Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging
Abstract
:1. Introduction
2. AI in Abdominal Imaging: Pathology Identification and Diagnostic Techniques
2.1. Hepatic Pathologies
2.2. Pancreatic Pathologies
2.3. Gastric and Colorectal Pathologies
2.4. Other Abdominal Pathologies
3. Advanced Image Processing and Analysis
3.1. AI-Driven Image Enhancement
3.2. Quantitative Imaging
4. Workflow Optimization in Abdominal Imaging
Automation of Routine Imaging Tasks and Integration with Clinical Workflows
5. AI in Abdominal Interventions
Guidance in Minimally Invasive Procedures
6. Challenges and Limitations of AI in Abdominal Imaging
6.1. Technical Barriers
6.2. Ethical and Legal Considerations
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, J.Y.; Makary, M.S. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics 2024, 14, 1456. [Google Scholar] [CrossRef] [PubMed]
- Mervak, B.M.; Fried, J.G.; Wasnik, A.P. A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging. Diagnostics 2023, 13, 2889. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Chang, S.D.; Kohli, M.D. Implementation and Design of Artificial Intelligence in Abdominal Imaging. Abdom. Radiol. 2020, 45, 4084–4089. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, D.; Garg, T.; Patel, L.; Elkassem, A.A.; Bansal, V.; Smith, A. Artificial Intelligence in Gastrointestinal and Hepatic Imaging: Past, Present and Future Scopes. Clin. Imaging 2022, 87, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Gadhiya, D.K.; Patel, M.; Jain, A.; Patel, Z.; Yang, C.; Patel, D.; Kavani, H. Artificial Intelligence and Machine Learning in Hepatocellular Carcinoma Screening, Diagnosis and Treatment—A Comprehensive Systematic Review. Glob. Acad. J. Med. Sci. 2024, 6, 83–97. [Google Scholar] [CrossRef]
- Berbís, M.A.; Paulano Godino, F.; Royuela del Val, J.; Alcalá Mata, L.; Luna, A. Clinical Impact of Artificial Intelligence-Based Solutions on Imaging of the Pancreas and Liver. World J. Gastroenterol. 2023, 29, 1427–1445. [Google Scholar] [CrossRef]
- Chatzipanagiotou, O.P.; Loukas, C.; Vailas, M.; Machairas, N.; Kykalos, S.; Charalampopoulos, G.; Filippiadis, D.; Felekouras, E.; Schizas, D. Artificial Intelligence in Hepatocellular Carcinoma Diagnosis: A Comprehensive Review of Current Literature. J. Gastroenterol. Hepatol. 2024, 39, 1994–2005. [Google Scholar] [CrossRef]
- Haghshomar, M.; Rodrigues, D.; Kalyan, A.; Velichko, Y.; Borhani, A. Leveraging Radiomics, and AI for Precision Diagnosis and Prognostication of Liver Malignancies. Front. Oncol. 2024, 14, 1362737. [Google Scholar] [CrossRef]
- Calderaro, J.; Žigutytė, L.; Truhn, D.; Jaffe, A.; Kather, J.N. Artificial Intelligence in Liver Cancer—New Tools for Research and Patient Management. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 585–599. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, J.; Hao, X.; Kong, D.; Yu, X.; Jiang, T.; Xi, J.; Cai, W.; Luo, Y.; Jing, X.; et al. Improving B-Mode Ultrasound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. eBioMedicine 2020, 56, 102777. [Google Scholar] [CrossRef]
