Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method
Abstract
:1. Introduction
2. Preparation Methods of TNTA
2.1. Characteristics of Various Methods
Methods | Advantages | Disadvantages | Ref. |
---|---|---|---|
Template synthesis method | 1. Controlled scale of nanotubes using various templates 2. More desirable for practical applications | 1. Long-term instability 2. Complex manufacturing process | [35,52] |
Sol-gel method | 1. Simple process 2. High production efficiency 3. Low initial investment with high-quality products | Long manufacturing duration | [53] |
Hydrothermal method | 1. Efficient route for large-scale production 2. High length-to-diameter ratio | 1. Long reaction duration 2. Thermally unstable | [35] |
Electrochemical anodization method | 1. Simplicity 2. Cost efficiency 3. Exhibiting exceptional electrical, optical, structural, and thermal properties | 1. Constrained mass production 2. The utilization of highly toxic solvent | [21,55] |
2.2. Development History of the Electrochemical Anodization Method
2.2.1. Preparation of TNTA in HF Aqueous Solution
2.2.2. Preparation of TNTA in Fluoride Aqueous Solution
2.2.3. Preparation of TNTA in Fluorinated Organic Solution
2.2.4. Preparation of TNTA in Fluorine-Free Solution
Electrolyte Type | Electrolyte Composition | U/V | t/h | D/nm | L/nm | Year | Ref. |
---|---|---|---|---|---|---|---|
Aqueous Solution | 0.5 wt.% HF | 20 | 1/3 | 60 | 250 | 2001 | [56] |
H2SO4 + HF | 20 | 24 | 140 | 580 | 2003 | [63] | |
1 M (NH4)2SO4 + 0.5 wt.% NH4F | 20 | 2 | 90–110 | 2000 | 2005 | [86] | |
1% HF + 2.5% HNO3 | 20 | 4 | 100 | 400 | 2006 | [87] | |
1% HF + 2.5% HNO3 + 0.5 M H3BO3 | 20 | 4 | 120 | 560 | 2006 | [87] | |
0.1 M KF + 1.0 M NaHSO4 | 20 | 1 | 110 | 1800 | 2007 | [60] | |
1 M Na2SO4 + 0.5 wt.% NaF | 20 | 2 | 100 | 500 | 2013 | [59] | |
Organic Solution | 0.5% HF + Acetic Acid | 10 | N/A | 22 | 224 | 2005 | [88] |
0.25% NH4F + Ethylene Glycol | 60 | 1 | 80 | 12,000 | 2007 | [60] | |
0.56 g NH4F + 5 mL Deionized Water + 95 mL Formamide | 20 | 54 | N/A | 28,000 | 2007 | [74] | |
0.56 g NH4F + 5 mL Deionized Water + 95 mL Formamide | 35 | 80 | N/A | 58,000–66,000 | 2007 | [74] | |
Dimethyl sulfoxide electrolyte containing 2 vol.% HF | 60 | 70 | 150 | 93,000 | 2007 | [74] | |
Fluorine-Free Solution | 0.5 M Oxalic Acid + 0.1 M KCl + 0.15 M NH4Cl + 0.15 M KOH | 18 | N/A | 20 | 5000–50,000 | 2007 | [81] |
0.5 M Oxalic Acid + 0.3 M NH4Cl | 13 | N/A | N/A | 60,000 | 2007 | [81] | |
0.05 M HCl | 10 | 1 | 10 | / | 2007 | [62] |
2.3. Mechanism of the Electrochemical Anodization Method
2.4. Effects of Different Parameters of Electrochemical Anodization
3. Antibacterial Strategies
3.1. Topographical Antibacterial Strategy
3.2. Chemical Antibacterial Strategy
3.3. Drug Delivery Antibacterial Strategy
3.4. Combined Antibacterial Strategy
3.4.1. Enhancement of Antibacterial Properties
3.4.2. Reduction of Drug Release Rate
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Intelligence, M. Medical Implants Market Size & Share Analysis—Growth Trends & Forecasts (2024–2029). Available online: https://www.mordorintelligence.com/industry-reports/medical-implants-market (accessed on 21 October 2023).
- Han, X.; Ma, J.X.; Tian, A.X.; Wang, Y.; Li, Y.; Dong, B.C.; Tong, X.; Ma, X.L. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloid Surf. B—Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef] [PubMed]
- Research, A.M. Medical Implant Market Size, Share, Competitive Landscape and Trend Analysis Report by Product Type and Biomaterial Type: Global Opportunity Analysis and Industry Forecast, 2020–2027. Available online: https://www.alliedmarketresearch.com/request-sample/71 (accessed on 21 October 2023).
