Biopolymer-Based Biomimetic Aerogel for Biomedical Applications
Abstract
:1. Introduction
2. Preparation of Biopolymer-Based Aerogel
2.1. Sol–Gel Process
2.2. Aging Process
2.3. Drying Process
2.3.1. Supercritical Carbon Dioxide (SC-CO2) Drying
2.3.2. Freeze-Drying
2.3.3. Microwave Drying
Method | Advantages | Disadvantages | References |
---|---|---|---|
SC-CO2 drying | -Produces aerogels with high porosity and minimal shrinkage | -Requires specialized equipment and is more costly | [50,51] |
Freeze-drying | -Suitable for heat-sensitive biopolymers and avoids surface tension issues -Environmental friendly and low-cost | -Can result in aerogels with lower mechanical strength and requires careful control of freezing and drying parameters | [52,53] |
Microwave drying | -Microwave drying significantly reduces the drying time compared to traditional drying methods | -Tends to lead to large pore formation -Precise control of microwave power and drying time is essential to prevent overheating | [50,54] |
3. Biopolymer-Based Aerogel
3.1. Biopolymer-Based Aerogel in Biomedical Applications
3.2. Biopolymer-Based Aerogel for Tissue Regeneration
3.2.1. Bone Tissue Regeneration
3.2.2. Cartilage Tissue Regeneration
3.3. Biopolymer-Based Aerogel for Wound Healing and Hemostat Application
3.4. Biopolymer-Based Aerogel for Drug Delivery
3.5. Biopolymer-Based Aerogel for Biosensors
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Górnicki, T.; Lambrinow, J.; Golkar-Narenji, A.; Data, K.; Domagała, D.; Niebora, J.; Farzaneh, M.; Mozdziak, P.; Zabel, M.; Antosik, P.; et al. Biomimetic Scaffolds—A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. Nanomaterials 2024, 14, 531. [Google Scholar] [CrossRef] [PubMed]
- Jo Jang, E.; Patel, R.; Sankpal, N.V.; Bouchard, L.-S.; Patel, M. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur. Polym. J. 2024, 202, 112651. [Google Scholar] [CrossRef]
- Yi, H.; Patel, R.; Patel, K.D.; Bouchard, L.S.; Jha, A.; Perriman, A.W.; Patel, M. Conducting polymer-based scaffolds for neuronal tissue engineering. J. Mater. Chem. B 2023, 11, 11006–11023. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, N.; Patel, K.D.; Jang, E.J.; Shannon, M.R.; Patel, R.; Patel, M.; Perriman, A.W. Tubular nanomaterials for bone tissue engineering. J. Mater. Chem. B 2023, 11, 6225–6248. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.J.; Patel, R.; Patel, M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023, 15, 1144. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Patel, M.; Patel, R. Electrospun nanofiber nerve guidance conduits for peripheral nerve regeneration: A review. Eur. Polym. J. 2022, 181, 111663. [Google Scholar] [CrossRef]
- Zheng, Z.; Patel, M.; Patel, R. Hyaluronic acid-based materials for bone regeneration: A review. React. Funct. Polym. 2022, 171, 105151. [Google Scholar] [CrossRef]
- Patel, M.; Hong, H.J.; Koh, W.-G. Micropatterned fibrous scaffolds for biomedical application. J. Ind. Eng. Chem. 2019, 80, 729–738. [Google Scholar] [CrossRef]
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Liu, H.; Xing, F.; Yu, P.; Zhe, M.; Shakya, S.; Liu, M.; Xiang, Z.; Duan, X.; Ritz, U. Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Mater. Des. 2024, 243, 113091. [Google Scholar] [CrossRef]
- Lázár, I.; Čelko, L.; Menelaou, M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023, 9, 746. [Google Scholar] [CrossRef] [PubMed]
- Keil, C.; Hübner, C.; Richter, C.; Lier, S.; Barthel, L.; Meyer, V.; Subrahmanyam, R.; Gurikov, P.; Smirnova, I.; Haase, H. Ca-Zn-Ag Alginate Aerogels for Wound Healing Applications: Swelling Behavior in Simulated Human Body Fluids and Effect on Macrophages. Polymers 2020, 12, 2741. [Google Scholar] [CrossRef] [PubMed]