- Ryu, H.; Shin, S.Y.; Lee, J.Y.; Lee, K.M.; Kang, H.; Yi, J. Joint Segmentation and Classification of Hepatic Lesions in Ultrasound Images Using Deep Learning. Eur. Radiol. 2021, 31, 8733–8742. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-T.; Wang, W.; Chen, L.-D.; Ruan, S.-M.; Chen, S.-L.; Li, X.; Lu, M.-D.; Xie, X.-Y.; Kuang, M. Artificial Intelligence Assists Identifying Malignant versus Benign Liver Lesions Using Contrast-Enhanced Ultrasound. J. Gastroenterol. Hepatol. 2021, 36, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Varghese, B.; Taravat, F.; Eibschutz, L.S.; Gholamrezanezhad, A. An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology. Diagnostics 2022, 12, 1351. [Google Scholar] [CrossRef] [PubMed]
- Marya, N.B.; Powers, P.D.; Fujii-Lau, L.; Abu Dayyeh, B.K.; Gleeson, F.C.; Chen, S.; Long, Z.; Hough, D.M.; Chandrasekhara, V.; Iyer, P.G.; et al. Application of Artificial Intelligence Using a Novel EUS-Based Convolutional Neural Network Model to Identify and Distinguish Benign and Malignant Hepatic Masses. Gastrointest. Endosc. 2021, 93, 1121–1130. [Google Scholar] [CrossRef]
- Kim, J.; Min, J.H.; Kim, S.K.; Shin, S.-Y.; Lee, M.W. Detection of Hepatocellular Carcinoma in Contrast-Enhanced Magnetic Resonance Imaging Using Deep Learning Classifier: A Multi-Center Retrospective Study. Sci. Rep. 2020, 10, 9458. [Google Scholar] [CrossRef]
- Zhen, S.; Cheng, M.; Tao, Y.; Wang, Y.; Juengpanich, S.; Jiang, Z.; Jiang, Y.; Yan, Y.; Lu, W.; Lue, J.; et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Front. Oncol. 2020, 10, 680. [Google Scholar] [CrossRef]
- Gao, R.; Zhao, S.; Aishanjiang, K.; Cai, H.; Wei, T.; Zhang, Y.; Liu, Z.; Zhou, J.; Han, B.; Wang, J.; et al. Deep Learning for Differential Diagnosis of Malignant Hepatic Tumors Based on Multi-Phase Contrast-Enhanced CT and Clinical Data. J. Hematol. Oncol. 2021, 14, 154. [Google Scholar] [CrossRef]
- Yang, C.-J.; Wang, C.-K.; Fang, Y.-H.D.; Wang, J.-Y.; Su, F.-C.; Tsai, H.-M.; Lin, Y.-J.; Tsai, H.-W.; Yeh, L.-R. Clinical Application of Mask Region-Based Convolutional Neural Network for the Automatic Detection and Segmentation of Abnormal Liver Density Based on Hepatocellular Carcinoma Computed Tomography Datasets. PLoS ONE 2021, 16, e0255605. [Google Scholar] [CrossRef]
- Shi, W.; Kuang, S.; Cao, S.; Hu, B.; Xie, S.; Chen, S.; Chen, Y.; Gao, D.; Chen, Y.; Zhu, Y.; et al. Deep Learning Assisted Differentiation of Hepatocellular Carcinoma from Focal Liver Lesions: Choice of Four-Phase and Three-Phase CT Imaging Protocol. Abdom. Radiol. 2020, 45, 2688–2697. [Google Scholar] [CrossRef]
- Cao, K.; Xia, Y.; Yao, J.; Han, X.; Lambert, L.; Zhang, T.; Tang, W.; Jin, G.; Jiang, H.; Fang, X.; et al. Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning. Nat. Med. 2023, 29, 3033–3043. [Google Scholar] [CrossRef]
- Xi, I.L.; Wu, J.; Guan, J.; Zhang, P.J.; Horii, S.C.; Soulen, M.C.; Zhang, Z.; Bai, H.X. Deep Learning for Differentiation of Benign and Malignant Solid Liver Lesions on Ultrasonography. Abdom. Radiol 2021, 46, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, H.; Horng, H.; Thomasian, N.M.; Jiao, Z.; Zhu, C.; Zou, B.; Bai, H.X. Automated Machine Learning for Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma on Multiphasic MRI. Sci. Rep. 2022, 12, 7924. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Fujimoto, K.; Yamashita, R.; Sato, T.; Someya, Y.; Taura, K.; Isoda, H.; Nakamoto, Y. Convolutional Neural Network for Classifying Primary Liver Cancer Based on Triple-Phase CT and Tumor Marker Information: A Pilot Study. Jpn. J. Radiol. 2021, 39, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fu, F.; Zheng, B.; Bai, Y.; Wu, Q.; Wu, J.; Sun, L.; Liu, Q.; Liu, M.; Yang, Y.; et al. Development of an AI System for Accurately Diagnose Hepatocellular Carcinoma from Computed Tomography Imaging Data. Br. J. Cancer 2021, 125, 1111–1121. [Google Scholar] [CrossRef]