- Kravanja, K.A.; Finsgar, M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Design 2022, 217, 110653. [Google Scholar] [CrossRef]
- Hu, X.; Huang, J.; Wei, Y.; Zhao, H.; Lin, S.; Hu, C.; Wang, Z.; Zhao, Z.; Zang, X. Laser Direct-Write Sensors on Carbon-Fiber-Reinforced Poly-Ether-Ether-Ketone for Smart Orthopedic Implants. Adv. Sci. 2022, 9, 2105499. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Zhang, S.; Qu, X.; Yue, B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front. Cell. Infect. Microbiol. 2021, 11, 693939. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Surabhi, P.; Marathe, K. Critical review on the developments in polymer composite materials for biomedical implants. J. Biomater. Sci.—Polym. Ed. 2023, 34, 893–917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef] [PubMed]
- Delavar, H.; Mostahsan, A.J.; Ibrahim, H. Corrosion and corrosion-fatigue behavior of magnesium metal matrix composites for bio-implant applications: A review. J. Magnes. Alloy. 2023, 11, 1125–1161. [Google Scholar] [CrossRef]
- Jin, C.; Liu, Z.Y.; Yu, W.; Qin, C.L.; Yu, H.; Wang, Z.F. Biodegradable Mg-Zn-Ca-Based Metallic Glasses. Materials 2022, 15, 2172. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.F.; Smith, N.S.; Likine, E.F.; Smith, L.S.; Yakkanti, M.R.; Malkani, A.L. Results of a Highly Porous Metal-Backed Cementless Patella Implant: A Minimum 5-Year Follow-Up. J. Knee Surg. 2024, 37, 267–274. [Google Scholar] [CrossRef]
- Shuai, C.J.; Yu, L.; Feng, P.; Gao, C.D.; Peng, S.P. Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloid Surf. B—Biointerfaces 2020, 193, 111083. [Google Scholar] [CrossRef]
- Wang, G.Y.; He, C.X.; Yang, W.J.; Qi, F.W.; Qian, G.W.; Peng, S.P.; Shuai, C.J. Surface-Modified Graphene Oxide with Compatible Interface Enhances Poly-L-Lactic Acid Bone Scaffold. J. Nanomater. 2020, 2020, 5634096. [Google Scholar] [CrossRef]
- Yu, Y.H.; Liu, S.J. Polyetheretherketone for orthopedic applications: A review. Curr. Opin. Chem. Eng. 2021, 32, 100687. [Google Scholar] [CrossRef]
- Bian, Y.X.; Hu, T.T.; Lv, Z.H.; Xu, Y.M.; Wang, Y.J.; Wang, H.; Zhu, W.; Feng, B.; Liang, R.Z.; Tan, C.L.; et al. Bone tissue engineering for treating osteonecrosis of the femoral head. Exploration 2023, 3, 20210105. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Gulati, K.; Zhang, Y.F.; Di, P.; Liu, Y.; Ivanovski, S. Research to Clinics: Clinical Translation Considerations for Anodized Nano-Engineered Titanium Implants. ACS Biomater. Sci. Eng. 2022, 8, 4077–4091. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C—Mater. Biol. Appl. 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Pamato, S.; Honorio, H.M.; da Costa, J.A.; Traebert, J.L.; Bonfante, E.A.; Pereira, J.R. The influence of titanium base abutments on peri-implant soft tissue inflammatory parameters and marginal bone loss: A randomized clinical trial. Clin. Implant Dent. Relat. Res. 2020, 22, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, M.; Ghomi, E.R.; Alipour, S.; Ramakrishna, S.; Sukiman, N.L. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Des. Manuf. 2022, 5, 371–395. [Google Scholar] [CrossRef]
- Wu, B.F.; Tang, Y.F.; Wang, K.; Zhou, X.M.; Xiang, L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. Int. J. Nanomed. 2022, 17, 1865–1879. [Google Scholar] [CrossRef]
- Yuan, Z.; He, Y.; Lin, C.; Liu, P.; Cai, K.Y. Antibacterial surface design of biomedical titanium materials for orthopedic applications. J. Mater. Sci. Technol. 2021, 78, 51–67. [Google Scholar] [CrossRef]
- Ji, X.-W.; Liu, P.-T.; Tang, J.-C.; Wan, C.-J.; Yang, Y.; Zhao, Z.-L.; Zhao, D.-P. Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli. Trans. Nonferrous Met. Soc. China 2021, 31, 3821–3830. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, H.; Liu, M.; Tang, K.; Li, S.; Fang, Q.; Du, H.; Zhou, X.; Lin, X.; Yang, Y. Recent design strategies for boosting chemodynamic therapy of bacterial infections. Exploration 2024, 4, 20230087. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Kenry; Hu, F. Targeted antibacterial photodynamic therapy with aggregation-induced emission photosensitizers. Interdiscipl. Med. 2024, 2, e20230038. [Google Scholar] [CrossRef]
- Huang, F.; Cai, X.; Hou, X.; Zhang, Y.; Liu, J.; Yang, L.; Liu, Y.; Liu, J. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. Exploration 2022, 2, 20210145. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.C.; Fischer, C.; Schmidmaier, G.; Haubruck, P. Evidence-based uncertainty: Do implant-related properties of titanium reduce the susceptibility to perioperative infections in clinical fracture management? A systematic review. Infection 2021, 49, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zhao, J.M.; Esmeryan, K.D.; Lu, X.; Li, Z.Y.; Wang, K.F.; Ren, F.Z.; Wang, Q.; Wang, M.H.; Qian, B. Cicada-inspired fluoridated hydroxyapatite nanostructured surfaces synthesized by electrochemical additive manufacturing. Mater. Des. 2020, 193, 108790. [Google Scholar] [CrossRef]
