Biodegradable Antibacterial and Antioxidant Nanocomposite Films Based on Dextrin for Bioactive Food Packaging. J. Nanostruct. Chem. 2022, 12, 991–1006. [Google Scholar] [CrossRef]
- Patil, J.S.; Jadhav, S.M.; Mandave, S.V.; Vilegave, V.; Dhadde, S.B. Natural Gellan Gum (Phytagel®) Based Novel Hydrogel Beads of Rifampicin for Oral Delivery with Improved Functionality. Indian J. Pharm. Educ. Res. 2016, 50, S159–S167. [Google Scholar] [CrossRef]
- Tejo-Otero, A.; Fenollosa-Artés, F.; Achaerandio, I.; Rey-Vinolas, S.; Buj-Corral, I.; Mateos-Timoneda, M.Á.; Engel, E. Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms. Gels 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Davidenko, N.; Schuster, C.F.; Bax, D.V.; Farndale, R.W.; Hamaia, S.; Best, S.M.; Cameron, R.E. Evaluation of Cell Binding to Collagen and Gelatin: A Study of Theeffect of 2D and 3D Architecture and Surface Chemistry. J. Mater. Sci. Mater. Med. 2016, 27, 148. [Google Scholar] [CrossRef] [PubMed]
- Treesuppharat, W.; Rojanapanthu, P.; Siangsanoh, C.; Manuspiya, H.; Ummartyotin, S. Synthesis and Characterization of Bacterial Cellulose and Gelatin-Based Hydrogel Composites for Drug-Delivery Systems. Biotechnol. Rep. 2017, 15, 84–91. [Google Scholar] [CrossRef]
- Weiss, A.-V.; Schorr, D.; Metz, J.K.; Yildirim, M.; Khan, S.A.; Schneider, M. Gelatin Nanoparticles with Tunable Mechanical Properties: Effect of Crosslinking Time and Loading. Beilstein J. Nanotechnol. 2022, 13, 778–787. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, J.; Hu, J.; Cheng, Y.; Chen, X.; Gu, Z.; Li, Y. Bioinspired Polydopamine Hydrogels: Strategies and Applications. Prog. Polym. Sci. 2023, 146, 101740. [Google Scholar] [CrossRef]
- Hauser, D.; Septiadi, D.; Turner, J.; Petri-Fink, A.; Rothen-Rutishauser, B. From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material. Materials 2020, 13, 1730. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Dong, X.; Wang, Y.; Wu, X.; Dai, H. Dopamine-Modified Chitosan Hydrogel for Spinal Cord Injury. Carbohydr. Polym. 2022, 298, 120047. [Google Scholar] [CrossRef]
- Gowda, A.H.J.; Bu, Y.; Kudina, O.; Krishna, K.V.; Bohara, R.A.; Eglin, D.; Pandit, A. Design of Tunable Gelatin-Dopamine Based Bioadhesives. Int. J. Biol. Macromol. 2020, 164, 1384–1391. [Google Scholar] [CrossRef]
- Wang, K.; Shi, W.; Yang, Y.; Guo, L.; Xu, L.; Leng, S.; Li, Q.; Tan, Y. Dopamine-Functionalized Poloxamers for Antibacterial Coating. Mater. Lett. 2021, 291, 129591. [Google Scholar] [CrossRef]
- Wu, T.-F.; Hong, J.-D. Dopamine-Melanin Nanofilms for Biomimetic Structural Coloration. Biomacromolecules 2015, 16, 660–666. [Google Scholar] [CrossRef]
- Lee, J.K.; Link, J.M.; Hu, J.C.Y.; Athanasiou, K.A. The Self-Assembling Process and Applications in Tissue Engineering. Cold Spring Harb. Perspect. Med. 2017, 7, a025668. [Google Scholar] [CrossRef]
- Stephanopoulos, N.; Ortony, J.H.; Stupp, S.I. Self-Assembly for the Synthesis of Functional Biomaterials. Acta Mater. 2013, 61, 912–930. [Google Scholar] [CrossRef]
- Abe, S.; Ueno, T. Design of Protein Crystals in the Development of Solid Biomaterials. RSC Adv. 2015, 5, 21366–21375. [Google Scholar] [CrossRef]
- Ma, X.; Wu, G.; Dai, F.; Li, D.; Li, H.; Zhang, L.; Deng, H. Chitosan/Polydopamine Layer by Layer Self-Assembled Silk Fibroin Nanofibers for Biomedical Applications. Carbohydr. Polym. 2021, 251, 117058. [Google Scholar] [CrossRef]