- Zeng, Q.; Klein, C.; Caruso, S.; Maille, P.; Allende, D.S.; Mínguez, B.; Iavarone, M.; Ningarhari, M.; Casadei-Gardini, A.; Pedica, F.; et al. Artificial Intelligence-Based Pathology as a Biomarker of Sensitivity to Atezolizumab–Bevacizumab in Patients with Hepatocellular Carcinoma: A Multicentre Retrospective Study. Lancet Oncol. 2023, 24, 1411–1422. [Google Scholar] [CrossRef]
- Ma, J.; Bo, Z.; Zhao, Z.; Yang, J.; Yang, Y.; Li, H.; Yang, Y.; Wang, J.; Su, Q.; Wang, J.; et al. Machine Learning to Predict the Response to Lenvatinib Combined with Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 625. [Google Scholar] [CrossRef]
- Iseke, S.; Zeevi, T.; Kucukkaya, A.S.; Raju, R.; Gross, M.; Haider, S.P.; Petukhova-Greenstein, A.; Kuhn, T.N.; Lin, M.; Nowak, M.; et al. Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma Using Pretreatment Clinical and MRI Features: A Proof-of-Concept Study. Am. J. Roentgenol. 2023, 220, 245–255. [Google Scholar] [CrossRef]
- Fu, Y.; Si, A.; Wei, X.; Lin, X.; Ma, Y.; Qiu, H.; Guo, Z.; Pan, Y.; Zhang, Y.; Kong, X.; et al. Combining a Machine-Learning Derived 4-lncRNA Signature with AFP and TNM Stages in Predicting Early Recurrence of Hepatocellular Carcinoma. BMC Genom. 2023, 24, 89. [Google Scholar] [CrossRef]
- Santoro, S.; Khalil, M.; Abdallah, H.; Farella, I.; Noto, A.; Dipalo, G.M.; Villani, P.; Bonfrate, L.; Di Ciaula, A.; Portincasa, P. Early and Accurate Diagnosis of Steatotic Liver by Artificial Intelligence (AI)-Supported Ultrasonography. Eur. J. Intern. Med. 2024, 125, 57–66. [Google Scholar] [CrossRef]
- Yin, Y.; Yakar, D.; Dierckx, R.A.J.O.; Mouridsen, K.B.; Kwee, T.C.; de Haas, R.J. Liver Fibrosis Staging by Deep Learning: A Visual-Based Explanation of Diagnostic Decisions of the Model. Eur. Radiol. 2021, 31, 9620–9627. [Google Scholar] [CrossRef]
- Yin, Y.; Yakar, D.; Dierckx, R.A.J.O.; Mouridsen, K.B.; Kwee, T.C.; de Haas, R.J. Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging. Diagnostics 2022, 12, 550. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.L.; Ismaiel, A.; Abenavoli, L.; Padureanu, A.M.; Dita, M.O.; Bolchis, R.; Munteanu, M.A.; Brata, V.D.; Pop, C.; Bosneag, A.; et al. Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review. Medicina 2023, 59, 992. [Google Scholar] [CrossRef] [PubMed]
- Decharatanachart, P.; Chaiteerakij, R.; Tiyarattanachai, T.; Treeprasertsuk, S. Application of Artificial Intelligence in Non-Alcoholic Fatty Liver Disease and Liver Fibrosis: A Systematic Review and Meta-Analysis. Ther. Adv. Gastroenterol. 2021, 14, 17562848211062807. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, Y.; Peng, L.; Zhang, Z.; Li, X.; Xue, Y.; Zhang, J.; Zhang, J. Artificial Intelligence-Based Detection and Assessment of Ascites on CT Scans. Expert. Syst. Appl. 2023, 224, 119979. [Google Scholar] [CrossRef]