- Pfang, B.G.; Garcia-Canete, J.; Garcia-Lasheras, J.; Blanco, A.; Aunon, A.; Parron-Cambero, R.; Macias-Valcayo, A.; Esteban, J. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J. Clin. Med. 2019, 8, 220. [Google Scholar] [CrossRef]
- Liu, J.Q.; Liu, J.; Attarilar, S.; Wang, C.; Tamaddon, M.; Yang, C.L.; Xie, K.G.; Yao, J.G.; Wang, L.Q.; Liu, C.Z.; et al. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front. Bioeng. Biotechnol. 2020, 8, 576969. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudre, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Shen, X.; Dai, L.; Ran, Q.; Ma, P.; Cai, K. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates. Mater. Sci. Eng. C—Mater. Biol. Appl. 2017, 70, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, X.Y.; Zhang, J.L.; Schwank, J.W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2014, 225, 34–51. [Google Scholar] [CrossRef]
- Zhao, D.P.; Tang, J.C.; Nie, H.M.; Zhang, Y.; Chen, Y.K.; Zhang, X.; Li, H.-X.; Yan, M. Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications. Rare Metals 2018, 37, 1055–1063. [Google Scholar] [CrossRef]
- Nikoomanzari, E.; Karbasi, M.; Melo, W.; Moris, H.; Babaei, K.; Giannakis, S.; Fattah-alhosseini, A. Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements. Chem. Eng. J. 2022, 441, 136003. [Google Scholar] [CrossRef]
- Xu, N.; Fu, J.J.; Zhao, L.Z.; Chu, P.K.; Huo, K.F. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv. Healthc. Mater. 2020, 9, 2000681. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Yang, Y.; Li, R.Y.; Tang, X.F.; Guo, D.M.; Qing, Y.A.; Qin, Y.G. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: A review of current techniques. Int. J. Nanomed. 2019, 14, 7217–7236. [Google Scholar] [CrossRef] [PubMed]
- Su, E.P.; Justin, D.E.; Pratt, C.R.; Sarin, V.K.; Nguyen, V.S.; Oh, S.; Jin, S. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018, 100B, 9–16. [Google Scholar] [CrossRef]
- Shi, J.P.; Li, J.; Wang, Y.; Zhang, C.Y. TiO2-based nanosystem for cancer therapy and antimicrobial treatment: A review. Chem. Eng. J. 2022, 431, 133714. [Google Scholar] [CrossRef]
- Zhu, H.; Cai, S.; Liao, G.F.; Gao, Z.F.; Min, X.H.; Huang, Y.; Jin, S.W.; Xia, F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal. 2021, 11, 14751–14771. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019, 26, 3262–3291. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Ren, C.Z.; Ding, Y.H.; Chen, G.; Lu, X.; Wang, K.F.; Ren, F.Z.; Yang, M.; Wang, Z.C.; Li, J.L.; et al. Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications. Bioact. Mater. 2019, 4, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Zhou, H.; Zeng, Y.; Xie, H.X.; Ma, D.X.; Wang, Z.C.; Liang, H.F. Recent Advances in Copper-Doped Titanium Implants. Materials 2022, 15, 2342. [Google Scholar] [CrossRef] [PubMed]
- Coman, A.N.; Mare, A.; Tanase, C.; Bud, E.; Rusu, A. Silver-Deposited Nanoparticles on the Titanium Nanotubes Surface as a Promising Antibacterial Material into Implants. Metals 2021, 11, 92. [Google Scholar] [CrossRef]
- Wang, K.; Jin, H.Y.; Song, Q.; Huo, J.J.; Zhang, J.; Li, P. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv. Transl. Res. 2021, 11, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cimpean, A.; Tesler, A.B.; Mazare, A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials 2021, 11, 2359. [Google Scholar] [CrossRef]
- Kunrath, M.F.; Diz, F.M.; Magini, R.; Galarraga-Vinueza, M.E. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv. Colloid Interface Sci. 2020, 284, 102265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tian, Y.; He, H.L.; Xu, L.; Li, W.; Zhao, D.Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7, 1702–1725. [Google Scholar] [CrossRef] [PubMed]
- Mironyuk, I.F.; Soltys, L.M.; Tatarchuk, T.R.; Savka, K. Methods of Titanium Dioxide Synthesis. Phys. Chem. Solid State 2020, 21, 462–477. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Liu, D.; Li, W. Template-directed synthesis of mesoporous TiO2 materials for energy conversion and storage. Emerg. Mater. 2020, 3, 315–329. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol-gel method: A review on synthesis, characterization and applications. J. Mater. Sci.—Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Alipal, J.; Lee, T.C.; Koshy, P.; Abdullah, H.Z.; Idris, M.I. Evolution of anodised titanium for implant applications. Heliyon 2021, 7, e07408. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.C.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef]
- Gulati, K.; Czerwinski, M.; Michalska-Domanska, M.; Martinez, R.D. Understanding the influence of electrolyte aging in electrochemical anodization of titanium. Adv. Colloid Interface Sci. 2022, 302, 102615. [Google Scholar] [CrossRef] [PubMed]
- Lockman, Z.; Sreekantan, S.; Ismail, S.; Schmidt-Mende, L.; MacManus-Driscoll, J.L. Influence of anodisation voltage on the dimension of titania nanotubes. J. Alloys Compd. 2010, 503, 359–364. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Narayanan, R. Synthesis of anodic titania nanotubes in Na2SO4/NaF electrolyte: A comparison between anodization time and specimens with biomaterial based approaches. Thin Solid Films 2013, 540, 23–30. [Google Scholar] [CrossRef]