- Karamikamkar, S.; Yalcintas, E.P.; Haghniaz, R.; de Barros, N.R.; Mecwan, M.; Nasiri, R.; Davoodi, E.; Nasrollahi, F.; Erdem, A.; Kang, H.; et al. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. Adv. Sci. 2023, 10, 2204681. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Patel, R.; Kulkarni, C.V.; Patel, M. Graphene-Based Aerogels for Biomedical Application. Gels 2023, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Sakuma, W.; Yasui, H.; Daicho, K.; Saito, T.; Fujisawa, S.; Isogai, A.; Kanamori, K. Nanocellulose xerogels with high porosities and large specific surface areas. Front. Chem. 2019, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Weatherwax, R.; Caulfield, D. Cellulose aerogels: An improved method for preparing a highly expanded form of dry cellulose. Tappi 1971, 54, 985–986. [Google Scholar]
- Jin, H.; Nishiyama, Y.; Wada, M.; Kuga, S. Nanofibrillar cellulose aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2004, 240, 63–67. [Google Scholar] [CrossRef]
- Zhang, H.; Lyu, S.; Zhou, X.; Gu, H.; Ma, C.; Wang, C.; Ding, T.; Shao, Q.; Liu, H.; Guo, Z. Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J. Colloid Interface Sci. 2019, 536, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, J.; Saito, T.; Isogai, A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces 2015, 7, 19809–19815. [Google Scholar] [CrossRef] [PubMed]
- Dharunya, G.; Duraipandy, N.; Lakra, R.; Korapatti, P.S.; Jayavel, R.; Kiran, M.S. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater. 2016, 11, 045011. [Google Scholar] [CrossRef] [PubMed]
- Veres, P.; Király, G.; Nagy, G.; Lázár, I.; Fábián, I.; Kalmár, J. Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein. J. Non-Cryst. Solids 2017, 473, 17–25. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D.; Cablik, V. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications. Int. J. Polym. Anal. Charact. 2018, 23, 721–729. [Google Scholar] [CrossRef]
- Pawar, J.; Ali, M.T.; Fule, R.; Moravkar, K.; Seervi, M.; Sathaye, S.; Amin, P. Biodegradable Porous Starch Spheres as a Novel Carrier for Enhancement of Dissolution Rate and Oral Bioavailability of Itraconazole. Curr. Drug Deliv. 2017, 14, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Concha, M.; Vidal, A.; Giacaman, A.; Ojeda, J.; Pavicic, F.; Oyarzun-Ampuero, F.A.; Torres, C.; Cabrera, M.; Moreno-Villoslada, I.; Orellana, S.L. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Osorio, D.A.; Lee, B.E.; Kwiecien, J.M.; Wang, X.; Shahid, I.; Hurley, A.L.; Cranston, E.D.; Grandfield, K. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 2019, 87, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, C.; Han, X.; Li, S.; Wang, Z.; Huang, J.; Liu, H.; Chen, Z. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater. Des. 2022, 217, 110662. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Merillas, B.; Pontinha, A.D.R. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int. J. Mol. Sci. 2024, 25, 1309. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, S.; Ying, Z.; Liu, J.; Zhou, Y.; Chen, F. Engineering of Aerogel-Based Biomaterials for Biomedical Applications. Int. J. Nanomed. 2020, 15, 2363–2378. [Google Scholar] [CrossRef] [PubMed]
- Berrio, M.E.; Oñate, A.; Salas, A.; Fernández, K.; Meléndrez, M.F. Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: A review. Mater. Today Chem. 2021, 20, 100422. [Google Scholar] [CrossRef]
- Zhi, D.; Li, T.; Li, J.; Ren, H.; Meng, F. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B Eng. 2021, 211, 108642. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bashir Yahya, E.; Jummaat, F.; Adnan, A.S.; Olaiya, N.G.; Rizal, S.; Abdullah, C.K.; Pasquini, D.; Thomas, S. Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Prog. Mater. Sci. 2023, 131, 101014. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef] [PubMed]
- Okutucu, B. The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’. Med. Devices Sens. 2021, 4, e10168. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Mei, X.; Li, S.; Chen, Y.; Huang, X.; Cao, Y.; Guro, V.P.; Li, Y. Silica–Chitosan Composite Aerogels for Thermal Insulation and Adsorption. Crystals 2023, 13, 755. [Google Scholar] [CrossRef]