- Hou, B.; Lee, S.; Lee, J.-M.; Koh, C.; Xiao, J.; Pickhardt, P.J.; Summers, R.M. Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification. Radiol. Artif. Intell. 2024, 6, e230601. [Google Scholar] [CrossRef]
- Nashwan, A.J.; Alkhawaldeh, I.M.; Shaheen, N.; Albalkhi, I.; Serag, I.; Sarhan, K.; Abujaber, A.A.; Abd-Alrazaq, A.; Yassin, M.A. Using Artificial Intelligence to Improve Body Iron Quantification: A Scoping Review. Blood Rev. 2023, 62, 101133. [Google Scholar] [CrossRef]
- Ramai, D.; Smith, E.R.; Wang, Y.; Huang, Y.; Obaitan, I.; Chandan, S.; Dhindsa, B.; Papaefthymiou, A.; Morris, J.D. Epidemiology and Socioeconomic Impact of Pancreatic Cancer: An Analysis of the Global Burden of Disease Study 1990–2019. Dig Dis Sci 2024, 69, 1135–1142. [Google Scholar] [CrossRef]
- Nishida, T.; Sugimoto, A.; Hosokawa, K.; Masuda, H.; Okabe, S.; Fujii, Y.; Nakamatsu, D.; Matsumoto, K.; Yamamoto, M.; Fukui, K. Impact of Time from Diagnosis to Chemotherapy on Prognosis in Advanced Pancreatic Cancer. Jpn. J. Clin. Oncol. 2024, 54, 658–666. [Google Scholar] [CrossRef]
- Huang, J.; Lok, V.; Ngai, C.H.; Zhang, L.; Yuan, J.; Lao, X.Q.; Ng, K.; Chong, C.; Zheng, Z.-J.; Wong, M.C.S. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 2021, 160, 744–754. [Google Scholar] [CrossRef]
- Korfiatis, P.; Suman, G.; Patnam, N.G.; Trivedi, K.H.; Karbhari, A.; Mukherjee, S.; Cook, C.; Klug, J.R.; Patra, A.; Khasawneh, H.; et al. Automated Artificial Intelligence Model Trained on a Large Data Set Can Detect Pancreas Cancer on Diagnostic Computed Tomography Scans As Well As Visually Occult Preinvasive Cancer on Prediagnostic Computed Tomography Scans. Gastroenterology 2023, 165, 1533–1546.e4. [Google Scholar] [CrossRef]
- Gu, J.; Pan, J.; Hu, J.; Dai, L.; Zhang, K.; Wang, B.; He, M.; Zhao, Q.; Jiang, T. Prospective Assessment of Pancreatic Ductal Adenocarcinoma Diagnosis from Endoscopic Ultrasonography Images with the Assistance of Deep Learning. Cancer 2023, 129, 2214–2223. [Google Scholar] [CrossRef] [PubMed]
- Sijithra, P.C.; Santhi, N.; Ramasamy, N. A Review Study on Early Detection of Pancreatic Ductal Adenocarcinoma Using Artificial Intelligence Assisted Diagnostic Methods. Eur. J. Radiol. 2023, 166, 110972. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Kuraishi, Y.; Fumihara, D.; Yanaidani, T.; Ishikawa, S.; Yasuda, T.; et al. Artificial Intelligence Using Deep Learning Analysis of Endoscopic Ultrasonography Images for the Differential Diagnosis of Pancreatic Masses. Endoscopy 2023, 55, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bao, C.; Liu, Y.; Wang, Z.; Du, L.; Zhang, Y.; Wang, F.; Xu, B.; Zhou, S.K.; Liu, R. 18F-FDG-PET/CT-Based Deep Learning Model for Fully Automated Prediction of Pathological Grading for Pancreatic Ductal Adenocarcinoma before Surgery. EJNMMI Res. 2023, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Mukund, A.; Afridi, M.A.; Karolak, A.; Park, M.A.; Permuth, J.B.; Rasool, G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers 2024, 16, 2240. [Google Scholar] [CrossRef]