- Xiao, P.; Garcia, B.B.; Guo, Q.; Liu, D.W.; Cao, G.Z. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem. Commun. 2007, 9, 2441–2447. [Google Scholar] [CrossRef]
- Fahim, N.F.; Sekino, T.; Morks, M.F.; Kusunose, T. Electrochemical Growth of Vertically-Oriented High Aspect Ratio Titania Nanotubes by Rabid Anodization in Fluoride-Free Media. J. Nanosci. Nanotechnol. 2009, 9, 1803–1818. [Google Scholar] [CrossRef]
- Chen, X.; Schriver, M.; Suen, T.; Mao, S.S. Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films 2007, 515, 8511–8514. [Google Scholar] [CrossRef]
- Beranek, R.; Hildebrand, H.; Schmuki, P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 2003, 6, B12–B14. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.W.; Paulose, M.; Ong, K.G.; Grimes, C.A. Hydrogen sensing using titania nanotubes. Sens. Actuator B—Chem. 2003, 93, 338–344. [Google Scholar] [CrossRef]
- Wang, W.Z.; Varghese, O.K.; Paulose, M.; Grimes, C.A.; Wang, Q.L.; Dickey, E.C. A study on the growth and structure of titania nanotubes. J. Mater. Res. 2004, 19, 417–422. [Google Scholar] [CrossRef]
- Lai, Y.K.; Sun, L.; Zuo, J.; Lin, C.J. Electrochemical fabrication and formation mechanism of TiO2 nanotube arrays on metallic titanium surface. Acta Phys.-Chim. Sin. 2004, 20, 1063–1066. [Google Scholar] [CrossRef]
- Fu, Y.; Mo, A. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications. Nanoscale Res. Lett. 2018, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem.—Int. Edit. 2005, 44, 7463–7465. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Sirotna, K.; Schmuki, P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 2005, 50, 3679–3684. [Google Scholar] [CrossRef]
- Ghicov, A.; Tsuchiya, H.; Macak, J.M.; Schmuki, P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 2005, 7, 505–509. [Google Scholar] [CrossRef]
- Ma, Z.M.; Gao, J.; Wu, X.S.; Xie, Y.N.; Yuan, H.; Shi, Y.B. Preparation of Well-Aligned TiO2 Nanotubes with High Length-Diameter Aspect Ratio by Anodic Oxidation Method. J. Nanosci. Nanotechnol. 2018, 18, 5810–5816. [Google Scholar] [CrossRef]
- Prakasam, H.E.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 2007, 111, 7235–7241. [Google Scholar] [CrossRef]
- Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H.E.; Varghese, O.K.; Mor, G.K.; Latempa, T.A.; Fitzgerald, A.; Grimes, C.A. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 2006, 110, 16179–16184. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, 065707. [Google Scholar] [CrossRef]
- Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 2006, 17, 398–402. [Google Scholar] [CrossRef]
- Paulose, M.; Prakasam, H.E.; Varghese, O.K.; Peng, L.; Popat, K.C.; Mor, G.K.; Desai, T.A.; Grimes, C.A. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C 2007, 111, 14992–14997. [Google Scholar] [CrossRef]
- Jaroenworaluck, A.; Regonini, D.; Bowen, C.R.; Stevens, R.; Allsopp, D. Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte. J. Mater. Sci. 2007, 42, 6729–6734. [Google Scholar] [CrossRef]
- Wang, D.A.; Yu, B.; Wang, C.W.; Zhou, F.; Liu, W.M. A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes. Adv. Mater. 2009, 21, 1964–1967. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, S. Self-Organized Regular Arrays of Anodic TiO2 Nanotubes. Nano Lett. 2008, 8, 3171–3173. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.; Macak, J.M.; Schmuki, P. Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Commun. 2007, 9, 947–952. [Google Scholar] [CrossRef]
- Richter, C.; Wu, Z.; Panaitescu, E.; Willey, R.J.; Menon, L. Ultrahigh-aspect-ratio titania nanotubes. Adv. Mater. 2007, 19, 946–948. [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, X.H.; Chen, R.Z.; Li, L.T. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 2005, 134, 705–710. [Google Scholar] [CrossRef]
- Puga, M.L.; Venturini, J.; ten Caten, C.S.; Bergmann, C.P. Influencing parameters in the electrochemical anodization of TiO2 nanotubes: Systematic review and meta-analysis. Ceram. Int. 2022, 48, 19513–19526. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.; Oh, C.; Ryu, J.; Kim, H.; Park, E.; No, K.; Hong, S. Effects of NH4F and distilled water on structure of pores in TiO2 nanotube arrays. Sci. Rep. 2018, 8, 12487. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Zhang, J.P.; Dan, Y.X.; Sun, M.; Gong, T.L.; Li, X.; Zhu, X.F. Growth of porous anodic TiO2 in silver nitrate solution without fluoride: Evidence against the field-assisted dissolution reactions of fluoride ions. Electrochem. Commun. 2021, 126, 107022. [Google Scholar] [CrossRef]
- Taveira, L.V.; Macak, J.M.; Tsuchiya, H.; Dick, L.F.P.; Schmuki, P. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 2005, 152, B405–B410. [Google Scholar] [CrossRef]
- Ruan, C.M.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced photo electrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol. Energy Mater. Sol. Cell 2006, 90, 1283–1295. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Javed, H.M.A.; Que, W.X.; Shahid, M.; Qureshi, A.A.; Afzaal, M.; Mustafa, M.S.; Hussain, S.; Alsubaie, A.S.; Mahmoud, K.H.; El-Bahy, Z.M.; et al. Investigations of anodization parameters and TiCl4 treatments on TiO2 nanostructures for highly optimized dye-sensitized solar cells. Surf. Interfaces 2021, 27, 101578. [Google Scholar] [CrossRef]