- Prasathkumar, M.; Dhrisya, C.; Lin, F.-H.; Sadhasivam, S. The Design and Developments of Protein-Polysaccharide Biomaterials for Corneal Tissue Engineering. Adv. Mater. Technol. 2023, 8, 2300171. [Google Scholar] [CrossRef]
- Yu, P.; Bao, R.-Y.; Shi, X.-J.; Yang, W.; Yang, M.-B. Self-Assembled High-Strength Hydroxyapatite/Graphene Oxide/Chitosan Composite Hydrogel for Bone Tissue Engineering. Carbohydr. Polym. 2017, 155, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, Q.; Wen, H.; Chen, J.; Liang, M.; Huang, H.; Lan, D.; Dong, H.; Cao, X. Injection and Self-Assembly of Bioinspired Stem Cell-Laden Gelatin/Hyaluronic Acid Hybrid Microgels Promote Cartilage Repair In Vivo. Adv. Funct. Mater. 2019, 29, 1906690. [Google Scholar] [CrossRef]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The Influence of Protic Non-Solvents Present in the Environment on Structure Formation of Poly(γ-Benzyl-L-Glutamate in Organic Solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Thomann, R.; Heck, B.; Shokri, R.; Stille, W.; Reiter, G. Crystallization of Poly(γ-Benzyl L-Glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules 2013, 46, 1470–1476. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Simon, S.; Botiz, I. Self-Assembly of Block Copolymers on Surfaces Exposed to Space-Confined Solvent Vapor Annealing. Polymer 2023, 273, 125881. [Google Scholar] [CrossRef]
- Li, Y.-X.; Zhong, C.; Zhang, H.-Z.; Zhao, Y.-Y.; Shu, M.; Wu, G.-P. Effectiveness of Bacteriophage JN01 Incorporated in Gelatin Film with Protocatechuic Acid on Biocontrol of Escherichia Coli O157:H7 in Beef. Int. J. Food Sci. Technol. 2022, 57, 3503–3514. [Google Scholar] [CrossRef]
- Kavoosi, G.; Bordbar, Z.; Dadfar, S.M.; Dadfar, S.M.M. Preparation and Characterization of a Novel Gelatin–Poly(Vinyl Alcohol) Hydrogel Film Loaded with Zataria Multiflora Essential Oil for Antibacterial–Antioxidant Wound-Dressing Applications. J. Appl. Polym. Sci. 2017, 134, 45351. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Wang, Y.; Yu, L. Active and Robust Composite Films Based on Gelatin and Gallic Acid Integrated with Microfibrillated Cellulose. Foods 2021, 10, 2831. [Google Scholar] [CrossRef]
- Hermida-Merino, C.; Cabaleiro, D.; Lugo, L.; Valcarcel, J.; Vázquez, J.A.; Bravo, I.; Longo, A.; Salloum-Abou-Jaoude, G.; Solano, E.; Gracia-Fernández, C.; et al. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022, 8, 237. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Hemar, Y.; Kishimura, H. Characteristics and Properties of Gelatin from Seabass (Lates Calcarifer) Swim Bladder: Impact of Extraction Temperatures. Waste Biomass Valor. 2018, 9, 315–325. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Yang, L.; Yuan, L.; Xu, Z.; Xu, J.; Ge, L.; Mu, C.; Li, D. Stability Enhanced Pickering Emulsions Based on Gelatin and Dialdehyde Starch Nanoparticles as Simple Strategy for Structuring Liquid Oils. Food Bioprocess Technol. 2021, 14, 1600–1610. [Google Scholar] [CrossRef]