- Li, D.; Peng, Q.; Wang, L.; Cai, W.; Liang, M.; Liu, S.; Ma, X.; Zhao, X. Preoperative Prediction of Disease-Free Survival in Pancreatic Ductal Adenocarcinoma Patients after R0 Resection Using Contrast-Enhanced CT and CA19-9. Eur. Radiol. 2024, 34, 509–524. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Fang, X.; Jiang, H.; Zhu, M.; Yu, J.; Zhao, H.; Zhang, L.; Yao, J.; Lu, L.; et al. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023, 306, 160–169. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, Q.; Liu, X.; Li, B.; Mao, T.; Li, X. Application of Artificial Intelligence in Endoscopic Gastrointestinal Tumors. Front. Oncol. 2023, 13, 1239788. [Google Scholar] [CrossRef]
- Reitsam, N.G.; Enke, J.S.; Vu Trung, K.; Märkl, B.; Kather, J.N. Artificial Intelligence in Colorectal Cancer: From Patient Screening over Tailoring Treatment Decisions to Identification of Novel Biomarkers. Digestion 2024, 105, 331–344. [Google Scholar] [CrossRef]
- Mansur, A.; Saleem, Z.; Elhakim, T.; Daye, D. Role of Artificial Intelligence in Risk Prediction, Prognostication, and Therapy Response Assessment in Colorectal Cancer: Current State and Future Directions. Front. Oncol. 2023, 13, 1065402. [Google Scholar] [CrossRef]
- Kikuchi, R.; Okamoto, K.; Ozawa, T.; Shibata, J.; Ishihara, S.; Tada, T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024. [Google Scholar] [CrossRef] [PubMed]
- Maida, M.; Marasco, G.; Facciorusso, A.; Shahini, E.; Sinagra, E.; Pallio, S.; Ramai, D.; Murino, A. Effectiveness and Application of Artificial Intelligence for Endoscopic Screening of Colorectal Cancer: The Future Is Now. Expert. Rev. Anticancer. Ther. 2023, 23, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, R.; Yadav, G.; Garg, P. Artificial Intelligence in Intestinal Polyp and Colorectal Cancer Prediction. Cancer Lett. 2023, 565, 216238. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-J.; Wen, Y.-C.; Lai, W.-Y.; Lin, Y.-Y.; Yang, Y.-P.; Chien, Y.; Yarmishyn, A.A.; Hwang, D.-K.; Lin, T.-C.; Chang, Y.-C.; et al. Application of Artificial Intelligence-Driven Endoscopic Screening and Diagnosis of Gastric Cancer. World J. Gastroenterol. 2021, 27, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Ishioka, M.; Osawa, H.; Hirasawa, T.; Kawachi, H.; Nakano, K.; Fukushima, N.; Sakaguchi, M.; Tada, T.; Kato, Y.; Shibata, J.; et al. Performance of an Artificial Intelligence-Based Diagnostic Support Tool for Early Gastric Cancers: Retrospective Study. Dig. Endosc. 2023, 35, 483–491. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, J.; Park, J.; Chang, Y.H.; Shin, C.M.; Oh, M.J.; Kim, S.H.; Kang, S.; Park, S.H.; Kim, S.G.; et al. An Artificial Intelligence System for Comprehensive Pathologic Outcome Prediction in Early Gastric Cancer through Endoscopic Image Analysis (with Video). Gastric Cancer 2024, 27, 1088–1099. [Google Scholar] [CrossRef]
- Matsushima, J.; Sato, T.; Yoshimura, Y.; Mizutani, H.; Koto, S.; Matsusaka, K.; Ikeda, J.; Sato, T.; Fujii, A.; Ono, Y.; et al. Clinical Utility of Artificial Intelligence Assistance in Histopathologic Review of Lymph Node Metastasis for Gastric Adenocarcinoma. Int. J. Clin. Oncol. 2023, 28, 1033–1042. [Google Scholar] [CrossRef]
- Lin, C.-H.; Hsu, P.-I.; Tseng, C.-D.; Chao, P.-J.; Wu, I.-T.; Ghose, S.; Shih, C.-A.; Lee, S.-H.; Ren, J.-H.; Shie, C.-B.; et al. Application of Artificial Intelligence in Endoscopic Image Analysis for the Diagnosis of a Gastric Cancer Pathogen-Helicobacter Pylori Infection. Sci. Rep. 2023, 13, 13380. [Google Scholar] [CrossRef]