- Liao, M.Y.; Ma, H.T.; Yu, D.L.; Han, H.; Xu, X.R.; Zhu, X.F. Formation mechanism of anodic titanium oxide in mixed electrolytes. Mater. Res. Bull. 2017, 95, 539–545. [Google Scholar] [CrossRef]
- Deen, K.M.; Farooq, A.; Raza, M.A.; Haider, W. Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochim. Acta 2014, 117, 329–335. [Google Scholar] [CrossRef]
- Yu, D.L.; Zhu, X.F.; Xu, Z.; Zhong, X.M.; Gui, Q.F.; Song, Y.; Zhang, S.Y.; Chen, X.Y.; Li, D.D. Facile Method to Enhance the Adhesion of TiO2 Nanotube Arrays to Ti Substrate. ACS Appl. Mater. Interfaces 2014, 6, 8001–8005. [Google Scholar] [CrossRef]
- Nie, X.J.; Yin, S.Q.; Duan, W.C.; Zhao, Z.L.; Li, L.; Zhang, Z.Q. Recent Progress in Anodic Oxidation of TiO2 Nanotubes and Enhanced Photocatalytic Performance: A Short Review. Nano 2021, 16, 2130002. [Google Scholar] [CrossRef]
- Li, T.; Gulati, K.; Wang, N.; Zhang, Z.T.; Ivanovski, S. Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Mater. Sci. Eng. C—Mater. Biol. Appl. 2018, 88, 182–195. [Google Scholar] [CrossRef]
- Çapraz, Ö.Ö.; Shrotriya, P.; Skeldon, P.; Thompson, G.E.; Hebert, K.R. Role of Oxide Stress in the Initial Growth of Self-Organized Porous Aluminum Oxide. Electrochim. Acta 2015, 167, 404–411. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cheng, W.J.; Du, F.; Zhang, S.Y.; Ma, W.H.; Li, D.D.; Song, Y.; Zhu, X.F. Quantitative relationship between nanotube length and anodizing current during constant current anodization. Electrochim. Acta 2015, 180, 147–154. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Fan, H.W.; Ding, X.; Yan, Q.H.; Wang, L.P.; Ma, W.H. Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations. Electrochim. Acta 2015, 176, 1083–1091. [Google Scholar] [CrossRef]
- Gong, T.L.; Li, C.Y.; Li, X.; Yue, H.Y.; Zhu, X.F.; Zhao, Z.Y.; Lv, R.Q.; Zhu, J.W. Evidence of oxygen bubbles forming nanotube embryos in porous anodic oxides. Nanoscale Adv. 2021, 3, 4659–4668. [Google Scholar] [CrossRef]
- Apolinário, A.; Sousa, C.T.; Ventura, J.; Costa, J.D.; Leitao, D.C.; Moreira, J.M.; Sousa, J.B.; Andrade, L.; Mendes, A.M.; Araújo, J.P. The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: A detailed study of the growth mechanism. J. Mater. Chem. A 2014, 2, 9067–9078. [Google Scholar] [CrossRef]
- Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 28, 2791–2808. [Google Scholar] [CrossRef] [PubMed]
- Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R—Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yu, D.H.; Li, D.D.; Song, Y.; Che, J.F.; You, S.Y.; Zhua, X.F. Forming Process of Anodic TiO2 Nanotubes under a Preformed Compact Surface Layer. J. Electrochem. Soc. 2014, 161, E135–E141. [Google Scholar] [CrossRef]
- Chong, B.; Yu, D.L.; Jin, R.; Wang, Y.; Li, D.D.; Song, Y.; Gao, M.Q.; Zhu, X.F. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions. Nanotechnology 2015, 26, 145603. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, S.; Kralj-Iglic, V.; Milosev, I.; Schmuki, P.; Iglic, A.; Mozetic, M. Titanium nanostructures for biomedical applications. Nanotechnology 2015, 26, 062002. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, K.P. Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. Int. J. Hydrogen Energy 2014, 39, 11368–11375. [Google Scholar] [CrossRef]
- Bauer, S.; Kleber, S.; Schmuki, P. TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochem. Commun. 2006, 8, 1321–1325. [Google Scholar] [CrossRef]
- Lai, C.W.; Sreekantan, S. Photoelectrochemical Performance of Smooth TiO2 Nanotube Arrays: Effect of Anodization Temperature and Cleaning Methods. Int. J. Photoenerg. 2012, 2012, 356943. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.Q. Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. J. Phys. Chem. C 2009, 113, 4026–4030. [Google Scholar] [CrossRef]
- Kazemzadeh-Narbat, M.; Cheng, H.; Chabok, R.; Alvarez, M.M.; De La Fuente-Nunez, C.; Phillips, K.S.; Khademhosseini, A. Strategies for antimicrobial peptide coatings on medical devices: A review and regulatory science perspective. Crit. Rev. Biotechnol. 2021, 41, 94–120. [Google Scholar] [CrossRef]
- Andrade-Del Olmo, J.; Ruiz-Rubio, L.; Perez-Alvarez, L.; Saez-Martinez, V.; Vilas-Vilela, J.L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 2020, 10, 139. [Google Scholar] [CrossRef]
- Modaresifar, K.; Azizian, S.; Ganjian, M.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Bactericidal effects of nanopatterns: A systematic review. Acta Biomater. 2019, 83, 29–36. [Google Scholar] [CrossRef]
- Ge, X.; Leng, Y.; Lu, X.; Ren, F.Z.; Wang, K.F.; Ding, Y.H.; Yang, M. Bacterial responses to periodic micropillar array. J. Biomed. Mater. Res. Part A 2015, 103, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Puckett, S.D.; Taylor, E.; Raimondo, T.; Webster, T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.X.; Ni, J.H.; Zheng, K.; Shen, Y.D.; Wang, X.Q.; He, G.; Jin, S.H.; Tang, T.T. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int. J. Nanomed. 2013, 8, 3093–3105. [Google Scholar] [CrossRef]