- Jeevithan, E.; Jeya Shakila, R.; Varatharajakumar, A.; Jeyasekaran, G.; Sukumar, D. Physico-Functional and Mechanical Properties of Chitosan and Calcium Salts Incorporated Fish Gelatin Scaffolds. Int. J. Biol. Macromol. 2013, 60, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Pan, C.; Chen, W.; Ruan, Q.; Luo, X.; Lv, M.; Fang, Y.; Jiang, L.; Ma, H. Gelatin from Specific Freshwater and Saltwater Fish Extracted Using Six Different Methods: Component Interactions, Structural Characteristics, and Functional Properties. LWT 2024, 191, 115656. [Google Scholar] [CrossRef]
- Wojcik, M.; Kapusniak, K.; Zarski, A.; Kapusniak, J. Preparation and Characterization of Soluble Dextrin Fibre from Potato Starch Obtained on a Semi-Industrial Scale. Appl. Sci. 2024, 14, 1438. [Google Scholar] [CrossRef]
- Chen, X.; Hou, Y.; Wang, Z.; Liao, A.; Pan, L.; Zhang, M.; Xue, Y.; Wang, J.; Liu, Y.; Huang, J. A Comparative Study of Resistant Dextrins and Resistant Maltodextrins from Different Tuber Crop Starches. Polymers 2023, 15, 4545. [Google Scholar] [CrossRef] [PubMed]
- Beaussart, A.; Parkinson, L.; Mierczynska-Vasilev, A.; Beattie, D.A. Adsorption of Modified Dextrins on Molybdenite: AFM Imaging, Contact Angle, and Flotation Studies. J. Colloid Interface Sci. 2012, 368, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Mierczynska-Vasilev, A.; Beattie, D.A. In Situ Atomic Force Microscopy of Modified Dextrin Adsorption on Hydrophobic and Hydrophilic Layered Silicate Minerals. J. Colloid Interface Sci. 2010, 344, 429–437. [Google Scholar] [CrossRef]
- Beattie, D.A.; Huynh, L.; Mierczynska-Vasilev, A.; Myllynen, M.; Flatt, J. Effect of Modified Dextrins on the Depression of Talc and Their Selectivity in Sulphide Mineral Flotation: Adsorption Isotherms, AFM Imaging and Flotation Studies. Can. Metall. Q. 2007, 46, 349–358. [Google Scholar] [CrossRef]
- Besford, Q.A.; Weiss, A.C.G.; Schubert, J.; Ryan, T.M.; Maitz, M.F.; Tomanin, P.P.; Savioli, M.; Werner, C.; Fery, A.; Caruso, F.; et al. Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization. ACS Appl. Mater. Interfaces 2020, 12, 38976–38988. [Google Scholar] [CrossRef]
- Pais, M.; George, S.D.; Rao, P. Glycogen Nanoparticles as a Potential Corrosion Inhibitor. Int. J. Biol. Macromol. 2021, 182, 2117–2129. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Drain, J.; Kim, J.H.; McGee, S.; Gray-Weale, A.; Waddington, L.; Parker, G.J.; Hargreaves, M.; Yoo, S.-H.; Stapleton, D. Comparative Structural Analyses of Purified Glycogen Particles from Rat Liver, Human Skeletal Muscle and Commercial Preparations. Int. J. Biol. Macromol. 2009, 45, 478–482. [Google Scholar] [CrossRef]
- Sullivan, M.A.; Vilaplana, F.; Cave, R.A.; Stapleton, D.; Gray-Weale, A.A.; Gilbert, R.G. Nature of α and β Particles in Glycogen Using Molecular Size Distributions. Biomacromolecules 2010, 11, 1094–1100. [Google Scholar] [CrossRef]
- Zhang, P.; Nada, S.S.; Tan, X.; Deng, B.; Sullivan, M.A.; Gilbert, R.G. Exploring Glycogen Biosynthesis through Monte Carlo Simulation. Int. J. Biol. Macromol. 2018, 116, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chem. Pharm. Bull. 2010, 58, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jisha, M.S. Chitosan Nanoparticles Preparation and Applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Cruz-Romero, M.; Collins, T.; Cummins, E.; Kerry, J.P.; Morris, M.A. Synthesis of Monodisperse Chitosan Nanoparticles. Food Hydrocoll. 2018, 83, 355–364. [Google Scholar] [CrossRef]
- Li, M.; Xin, M. N,N-Dilauryl Chitosan Self-Assembled Vesicles for Drug Delivery. Des. Monomers Polym. 2006, 9, 89–97. [Google Scholar] [CrossRef]