- Turtoi, D.C.; Brata, V.D.; Incze, V.; Ismaiel, A.; Dumitrascu, D.I.; Militaru, V.; Munteanu, M.A.; Botan, A.; Toc, D.A.; Duse, T.A.; et al. Artificial Intelligence for the Automatic Diagnosis of Gastritis: A Systematic Review. J. Clin. Med. 2024, 13, 4818. [Google Scholar] [CrossRef]
- Barash, Y.; Livne, A.; Klang, E.; Sorin, V.; Cohen, I.; Khaitovich, B.; Raskin, D. Artificial Intelligence for Identification of Images with Active Bleeding in Mesenteric and Celiac Arteries Angiography. Cardiovasc. Interv. Radiol. 2024, 47, 785–792. [Google Scholar] [CrossRef]
- Barabino, E.; Tosques, M.; Cittadini, G. Artificial Intelligence in the Angio-Suite: Will Algorithms Be the Copilots of the Interventional Radiologist? Cardiovasc. Interv. Radiol. 2024, 47, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Weller, J.H.; Scheese, D.; Tragesser, C.; Yi, P.H.; Alaish, S.M.; Hackam, D.J. Artificial Intelligence vs. Doctors: Diagnosing Necrotizing Enterocolitis on Abdominal Radiographs. J. Pediatr. Surg. 2024, 59, 161592. [Google Scholar] [CrossRef]
- Kwon, G.; Ryu, J.; Oh, J.; Lim, J.; Kang, B.; Ahn, C.; Bae, J.; Lee, D.K. Deep Learning Algorithms for Detecting and Visualising Intussusception on Plain Abdominal Radiography in Children: A Retrospective Multicenter Study. Sci. Rep. 2020, 10, 17582. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yoon, H.; Lee, M.-J.; Kim, M.-J.; Han, K.; Yoon, J.K.; Kim, H.C.; Shin, J.; Shin, H.J. Performance of Deep Learning-Based Algorithm for Detection of Ileocolic Intussusception on Abdominal Radiographs of Young Children. Sci. Rep. 2019, 9, 19420. [Google Scholar] [CrossRef]
- Kim, S.W.; Cheon, J.-E.; Choi, Y.H.; Hwang, J.-Y.; Shin, S.-M.; Cho, Y.J.; Lee, S.; Lee, S.B. Feasibility of a Deep Learning Artificial Intelligence Model for the Diagnosis of Pediatric Ileocolic Intussusception with Grayscale Ultrasonography. Ultrasonography 2024, 43, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.; Qi, J.; Cheng, Y.; Liu, R.; Zhang, B.; Zhi, M.; Chen, J.; Xiao, F.; Shen, X.; Fan, L.; et al. Development and Validation of a Deep Neural Network for Accurate Identification of Endoscopic Images From Patients With Ulcerative Colitis and Crohn’s Disease. Front. Med. 2022, 9, 854677. [Google Scholar] [CrossRef]
- Pal, P.; Pooja, K.; Nabi, Z.; Gupta, R.; Tandan, M.; Rao, G.V.; Reddy, N. Artificial Intelligence in Endoscopy Related to Inflammatory Bowel Disease: A Systematic Review. Indian. J. Gastroenterol. 2024, 43, 172–187. [Google Scholar] [CrossRef]
- Maurício, J.; Domingues, I. Distinguishing between Crohn’s Disease and Ulcerative Colitis Using Deep Learning Models with Interpretability. Pattern Anal. Applic 2024, 27, 1. [Google Scholar] [CrossRef]
- Goyal, R.; Mui, L.W.; Riyahi, S.; Prince, M.R.; Lee, H.K. Machine Learning Based Prediction Model for Closed-Loop Small Bowel Obstruction Using Computed Tomography and Clinical Findings. J. Comput. Assist. Tomogr. 2022, 46, 169. [Google Scholar] [CrossRef]
- Murphy, P.M. Towards an EKG for SBO: A Neural Network for Detection and Characterization of Bowel Obstruction on CT. J. Digit. Imaging Inform. Med. 2024, 37, 1411–1423. [Google Scholar] [CrossRef]