- Ercan, B.; Taylor, E.; Alpaslan, E.; Webster, T.J. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 2011, 22, 295102. [Google Scholar] [CrossRef] [PubMed]
- Simi, V.S.; Rajendran, N. Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications. Mater. Charact. 2017, 129, 67–79. [Google Scholar] [CrossRef]
- Lewandowska, Z.; Piszczek, P.; Radtke, A.; Jedrzejewski, T.; Kozak, W.; Sadowska, B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J. Mater. Sci.—Mater. Med. 2015, 26, 163. [Google Scholar] [CrossRef] [PubMed]
- Radtke, A.; Topolski, A.; Jedrzejewski, T.; Kozak, W.; Sadowska, B.; Wieckowska-Szakiel, M.; Szubka, M.; Talik, E.; Nielsen, L.P.; Piszczek, P. The Bioactivity and Photocatalytic Properties of Titania Nanotube Coatings Produced with the Use of the Low-Potential Anodization of Ti6Al4V Alloy Surface. Nanomaterials 2017, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- van Hengel, I.A.J.; Tierolf, M.W.A.M.; Fratila-Apachitei, L.E.; Apachitei, I.; Zadpoor, A.A. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 3800. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Guo, B.H.; Lu, Q.; Gong, H.H.; Wang, M.; He, J.L.; Jia, B.; Ren, J.; Zheng, S.C.; Lu, Y.F. Preparation and Photocatalytic and Antibacterial Activities of Micro/Nanostructured TiO2-Based Photocatalysts for Application in Orthopedic Implants. Front. Mater. 2022, 9, 914905. [Google Scholar] [CrossRef]
- Zhao, X.S.; Zhang, G.; Zhang, Z.H. TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. Environ. Int. 2020, 136, 105453. [Google Scholar] [CrossRef]
- Baranwal, A.; Srivastava, A.; Kumar, P.; Bajpai, V.K.; Maurya, P.K.; Chandra, P. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents. Front. Microbiol. 2018, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.K.; Shivaram, A.; Bose, S.; Bandyopadhyay, A. Silver nanoparticle deposited implants to treat osteomyelitis. J. Biomed. Mater. Res. Part B 2018, 106, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Yu, Y.J.; Dong, A.; Elsabahy, M.; Yang, Y.W.; Gao, H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. Exploration 2024, 4, 20230092. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Cao, Z.; Liu, J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration 2023, 3, 20210117. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Z.; Zhao, Q.M.; Yang, H.L.; Cheng, L. Antibacterial and Microstructure Properties of Titanium Surfaces Modified with Ag-Incorporated Nanotube Arrays. Mater. Res.-Ibero-Am. J. Mater. 2016, 19, 735–740. [Google Scholar] [CrossRef]
- Durdu, S.; Yalçin, E.; Altinkök, A.; Çavusoglu, K. Characterization and investigation of electrochemical and biological properties of antibacterial silver nanoparticle-deposited TiO2 nanotube array surfaces. Sci. Rep. 2023, 13, 4699. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.J.; Xiu, P.; Li, M.; Xu, X.C.; Shi, Y.Y.; Cheng, Y.; Wei, S.C.; Zheng, Y.F.; Xi, T.F.; Cai, H.; et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2016, 75, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.C.; Lu, M.; Mao, X.R.; Yu, H.L.; Zhang, E.L. Enhancing the Antibacterial Properties and Biocompatibility of Ti-Cu Alloy by Roughening and Anodic Oxidation. Metals 2022, 12, 1726. [Google Scholar] [CrossRef]
- Lozano, D.; Hernandez-Lopez, J.M.; Esbrit, P.; Arenas, M.A.; Gomez-Barrena, E.; de Damborenea, J.; Esteban, J.; Perez-Jorge, C.; Perez-Tanoira, R.; Conde, A. Influence of the nanostructure of F-doped TiO2 films on osteoblast growth and function. J. Biomed. Mater. Res. Part A 2015, 103, 1985–1990. [Google Scholar] [CrossRef]
- Ge, X.; Leng, Y.; Bao, C.Y.; Xu, S.L.; Wang, R.K.; Ren, F.Z. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J. Biomed. Mater. Res. Part A 2010, 95A, 588–599. [Google Scholar] [CrossRef]
- Liu, H.; Hou, X.G.; Sun, T.T.; Yao, J.H.; Wu, P.; Li, D.J.; Li, J.; Han, J. Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes. Surf. Coat. Technol. 2019, 359, 468–475. [Google Scholar] [CrossRef]
- Wang, G.M.; Feng, H.Q.; Hu, L.S.; Jin, W.H.; Hao, Q.; Gao, A.; Peng, X.; Li, W.; Wong, K.Y.; Wang, H.Y.; et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging. Nat. Commun. 2018, 9, 2055. [Google Scholar] [CrossRef]
- Huo, K.F.; Gao, B.; Fu, J.J.; Zhao, L.Z.; Chu, P.K. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014, 4, 17300–17324. [Google Scholar] [CrossRef]
- Zhou, X.L.; Zhang, M.S.; Zheng, X.R.; Zhang, Z.Q.; Liu, J.Z. Increasing the robustness of Escherichia coli for aromatic chemicals production through transcription factor engineering. Adv. Biotechnol. 2024, 2, 15. [Google Scholar] [CrossRef]
- Lu, S.; Tang, Y.; Yin, S.; Sun, L. RNA structure: Implications in viral infections and neurodegenerative diseases. Adv. Biotechnol. 2024, 2, 3. [Google Scholar] [CrossRef]
- Moseke, C.; Hage, F.; Vorndran, E.; Gbureck, U. TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Appl. Surf. Sci. 2012, 258, 5399–5404. [Google Scholar] [CrossRef]