- Lopes, J.M.; Mustapa, A.N.; Pantić, M.; Bermejo, M.D.; Martín, Á.; Novak, Z.; Knez, Ž.; Cocero, M.J. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. J. Supercrit. Fluids 2017, 130, 17–22. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Feng, J.; Wu, P. Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J. Phys. Chem. C 2012, 116, 8063–8068. [Google Scholar] [CrossRef]
- Niu, F.; Wu, N.; Yu, J.; Ma, X. Gelation, flame retardancy, and physical properties of phosphorylated microcrystalline cellulose aerogels. Carbohydr. Polym. 2020, 242, 116422. [Google Scholar] [CrossRef] [PubMed]
- Estella, J.; Echeverría, J.C.; Laguna, M.; Garrido, J.J. Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 2007, 102, 274–282. [Google Scholar] [CrossRef]
- Iswar, S.; Malfait, W.J.; Balog, S.; Winnefeld, F.; Lattuada, M.; Koebel, M.M. Effect of aging on silica aerogel properties. Microporous Mesoporous Mater. 2017, 241, 293–302. [Google Scholar] [CrossRef]
- Dowson, M.; Grogan, M.; Birks, T.; Harrison, D.; Craig, S. Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying. Appl. Energy 2012, 97, 396–404. [Google Scholar] [CrossRef]
- Matsuyama, K.; Morotomi, K.; Inoue, S.; Nakashima, M.; Nakashima, H.; Okuyama, T.; Kato, T.; Muto, H.; Sugiyama, H. Antibacterial and antifungal properties of Ag nanoparticle-loaded cellulose nanofiber aerogels prepared by supercritical CO2 drying. J. Supercrit. Fluids 2019, 143, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, L.; Chen, L.; Duan, G.; Mei, C.; Huang, C.; Han, J.; Jiang, S. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 2019, 26, 6653–6667. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Piątkowski, M.; Bogdał, D.; Matysek, D. Biodegradable, pH-responsive chitosan aerogels for biomedical applications. RSC Adv. 2017, 7, 32960–32965. [Google Scholar] [CrossRef]
- Siviello, C.; Larobina, D. Bio-based aerogels by supercritical CO2. In Biofoams: Science and Applications of Bio-Based Cellular and Porous Materials; CRC Press: Boca Raton, FL, USA, 2015; p. 227. [Google Scholar]
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Knez Hrnčič, M. Are supercritical fluids solvents for the future? Chem. Eng. Process.-Process Intensif. 2019, 141, 107532. [Google Scholar] [CrossRef]
- Liang, H.-W.; Wu, Z.-Y.; Chen, L.-F.; Li, C.; Yu, S.-H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, H. Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86, 172–184. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- García-González, C.A.; Camino-Rey, M.; Alnaief, M.; Zetzl, C.; Smirnova, I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J. Supercrit. Fluids 2012, 66, 297–306. [Google Scholar] [CrossRef]
- Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the production of polysaccharide aerogel particles. Materials 2018, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Pothan, L.A.; Mavelil-Sam, R. Biobased Aerogels: Polysaccharide and Protein-Based Materials; Royal Society of Chemistry: London, UK, 2018; Volume 58. [Google Scholar]
- Nocentini, K.; Achard, P.; Biwole, P.; Stipetic, M. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build. 2018, 158, 14–22. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr. Polym. 2014, 99, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Pai, A.R.; Binumol, T.; Gopakumar, D.A.; Pasquini, D.; Seantier, B.; Kalarikkal, N.; Thomas, S. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 2020, 246, 116663. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Keplinger, T.; Wang, X.; Burgert, I. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 2019, 7, 2981–2992. [Google Scholar] [CrossRef]