- Kim, D.; Wit, H.; Thurston, M.; Long, M.; Maskell, G.; Strugnell, M.; Shetty, D.; Smith, I.; Hollings, N. An Artificial Intelligence Deep Learning Model for Identification of Small Bowel Obstruction on Plain Abdominal Radiographs. Br. J. Radiol. 2021, 94, 20201407. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Crocetto, F.; Barone, B.; del Giudice, F.; Maggi, M.; Lucarelli, G.; Busetto, G.M.; Autorino, R.; Marchioni, M.; Cantiello, F.; et al. Artificial Intelligence and Radiomics in Evaluation of Kidney Lesions: A Comprehensive Literature Review. Ther. Adv. Urol. 2023, 15, 17562872231164803. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Y.; Shi, X.; Zhang, S.; Ding, S.; Ni, L.; Dou, X.; Chen, L. The Application of Deep Learning in Abdominal Trauma Diagnosis by CT Imaging. World J. Emerg. Surg. 2024, 19, 17. [Google Scholar] [CrossRef]
- Park, Y.-J.; Cho, H.-S.; Kim, M.-N. AI Model for Detection of Abdominal Hemorrhage Lesions in Abdominal CT Images. Bioengineering 2023, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Jeong, W.; Lee, J.H.; Park, S.-Y. Use of Automated Machine Learning for Classifying Hemoperitoneum on Ultrasonographic Images of Morrison’s Pouch: A Multicenter Retrospective Study. J. Clin. Med. 2023, 12, 4043. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.M.; Potter, I.Y.; Zahiri, M.; Vaziri, A.; Jung, C.F.; Feldman, J.A. Using Deep Learning to Detect the Presence and Location of Hemoperitoneum on the Focused Assessment with Sonography in Trauma (FAST) Examination in Adults. J. Digit. Imaging 2023, 36, 2035–2050. [Google Scholar] [CrossRef] [PubMed]
- Alimu, P.; Fang, C.; Han, Y.; Dai, J.; Xie, C.; Wang, J.; Mao, Y.; Chen, Y.; Yao, L.; Lv, C.; et al. Artificial Intelligence with a Deep Learning Network for the Quantification and Distinction of Functional Adrenal Tumors Based on Contrast-Enhanced CT Images. Quant. Imaging Med. Surg. 2023, 13, 2675–2687. [Google Scholar] [CrossRef]
- Perez, A.A.; Noe-Kim, V.; Lubner, M.G.; Somsen, D.; Garrett, J.W.; Summers, R.M.; Pickhardt, P.J. Automated Deep Learning Artificial Intelligence Tool for Spleen Segmentation on CT: Defining Volume-Based Thresholds for Splenomegaly. Am. J. Roentgenol. 2023, 221, 611–619. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; He, X.; Wang, K.; Song, W.; Ye, Q.; Feng, L.; Wang, W.; Hu, X.; Li, H. Development and Validation of the Diagnostic Accuracy of Artificial Intelligence-Assisted Ultrasound in the Classification of Splenic Trauma. Ann. Transl. Med. 2022, 10, 1060. [Google Scholar] [CrossRef]
- Hamghalam, M.; Moreland, R.; Gomez, D.; Simpson, A.; Lin, H.M.; Jandaghi, A.B.; Tafur, M.; Vlachou, P.A.; Wu, M.; Brassil, M.; et al. Machine Learning Detection and Characterization of Splenic Injuries on Abdominal Computed Tomography. Can. Assoc. Radiol. J. 2024, 75, 534–541. [Google Scholar] [CrossRef]
- Greffier, J.; Durand, Q.; Frandon, J.; Si-Mohamed, S.; Loisy, M.; de Oliveira, F.; Beregi, J.-P.; Dabli, D. Improved Image Quality and Dose Reduction in Abdominal CT with Deep-Learning Reconstruction Algorithm: A Phantom Study. Eur. Radiol. 2023, 33, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.A.; Saad, A.M.; Kamel, S.; Stanietzky, N.; Roman-Colon, A.M.; Morani, A.C.; Elsayes, K.M.; Jensen, C.T. Deep-Learning CT Reconstruction in Clinical Scans of the Abdomen: A Systematic Review and Meta-Analysis. Abdom. Radiol. 2023, 48, 2724–2756. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; De Santis, D.; Del Gaudio, A.; Guido, G.; Zerunian, M.; Polici, M.; Valanzuolo, D.; Pugliese, D.; Persechino, R.; Cremona, A.; et al. Low-Dose Liver CT: Image Quality and Diagnostic Accuracy of Deep Learning Image Reconstruction Algorithm. Eur. Radiol. 2024, 34, 2384–2393. [Google Scholar] [CrossRef] [PubMed]