- Jarosz, M.; Latosinski, J.; Gumulka, P.; Dabrowska, M.; Kepczynski, M.; Sulka, G.D.; Starek, M. Controlled Delivery of Celecoxib-β-Cyclodextrin Complexes from the Nanostructured Titanium Dioxide Layers. Pharmaceutics 2023, 15, 1861. [Google Scholar] [CrossRef]
- Caliskan, N.; Bayram, C.; Erdal, E.; Karahaliloglu, Z.; Denkbas, E.B. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater. Sci. Eng. C—Mater. Biol. Appl. 2014, 35, 100–105. [Google Scholar] [CrossRef]
- Lin, W.-T.; Zhang, Y.-Y.; Tan, H.-L.; Ao, H.-Y.; Duan, Z.-L.; He, G.; Tang, T.-T. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters. Materials 2016, 9, 155. [Google Scholar] [CrossRef]
- Hamlekhan, A.; Sinha-Ray, S.; Takoudis, C.; Mathew, M.T.; Sukotjo, C.; Yarin, A.L.; Shokuhfar, T. Fabrication of drug eluting implants: Study of drug release mechanism from titanium dioxide nanotubes. J. Phys. D—Appl. Phys. 2015, 48, 275401. [Google Scholar] [CrossRef]
- Song, Y.Y.; Schmidt-Stein, F.; Bauer, S.; Schmuki, P. Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J. Am. Chem. Soc. 2009, 131, 4230–4232. [Google Scholar] [CrossRef] [PubMed]
- Gulati, K.; Aw, M.S.; Losic, D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res. Lett. 2011, 6, 571. [Google Scholar] [CrossRef] [PubMed]
- Ionita, D.; Bajenaru-Georgescu, D.; Totea, G.; Mazare, A.; Schmuki, P.; Demetrescu, I. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. Int. J. Pharm. 2017, 517, 296–302. [Google Scholar] [CrossRef]
- Yang, Y.; Ao, H.; Wang, Y.; Lin, W.; Yang, S.; Zhang, S.; Yu, Z.; Tang, T. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res. 2016, 4, 16027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ao, H.Y.; Yang, S.B.; Wang, Y.G.; Lin, W.T.; Yu, Z.F.; Tang, T.T. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int. J. Nanomed. 2016, 11, 2223–2234. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, J.; Qiu, J.; Wang, D.; Zhao, Z.; Lu, Z.; Huang, G.; Liu, X.; Mei, Y. Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect. Coatings 2022, 12, 1351. [Google Scholar] [CrossRef]
- Zong, M.X.; Bai, L.; Liu, Y.L.; Wang, X.; Zhang, X.Y.; Huang, X.B.; Hang, R.Q.; Tang, B. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays. Mater. Sci. Eng. C—Mater. Biol. Appl. 2017, 71, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Qiao, J.W.; Yuan, F.X.; Hang, R.Q.; Huang, X.B.; Tang, B. In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90-xCu10Alx (x = 0.45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity. Surf. Coat. Technol. 2014, 240, 167–178. [Google Scholar] [CrossRef]
- Ding, X.Y.; Zhang, Y.M.; Ling, J.Y.; Lin, C.J. Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature. Colloid Surf. B—Biointerfaces 2018, 171, 101–109. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.B.; Hang, R.Q.; Zhang, X.Y.; Tang, B. Effect of a biomimetic titania mesoporous coating doped with Sr on the osteogenic activity. Mater. Sci. Eng. C—Mater. Biol. Appl. 2018, 91, 153–162. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.Q.; Zhang, E.L.; Wan, Y.Z.; Hu, J. Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification. Rare Metals 2022, 41, 689–699. [Google Scholar] [CrossRef]
- Fathi, M.; Akbari, B.; Taheriazam, A.; Sodagar, A. Surface functionalization of Titania Nanotubes arrays and vancomycin controlled release using Silk Fibroin Nanofibers coating. J. Drug Deliv. Sci. Technol. 2022, 71, 103320. [Google Scholar] [CrossRef]
- Ren, X.X.; van der Mei, H.C.; Ren, Y.J.; Busscher, H.J.; Peterson, B.W. Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. Mater. Sci. Eng. C—Mater. Biol. Appl. 2021, 123, 112021. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xu, J.; Sun, Z.; Zheng, F.; Liu, C.; Wang, C.; Hu, X.Y.; Xia, L.G.; Liu, Z.; Xia, R. Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: An in vitro study. Int. J. Nanomed. 2018, 13, 6769–6777. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.K.; Zhang, F.; Li, K.; Qin, C.H.; Ma, P.P.; Dai, L.L.; Cai, K.Y. Cecropin B loaded TiO2 nanotubes coated with hyaluronidase sensitive multilayers for reducing bacterial adhesion. Mater. Des. 2016, 92, 1007–1017. [Google Scholar] [CrossRef]
- Wang, B.B.; Wu, Z.Z.; Wang, S.; Wang, S.S.; Niu, Q.M.; Wu, Y.W.; Jia, F.H.; Bian, A.Q.; Xie, L.; Qiao, H.X.; et al. Mg/Cu-doped TiO2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. Mater. Sci. Eng. C—Mater. Biol. Appl. 2021, 128, 112322. [Google Scholar] [CrossRef]
- Yu, S.; Guo, D.G.; Han, J.Y.; Sun, L.J.; Zhu, H.; Yu, Z.T.; Dargusch, M.; Wang, G. Enhancing Antibacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS Appl. Mater. Interfaces 2020, 12, 44433–44446. [Google Scholar] [CrossRef] [PubMed]
- Aunon, A.; Esteban, J.; Doadrio, A.L.; Boiza-Sanchez, M.; Mediero, A.; Eguibar-Blazquez, D.; Cordero-Ampuero, J.; Conde, A.; Arenas, M.A.; de-Damborenea, J.J.; et al. Staphylococcus aureus Prosthetic Joint Infection Is Prevented by a Fluorine- and Phosphorus-Doped Nanostructured Ti-6Al-4V Alloy Loaded With Gentamicin and Vancomycin. J. Orthop. Res. 2020, 38, 588–597. [Google Scholar] [CrossRef]