- De Marco, I.; Iannone, R.; Miranda, S.; Riemma, S. An environmental study on starch aerogel for drug delivery applications: Effect of plant scale-up. Int. J. Life Cycle Assess. 2018, 23, 1228–1239. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical impregnation: Starch aerogel + α-tocopherol tablets. J. Supercrit. Fluids 2019, 143, 305–312. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Brahma, S.; Rose, D.J.; Ciftci, O.N. In Vitro Digestibility of Nanoporous Wheat Starch Aerogels. J. Agric. Food Chem. 2018, 66, 9490–9497. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Adnan, A.S.; Yahya, E.B.; Olaiya, N.G.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.K.; Oyekanmi, A.A.; et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Lu, C.; Deng, Y. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J. Mater. Chem. 2012, 22, 11642–11650. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, M.; Zheng, X.; Li, W.; Ren, X. Chitosan/mesoporous silica hybrid aerogel with bactericidal properties as hemostatic material. Eur. Polym. J. 2021, 142, 110132. [Google Scholar] [CrossRef]
- Pantić, M.; Maver, U.; Rožanc, J.; Vihar, B.; Andrejč, D.C.; Knez, Ž.; Novak, Z. Evaluation of ethanol-induced chitosan aerogels with human osteoblast cells. Int. J. Biol. Macromol. 2023, 253, 126694. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Zhao, S.; Malfait, W.J.; Koebel, M.M. Chemistry of Chitosan Aerogels: Three-Dimensional Pore Control for Tailored Applications. Angew. Chem. Int. Ed. 2021, 60, 9828–9851. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Hwang, H.S. Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications. Gels 2023, 9, 951. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-J.; Zhang, Y.; Zheng, L.; Zhang, H.; Shi, H.-H.; Zhang, X.-C.; Liu, B. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering. Biomater. Adv. 2022, 134, 112549. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Mejuto, A.; Malandain, N.; Ferreira-Gonçalves, T.; Ardao, I.; Reis, C.P.; Laromaine, A.; Roig, A.; García-González, C.A. Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering. Cellulose 2024, 31, 515–534. [Google Scholar] [CrossRef]
- Al-Jawuschi, N.; Chen, S.; Abie, N.; Fischer, T.; Fare, S.; Maleki, H.H. Self-Assembly-Driven Bi2S3 Nanobelts Integrated a Silk-Fibroin-Based 3D-Printed Aerogel-Based Scaffold with a Dual-Network Structure for Photothermal Bone Cancer Therapy. Langmuir 2023, 39, 4326–4337. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.; Pinho, A.R.; Gomes, M.C.; Demidov, Y.; Krakor, E.; Grume, D.; Herb, M.; Lê, K.; Mano, J.; Mathur, S.; et al. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer. Macromol. Biosci. 2022, 22, 2100442. [Google Scholar] [CrossRef] [PubMed]
- Goimil, L.; Braga, M.E.M.; Dias, A.M.A.; Gómez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C.; de Sousa, H.C.; García-González, C.A. Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J. CO2 Util. 2017, 18, 237–249. [Google Scholar] [CrossRef]
- Martins, M.; Barros, A.A.; Quraishi, S.; Gurikov, P.; Raman, S.P.; Smirnova, I.; Duarte, A.R.C.; Reis, R.L. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 2015, 106, 152–159. [Google Scholar] [CrossRef]
- Sun, D.; Liu, W.; Tang, A.; Zhou, F. Tuning the Poisson’s ratio of poly(ethylene glycol) diacrylate/cellulose nanofibril aerogel scaffold precisely for cultivation of bone marrow mesenchymal stem cell. J. Biomed. Mater. Res. A 2023, 111, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Ji, J.; Li, J.; Liu, W.; Wang, J.; Sun, Q.; Li, Q. Nanocellulose/PEGDA Aerogels with Tunable Poisson’s Ratio Fabricated by Stereolithography for Mouse Bone Marrow Mesenchymal Stem Cell Culture. Nanomaterials 2021, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Y.; Liu, Y.; Zhao, X.; Huang, Y.; Zhang, X.; Hu, X.; Mequanint, K.; Luo, G.; Xing, M. Platelet Vesicles Synergetic with Biosynthetic Cellulose Aerogels for Ultra-Fast Hemostasis and Wound Healing. Adv. Healthc. Mater. 2024, 2304523. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Pan, W.; Luo, S.; Luo, X.; Zhao, Y.; Xiu, Q.; Zhong, M.; Wang, Z.; Liao, T.; Li, N.; et al. Turmeric-Derived Nanoparticles Functionalized Aerogel Regulates Multicellular Networks to Promote Diabetic Wound Healing. Adv. Sci. 2024, 11, 2307630. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hu, E.; Yu, K.; Xie, R.; Lu, F.; Lu, B.; Bao, R.; Dai, F.; Lan, G. Gemini Dressing with Both Super-hydrophilicity and-hydrophobicity Pursuing Isolation of Blood Cells for Hemostasis and Wound Healing. Adv. Fiber Mater. 2023, 5, 1447–1466. [Google Scholar] [CrossRef]