- Li, Q.; Dunn, E.T.; Grandmaison, E.W. Goosen. Applications and Properties of Chitosan. In Applications of Chitan and Chitosan; CRC Press: New York, NY, USA, 2020; ISBN 978-1-00-307281-2. [Google Scholar]
- Mourya, V.K.; Inamdar, N.N. Chitosan-Modifications and Applications: Opportunities Galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Arab Tehrany, E.; Kahn, C.J.F.; Ponçot, M.; Linder, M.; Cleymand, F. Effects of Nanoliposomes Based on Soya, Rapeseed and Fish Lecithins on Chitosan Thin Films Designed for Tissue Engineering. Carbohydr. Polym. 2012, 88, 618–627. [Google Scholar] [CrossRef]
- Sionkowska, A.; Płanecka, A. Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin. J. Mol. Liq. 2013, 186, 157–162. [Google Scholar] [CrossRef]
- Jiang, H.; Su, W.; Caracci, S.; Bunning, T.J.; Cooper, T.; Adams, W.W. Optical Waveguiding and Morphology of Chitosan Thin Films. J. Appl. Polym. Sci. 1996, 61, 1163–1171. [Google Scholar] [CrossRef]
- Balau, L.; Lisa, G.; Popa, M.I.; Tura, V.; Melnig, V. Physico-Chemical Properties of Chitosan Films. Cent. Eur. J. Chem. 2004, 2, 638–647. [Google Scholar] [CrossRef]
- Yap, W.F.; Yunus, W.M.M.; Talib, Z.A.; Yusof, N.A. X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy Studies on Crosslinked Chitosan Thin Film. Int. J. Phys. Sci. 2011, 6, 2744–2749. [Google Scholar]
- Nosal, W.H.; Thompson, D.W.; Yan, L.; Sarkar, S.; Subramanian, A.; Woollam, J.A. UV–Vis–Infrared Optical and AFM Study of Spin-Cast Chitosan Films. Colloids Surf. B Biointerfaces 2005, 43, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Nosal, W.H.; Thompson, D.W.; Yan, L.; Sarkar, S.; Subramanian, A.; Woollam, J.A. Infrared Optical Properties and AFM of Spin-Cast Chitosan Films Chemically Modified with 1,2 Epoxy-3-Phenoxy-Propane. Colloids Surf. B Biointerfaces 2005, 46, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Liu, Z.; Zu, Y.; Fu, Y.; Xing, Z.; Zhao, L.; Sun, T.; Zhou, Z. Adsorption of Chitosan onto Carbonaceous Surfaces and Its Application: Atomic Force Microscopy Study. Nanotechnology 2011, 22, 155703. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Millane, R.P.; Arnott, S.; Atkins, E.D.T. The Crystal Structure of Gellan. Carbohydr. Res. 1988, 175, 1–15. [Google Scholar] [CrossRef]
- Funami, T.; Noda, S.; Nakauma, M.; Ishihara, S.; Takahashi, R.; Al-Assaf, S.; Ikeda, S.; Nishinari, K.; Phillips, G.O. Molecular Structures of Gellan Gum Imaged with Atomic Force Microscopy in Relation to the Rheological Behavior in Aqueous Systems in the Presence or Absence of Various Cations. J. Agric. Food Chem. 2008, 56, 8609–8618. [Google Scholar] [CrossRef] [PubMed]
- Faraco, T.A.; Silva, H.d.O.X.; Barud, H.d.S.; Ribeiro, T.d.C.; Maciel, I.O.; Quirino, W.G.; Fragneaud, B.; Cremona, M.; Ginoble Pandoli, O.; Legnani, C. Biosubstrates Obtained from Gellan Gum for Organic Light-Emitting Diodes. ACS Appl. Electron. Mater. 2021, 3, 2333–2340. [Google Scholar] [CrossRef]
- Ikeda, S.; Henry, K. Effects of Partial Replacement of Gelatin in High Sugar Gels with Gellan on Their Textural, Rhelogical, and Thermal Properties. Food Biophys. 2016, 11, 400–409. [Google Scholar] [CrossRef]