- Wang, L.B.; Dai, F.; Yang, Y.S.; Zhang, Z.H. Zeolitic Imidazolate Framework-8 with Encapsulated Naringin Synergistically Improves Antibacterial and Osteogenic Properties of Ti Implants for Osseointegration. ACS Biomater. Sci. Eng. 2022, 8, 3797–3809. [Google Scholar] [CrossRef]
- Shi, L.H.; Xu, H.; Liao, X.M.; Yin, G.F.; Yao, Y.D.; Huang, Z.B.; Chen, X.C.; Pu, X.M. Fabrication of two-layer nanotubes with the pear-like structure by an in-situ voltage up anodization and the application as a drug delivery platform. J. Alloys Compd. 2015, 647, 590–595. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, Z.; Bo, L.; Yong, H. Enhancement in Sustained Release of Antimicrobial Peptide from Dual-Diameter-Structured TiO2 Nanotubes for Long-Lasting Antibacterial Activity and Cytocompatibility. ACS Appl. Mater. Interfaces 2017, 9, 9449–9461. [Google Scholar] [CrossRef] [PubMed]
- Gulati, K.; Kant, K.; Findlay, D.; Losic, D. Periodically tailored titania nanotubes for enhanced drug loading and releasing performances. J. Mat. Chem. B 2015, 3, 2553–2559. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, J.; Li, X.F.; Liu, H.; Li, J.B.; Ren, T.; Yang, Y.J.; Zhong, S.A. Polymethacrylic acid encapsulated TiO2 nanotubes for sustained drug release and enhanced antibacterial activities. New J. Chem. 2019, 43, 1827–1837. [Google Scholar] [CrossRef]
- He, R.Z.; Sui, J.H.; Wang, G.C.; Wang, Y.; Xu, K.H.; Qin, S.; Xu, S.G.; Ji, F.; Zhang, H. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloid Surf. B—Biointerfaces 2022, 216, 112582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Wang, W.A.; Chen, J.; Lai, M. Peptide GL13K releasing hydrogel functionalized micro/nanostructured titanium enhances its osteogenic and antibacterial activity. J. Biomater. Sci.—Polym. Ed. 2023, 34, 1036–1052. [Google Scholar] [CrossRef]
- Shaygani, H.; Seifi, S.; Shamloo, A.; Golizadeh, M.; Rahnamaee, S.Y.; Alishiri, M.; Ebrahimi, S. Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications. Int. J. Pharm. 2023, 636, 122764. [Google Scholar] [CrossRef]
- Ouyang, J.L.; Huang, H.C.; Chen, X.S.; Chen, J.Y. Biodegradable Polymer/TiO2 Nanotubes Loaded Roxithromycin as Nanoarray Capsules for Long-Lasting Antibacterial Properties of Titanium Implant. J. Nanomater. 2020, 2020, 5432926. [Google Scholar] [CrossRef]
- Feng, W.C.; Geng, Z.; Li, Z.Y.; Cui, Z.D.; Zhu, S.L.; Liang, Y.Q.; Liu, Y.D.; Wang, R.F.; Yang, X.J. Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C—Mater. Biol. Appl. 2016, 62, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties. Appl. Surf. Sci. 2018, 441, 138–149. [Google Scholar] [CrossRef]
- Asadi, S.; Mortezagholi, B.; Hadizadeh, A.; Borisov, V.; Ansari, M.J.; Shaker Majdi, H.; Nishonova, A.; Adelnia, H.; Farasati Far, B.; Chaiyasut, C. Ciprofloxacin-Loaded Titanium Nanotubes Coated with Chitosan: A Promising Formulation with Sustained Release and Enhanced Antibacterial Properties. Pharmaceutics 2022, 14, 1359. [Google Scholar] [CrossRef]
- Wang, T.T.; Weng, Z.Y.; Liu, X.M.; Yeung, K.W.K.; Pan, H.B.; Wu, S.L. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioact. Mater. 2017, 2, 44–50. [Google Scholar] [CrossRef]
- Sun, S.J.; Zhang, Y.L.; Zeng, D.L.; Zhang, S.M.; Zhang, F.Q.; Yu, W.Q. PLGA film/Titanium nanotubues as a sustained growth factor releasing system for dental implants. J. Mater. Sci.—Mater. Med. 2018, 29, 141. [Google Scholar] [CrossRef] [PubMed]
Loading Method | Effect | Ref. | ||
---|---|---|---|---|
Doped Elements | Au | Magnetron-sputtered | Antibacterial ability | [148] |
Ag | Immersing in AgNO3 solutions | Antibacterial ability | [127] | |
Cu | Electrochemically anodization | Antibacterial ability and angiogenesis | [149,150] | |
Zn | Polydopamine chelation | Antibacterial ability and osteogenesis | [151] | |
Sr | Hydrothermal treatment | Osteogenesis | [152] | |
F | Plasma treatment | Antibacterial ability and osteogenesis | [153] | |
Drugs | Vancomycin | Physical absorption | Antibacterial ability | [154] |
Gentamicin | Immersion | Antibacterial ability | [155] | |
Tetracycline | Lyophilization method, vacuum drying | Antibacterial ability | [156] | |
Cecropin B | Lyophilization | Antibacterial ability | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, H.; Guo, Z.; Hu, Z.; Wang, K.; Leng, Y.; Yuan, C.; Li, Z.; Ge, X. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics 2024, 9, 408. https://doi.org/10.3390/biomimetics9070408
Wang W, Liu H, Guo Z, Hu Z, Wang K, Leng Y, Yuan C, Li Z, Ge X. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics. 2024; 9(7):408. https://doi.org/10.3390/biomimetics9070408
Chicago/Turabian StyleWang, Wuzhi, Hanpeng Liu, Zilin Guo, Zijun Hu, Kefeng Wang, Yujia Leng, Caideng Yuan, Zhaoyang Li, and Xiang Ge. 2024. "Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method" Biomimetics 9, no. 7: 408. https://doi.org/10.3390/biomimetics9070408
APA StyleWang, W., Liu, H., Guo, Z., Hu, Z., Wang, K., Leng, Y., Yuan, C., Li, Z., & Ge, X. (2024). Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics, 9(7), 408. https://doi.org/10.3390/biomimetics9070408