- Yang, T.-X.; Li, H.; Zhu, Y.; Gao, Y.; Lv, H.-N.; Zha, S.-H.; Sun, X.-L.; Zhao, Q.-S. Preparation and characterisation of wheat starch-based aerogels for procyanidin encapsulation to enhance stability. New J. Chem. 2024, 48, 79–88. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical CO2 adsorption of non-steroidal anti-inflammatory drugs into biopolymer aerogels. J. CO2 Util. 2020, 36, 40–53. [Google Scholar] [CrossRef]
- Cai, C.; Wei, Z.; Deng, L.; Fu, Y. Temperature-Invariant Superelastic Multifunctional MXene Aerogels for High-Performance Photoresponsive Supercapacitors and Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13, 54170–54184. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Song, Q.; Liu, K.; Liu, H.; Pan, J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y.; Si, C.; et al. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode. Nano-Micro Lett. 2023, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Bandar Abadi, M.; Weissing, R.; Wilhelm, M.; Demidov, Y.; Auer, J.; Ghazanfari, S.; Anasori, B.; Mathur, S.; Maleki, H. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 34996–35007. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Mejuto, A.; García-González, C.A. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2021, 131, 112525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, J.; Fu, L.; Chen, L.; Dai, W.; Huang, H.; Wang, J.; Zhang, X.; Cai, Q.; Yang, X. Gradient fibrous aerogel conjugated with chemokine peptide for regulating cell differentiation and facilitating osteochondral regeneration. Chem. Eng. J. 2021, 422, 130428. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Y.; Zhang, H.; Zhu, T.; Chen, S.; Li, J.; Du, J.; Yan, X. A multifunctional chitosan composite aerogel based on high density amidation for chronic wound healing. Carbohydr. Polym. 2023, 321, 121248. [Google Scholar] [CrossRef] [PubMed]
- John, J.V.; Sharma, N.S.; Tang, G.; Luo, Z.; Su, Y.; Weihs, S.; Shahriar, S.M.S.; Wang, G.; McCarthy, A.; Dyke, J.; et al. Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing. Adv. Funct. Mater. 2023, 33, 2206936. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Simple ultrasonic-assisted approach to prepare polysaccharide-based aerogel for cell research and histocompatibility study. Int. J. Biol. Macromol. 2021, 188, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Sequeira, R.; Ardao, I.; Starbird, R.; García-González, C.A. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr. Polym. 2018, 189, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Santos-Rosales, V.; Ardao, I.; Alvarez-Lorenzo, C.; Ribeiro, N.; Oliveira, A.L.; García-González, C.A. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO2-Based Approach. Molecules 2019, 24, 871. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ye, Z.; Natan, A.; Ma, Y.; Li, H.; Chen, Y.; Wan, L.; Aparicio, C.; Zhu, H. Bone-Inspired Mineralization with Highly Aligned Cellulose Nanofibers as Template. ACS Appl. Mater. Interfaces 2019, 11, 42486–42495. [Google Scholar] [CrossRef] [PubMed]