- Severini, L.; Tavagnacco, L.; Angelini, R.; Franco, S.; Bertoldo, M.; Calosi, M.; Micheli, L.; Sennato, S.; Chiessi, E.; Ruzicka, B.; et al. Methacrylated Gellan Gum Hydrogel: A Smart Tool to Face Complex Problems in the Cleaning of Paper Materials. Cellulose 2023, 30, 10469–10485. [Google Scholar] [CrossRef]
- Morris, V.J.; Kirby, A.R.; Gunning, A.P. A Fibrous Model for Gellan Gels from Atomic Force Microscopy Studies. In Proceedings of the Physical Chemistry and Industrial Application of Gellan Gum; Nishinari, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 102–108. [Google Scholar]
- Choi, S.-Y.; Lee, H.-Y.; Ji, C.-H.; Rhee, H.-W.; Singh, R. Dendrite-Free Cross-Link Network Using Bio-Inspired Ion-Conducting Membrane. J. Membr. Sci. 2020, 595, 117519. [Google Scholar] [CrossRef]
- Singh, R.; Bhattacharya, B.; Rhee, H.-W.; Singh, P.K. Solid Gellan Gum Polymer Electrolyte for Energy Application. Int. J. Hydrogen Energy 2015, 40, 9365–9372. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, A.; Zhu, B.; Zhu, L.; Zeng, H. Hierarchical Self-Assembly of Dopamine into Patterned Structures. Adv. Mater. Interfaces 2017, 4, 1601218. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27, 14180–14187. [Google Scholar] [CrossRef] [PubMed]
- Zangmeister, R.A.; Morris, T.A.; Tarlov, M.J. Characterization of Polydopamine Thin Films Deposited at Short Times by Autoxidation of Dopamine. Langmuir 2013, 29, 8619–8628. [Google Scholar] [CrossRef] [PubMed]
- Fricke, G.; Carpenter, R.; Battino, R. Effect of Various Gases on the pH of Water. J. Phys. Chem. 1973, 77, 826–827. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Peng, S.-W.; Hsieh, S.-L.; Kirankumar, R.; Huang, P.-F.; Chang, T.-M.; Dwivedi, A.K.; Chen, N.-F.; Wu, H.-M.; Hsieh, S. Polydopamine Ultrathin Film Growth on Mica via In-Situ Polymerization of Dopamine with Applications for Silver-Based Antimicrobial Coatings. Materials 2021, 14, 671. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, D.; Mullen, A.B.; Lamprou, D.A. Probing Polydopamine Adhesion to Protein and Polymer Films: Microscopic and Spectroscopic Evaluation. J. Mater. Sci. 2018, 53, 3198–3209. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C. Oxidant-Induced Dopamine Polymerization for Multifunctional Coatings. Polym. Chem. 2010, 1, 1430–1433. [Google Scholar] [CrossRef]
Biopolymer | Molecular Weight (g/mol) | Solvent Type | Solubility (mg/mL) | Film Thickness (nm) | Film Stability during C-SVA |
---|---|---|---|---|---|
Dextrin | - | water | 50 | 111 ± 7 | rather unstable |
Glycogen | - | water | - | 116 ± 8 | stable |
Phytagel | 1,000,000 | water | 10 | 93 ± 5 | stable |
Gelatin | - | water | 50 | 89 ± 5 | stable |
Chitosan | 190,000–310,000 | acetic acid | - | 86 ± 5 | stable |
Dopamine | 189.64 | water | 100 | 97 ± 6 | stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băbuțan, M.; Botiz, I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics 2024, 9, 396. https://doi.org/10.3390/biomimetics9070396
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics. 2024; 9(7):396. https://doi.org/10.3390/biomimetics9070396
Chicago/Turabian StyleBăbuțan, Mihai, and Ioan Botiz. 2024. "Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors" Biomimetics 9, no. 7: 396. https://doi.org/10.3390/biomimetics9070396
APA StyleBăbuțan, M., & Botiz, I. (2024). Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics, 9(7), 396. https://doi.org/10.3390/biomimetics9070396