- Karamat-Ullah, N.; Demidov, Y.; Schramm, M.; Grumme, D.; Auer, J.; Bohr, C.; Brachvogel, B.; Maleki, H. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. ACS Biomater. Sci. Eng. 2021, 7, 4545–4556. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Z.; Zhou, S.; Zhu, L.; Zhang, Q.; Wang, S.; You, R. Engineering biomimetic scaffolds by combining silk protein nanofibrils and hyaluronic acid. Int. J. Biol. Macromol. 2024, 257, 128762. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xiao, J.; Ji, Y.; Feng, Y.; Yan, S.; Li, X.; Zhang, Q.; You, R. Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds. Int. J. Biol. Macromol. 2023, 237, 124223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cheng, C.; Wang, X.; Yuan, Z.; Sun, B.; El-Newehy, M.; Abdulhameed, M.M.; Fang, B.; Mo, X. Aspirin-Loaded Anti-Inflammatory ZnO-SiO2 Aerogel Scaffolds for Bone Regeneration. ACS Appl. Mater. Interfaces 2024, 16, 17092–17108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, J.; Pei, X.; Sun, S.; Cai, J.; Liu, Y.; Wang, Y.; Zheng, L.; Zhou, H. Ultrasound-driven electrical stimulation based on 3D hierarchical porous piezoelectric nanofiber-aerogel scaffold promotes bone defect repair. Chem. Eng. J. 2023, 470, 144305. [Google Scholar] [CrossRef]
- Yahya, E.B.; Amirul, A.A.; H.P.S., A.K.; Olaiya, N.G.; Iqbal, M.O.; Jummaat, F.; A.K., A.S.; Adnan, A.S. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers 2021, 13, 1612. [Google Scholar] [CrossRef] [PubMed]
- Quan, K.; Li, G.; Tao, L.; Xie, Q.; Yuan, Q.; Wang, X. Diaminopropionic Acid Reinforced Graphene Sponge and Its Use for Hemostasis. ACS Appl. Mater. Interfaces 2016, 8, 7666–7673. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Li, Y.; Tong, X.; Chen, L.; Wang, L.; Li, T.; Zhang, Q. Strongly-adhesive easily-detachable carboxymethyl cellulose aerogel for noncompressible hemorrhage control. Carbohydr. Polym. 2023, 301, 120324. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, C.; Zhao, W.; Li, W.; Wang, G.; Zhou, X.; Zhang, Q. Water-Swellable Cellulose Nanofiber Aerogel for Control of Hemorrhage from Penetrating Wounds. ACS Appl. Bio Mater. 2022, 5, 4886–4895. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liang, Y.; Xu, C.; Sun, H.; Tao, L.; Wei, Y.; Wang, X. Polydopamine reinforced hemostasis of a graphene oxide sponge via enhanced platelet stimulation. Colloids Surf. B Biointerfaces 2019, 174, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, X.; Zhang, K.; Yang, G.; Mu, Y.; Su, C.; Pang, J.; Chen, T.; Chen, X.; Feng, C. Chitosan/Diatom-Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Adv. Healthc. Mater. 2020, 9, 2000951. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Gao, B.; Wu, H.; Song, J.; Zhu, L.; Zhou, M.; Linghu, X.; Huang, S.; Zhou, Z.; Wa, Q. A unidirectional water-transport antibacterial bilayer nanofibrous dressing based on chitosan for accelerating wound healing. Int. J. Biol. Macromol. 2024, 269, 131878. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Mu, M.; Feng, C.; Chuan, D.; Ren, Y.; Wang, X.; Fan, R.; Yan, J.; Guo, G. MXene-based polysaccharide aerogel with multifunctional enduring antimicrobial effects for infected wound healing. Int. J. Biol. Macromol. 2024, 261, 129238. [Google Scholar] [CrossRef] [PubMed]
- Karan, A.; Sharma, N.S.; Darder, M.; Su, Y.; Andrabi, S.M.; Shahriar, S.M.S.; John, J.V.; Luo, Z.; DeCoster, M.A.; Zhang, Y.S.; et al. Copper–Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS Omega 2024, 9, 9765–9781. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ernst, A.U.; Wang, X.; Wang, L.; Liu, W.; Ma, M. Engineering a Hierarchical Biphasic Gel for Subcutaneous Vascularization. Adv. Healthc. Mater. 2022, 11, 2200922. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wu, P.; Yan, S.; Wang, S.; Zhao, J.; Su, X.; Li, J.; Yu, F.; Lang, M.; Xie, Y. Tissue hydrate layer-trigger swollen gelatin-based aerogel hemostatic material with bletilla striata complex active ingredient complex to promote hemostasis. Appl. Mater. Today 2024, 38, 102227. [Google Scholar] [CrossRef]
- Groult, S.; Buwalda, S.; Budtova, T. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater. Adv. 2022, 135, 212732. [Google Scholar] [CrossRef] [PubMed]
- García-González, C.A.; Smirnova, I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Supercrit. Fluids 2013, 79, 152–158. [Google Scholar] [CrossRef]
- Sang, Y.; Gao, J.; Han, X.; Liang, T.; Chen, T.; Zhao, Y. Preparation and sustained release of diatomite incorporated and Eudragit L100 coated hydroxypropyl cellulose/chitosan aerogel microspheres. Int. J. Biol. Macromol. 2024, 267, 131447. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liao, Y.; Wei, S.; Zhou, H.; Wu, Y.; Qing, Y.; Li, L.; Luo, S.; Tian, C.; Wu, Y. Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors. Int. J. Biol. Macromol. 2023, 250, 126197. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Shao, R.; Wang, C.; An, X.; Sun, Z.; Sun, S. Flexible, ultralight, ultrathin, and highly sensitive pressure sensors based on bacterial cellulose and silver nanowires. J. Mater. Sci. 2022, 57, 20987–20998. [Google Scholar] [CrossRef]
- Yuanzheng, L.; Youqi, W.; Jiang, H.; Buyin, L. Nanofiber enhanced graphene–elastomer with unique biomimetic hierarchical structure for energy storage and pressure sensing. Mater. Des. 2021, 203, 109612. [Google Scholar] [CrossRef]
- Paolieri, M.; Chen, Z.; Babu Kadumudi, F.; Alehosseini, M.; Zorrón, M.; Dolatshahi-Pirouz, A.; Maleki, H. Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 5211–5223. [Google Scholar] [CrossRef]
Biopolymer | Advantages | Disadvantages | Refs |
---|---|---|---|
Cellulose | -Biocompatibility and high porosity | -Moisture sensitivity and mechanically fragile -Highly hydrophilic, leading to swelling and loss of mechanical properties in wet environments | [62,63] |
Chitosan | -Biocompatibility; antimicrobial and and hemostatic properties with high porosity -Generally nonbrittle | -Solubility and stability can be affected by pH changes, limiting their use in certain biological environments. | [64,65,66] |
Starch | -Biocompatibility, biodegradability, high porosity, and cost-effectiveness | -Starch is highly hydrophilic, which can lead to moisture absorption, swelling, and structural instability in moist environments | [67,68] |
Aerogel Type | Fabrication Method | Properties | Applications | Refs |
---|---|---|---|---|
Silk fibroin/cellulose composite aerogel | Alkali/urea system and freeze-drying | Porosity: 99.2% Compressive strength: 7–10 MPa | Bone tissue regeneration | [69] |
Methylcellulose-in-bacterial nanocellulose aerogel | 3D printing and SC-CO2 | Porosity: 84–87% Pore size: 19–25 nm Surface area: 268–283 m2/g Pore volume: 1.71–2.37 cm3/g | Bone tissue engineering | [70] |
Silk fibroin aerogel | Self-assembly with photo-cross-linking-assisted 3D printing | Pore size: 7–23 μm | Treatment of bone cancer | [71] |
Silk fibroin aerogel | Photo-crosslinking and 3D printing | Honeycomb-like pores of ≈100–120 µm with interconnected macropores (1000 μm) Surface area: 308.8 m2/g | Promoted osteoblastic differentiation | [72] |
Starch aerogel microsphere | Emulsion mixture with thermal gelation process along with solvent exchange | Porosity: 87.7 ± 0.2% Surface area: 188 m2/g Pore volume: 1.25 cm3/g | Scaffolds for bone regeneration | [73] |
Alginate–starch based aerogels | CO2-induced gelation followed by expansion of the dissolved CO2 | Porosity: 25 ± 2%, Pore size of 431 ± 158 μm Surface area: 183–544 m2/g Pore volume: 2.0–6.8 cm3/g | Bone regeneration | [74] |
Poly(ethylene glycol)diacrylate/cellulose nanofibril aerogel | Stereolithography and freeze drying | Young’s Modulus: 0.58 ± 0.02 or 0.51 ± 0.03 depending on wet or dry states and Poisson’s ratio of 0.08 ± 0.02 or 0.04 ± 0.002 | Chondrogenic differentiation | [75] |
Nanocellulose/PEGDA aerogels | Stereolithography and freeze-drying | Macropore sizes: 400 and 800 μm Micropore sizes: 20 to 100 μm | Cartilage repair in tissue engineering | [76] |
Bacterial cellulose aerogels | Multiple freeze/thaw cycles and tert-butanol dehydration | Porosity: 97.35 ± 0.36% Pore sizes: 28.16 ± 9.58 to 2.56 ± 0.42 µm Surface area: 42.22 ± 8.21 m2/g | Ultra-fast hemostasis and wound healing | [77] |
Cellulose aerogel loaded with turmeric-derived nanoparticles | Ice-templating, solvent exchange, and air-drying procedure | Water vapor transmission rate: 1967 ± 193 g (m2 per day)−1 Swelling ratio: ≈6000% | Diabetic wound healing | [78] |
Starch–konjac glucomannan aerogel | Dispersion of microporous starch followed by freeze-drying methods | Porosity of 59.91 ± 5.4%, Pore size: size of 41 ± 7.3 μm | Hemostatic dressing that facilitates tissue repair of bleeding wounds | [79] |
Wheat starch-based aerogels | Mixture of starch pasting with cooling alongside freeze drying | Pore size: 23.108 nm Surface area: 8.108 m2/g Pore volume: 4.684 × 10−2 cc/g | Drug delivery | [80] |
Starch–alginate aerogel | Gelatinization and retrogradation followed by drying in SC-CO2 | Pore size: 0.26 ± 0.27 to 0.13 ± 0.10μm Surface area: 58.3 ± 0.5 to 44.4 ± 0.7 m2/g | Anti-inflammatory drugs delivery | [81] |
MXene nanosheets, waterborne polyurethane, and functionalized cellulose nanocrystal aerogels | Bioinspired freezing method | Thermal conductivity: 0.045 W m−1 K−1 Electrochemical property of 225 F/g and cycle ability of 86.7% after 4000 cycles | Integrated photodetector or biosensor for wearable electronics | [82] |
MXene/nanocellulose composite aerogels | Stirring and ultrasonication of CNF/CNT/MXene with freeze drying | Electrochemical performance: (849.2 mF cm−2 at 0.8 mA cm−2 Ultralow density: 7.48 mg cm−3 Electrical conductivity: ~2400 S m−1 | Pressure sensors and compressible electrodes | [83] |
Silk fibroin–MXene composite aerogels | GO nanosheets and MXene in a cross-linked SF fibrous solution via bidirectional freeze-casting, followed by freeze-drying and gas-phase hydrophobization | Density: 6–60 mg cm−3 Electrical conductivity: up to 20,000 S cm−1) | Mechanically switchable electronics for flexible pressure sensors/electronic skins and pollutant separation | [84] |
3D-printed alginate-hydroxyapatite aerogel | 3D-printing of alginate-hydroxyapatite hydrogels combined with supercritical CO2 drying methodology | Porosity: 88.56 to 80.33% Surface area: 183 ± 9 m2/g Pore volume: 3.14 ± 0.16 cm3/g | Bone regeneration | [85] |
PLLA/Gel/HA/CS gradient fibrous aerogel | PLLA/Gel/HA/CS fibers homogenized in butanol with NaCl particles followed by freezing in liquid nitrogen and freeze-dried for 24 h | Fiber diameter: approx. 2.6 μm Compressive strength: 1.4 MPa for the strongest variant. | Osteochondral tissue engineering in the way of no growth factor addition | [86] |
Chitosan/gelatin/dopamine aerogel | Mixed the DA-grafted gelatin and chitosan solution followed by immersing in a EDC/NHS/ethanol solution overnight and freeze-dried | Pore size: 48.972 ± 18.172 μm Density: 25 mg/cm3 Water absorption rate: >2000% | Multifunctional graft for the treatment of chronic wounds | [87] |
PGLA/gelatin and PDO/gelatin nanofiber aerogels | Freeze-casting technique | Diameters of macrochannels ≈ 300–500 µm | Treatment and fast healing of diabetic wounds | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Patel, R.; Patel, M. Biopolymer-Based Biomimetic Aerogel for Biomedical Applications. Biomimetics 2024, 9, 397. https://doi.org/10.3390/biomimetics9070397
Jeong Y, Patel R, Patel M. Biopolymer-Based Biomimetic Aerogel for Biomedical Applications. Biomimetics. 2024; 9(7):397. https://doi.org/10.3390/biomimetics9070397
Chicago/Turabian StyleJeong, Yuhan, Rajkumar Patel, and Madhumita Patel. 2024. "Biopolymer-Based Biomimetic Aerogel for Biomedical Applications" Biomimetics 9, no. 7: 397. https://doi.org/10.3390/biomimetics9070397
APA StyleJeong, Y., Patel, R., & Patel, M. (2024). Biopolymer-Based Biomimetic Aerogel for Biomedical Applications. Biomimetics, 9(7), 397. https://doi.org/10.3390/biomimetics9070397