- Koetzier, L.R.; Mastrodicasa, D.; Szczykutowicz, T.P.; van der Werf, N.R.; Wang, A.S.; Sandfort, V.; van der Molen, A.J.; Fleischmann, D.; Willemink, M.J. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology 2023, 306, e221257. [Google Scholar] [CrossRef]
- Balaji, V.; Song, T.-A.; Malekzadeh, M.; Heidari, P.; Dutta, J. Artificial Intelligence for PET and SPECT Image Enhancement. J. Nucl. Med. 2024, 65, 4–12. [Google Scholar] [CrossRef]
- Fallahpoor, M.; Chakraborty, S.; Pradhan, B.; Faust, O.; Barua, P.D.; Chegeni, H.; Acharya, R. Deep Learning Techniques in PET/CT Imaging: A Comprehensive Review from Sinogram to Image Space. Comput. Methods Programs Biomed. 2024, 243, 107880. [Google Scholar] [CrossRef]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From Qualitative to Quantitative Imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and Deep Learning Methods for Radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [Google Scholar] [CrossRef]
- Hsu, T.-M.H.; Schawkat, K.; Berkowitz, S.J.; Wei, J.L.; Makoyeva, A.; Legare, K.; DeCicco, C.; Paez, S.N.; Wu, J.S.H.; Szolovits, P.; et al. Artificial Intelligence to Assess Body Composition on Routine Abdominal CT Scans and Predict Mortality in Pancreatic Cancer- A Recipe for Your Local Application. Eur. J. Radiol. 2021, 142, 109834. [Google Scholar] [CrossRef]
- Bedrikovetski, S.; Seow, W.; Kroon, H.M.; Traeger, L.; Moore, J.W.; Sammour, T. Artificial Intelligence for Body Composition and Sarcopenia Evaluation on Computed Tomography: A Systematic Review and Meta-Analysis. Eur. J. Radiol. 2022, 149, 110218. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, R.; Shah, A.D.; Akin, O.; Do, R.K.G.; Konar, A.S.; Hatzoglou, V.; Mahmood, U.; Lee, N.; Wong, R.J.; Banerjee, S.; et al. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers 2023, 15, 2573. [Google Scholar] [CrossRef] [PubMed]
- Fromherz, M.R.; Makary, M.S. Artificial Intelligence: Advances and New Frontiers in Medical Imaging. Artif. Intell. Med. Imaging 2022, 3, 33–41. [Google Scholar] [CrossRef]
- Campbell, W.A.; Chick, J.F.B.; Shin, D.; Makary, M.S. Understanding ChatGPT for Evidence-Based Utilization in Interventional Radiology. Clin. Imaging 2024, 108, 110098. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, N.; Lacson, R.; Khorasani, R. Workflow Applications of Artificial Intelligence in Radiology and an Overview of Available Tools. J. Am. Coll. Radiol. 2020, 17, 1363–1370. [Google Scholar] [CrossRef]
- Yacoub, B.; Varga-Szemes, A.; Schoepf, U.J.; Kabakus, I.M.; Baruah, D.; Burt, J.R.; Aquino, G.J.; Sullivan, A.K.; Doherty, J.O.; Hoelzer, P.; et al. Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study. AJR Am. J. Roentgenol. 2022, 219, 743–751. [Google Scholar] [CrossRef]
- Martín-Noguerol, T.; López-Úbeda, P.; Luna, A. Imagine There Is No Paperwork… It’s Easy If You Try. Br. J. Radiol. 2024, 97, 744–746. [Google Scholar] [CrossRef]
- Khizir, L.; Bhandari, V.; Kaloth, S.; Pfail, J.; Lichtbroun, B.; Yanamala, N.; Elsamra, S.E. From Diagnosis to Precision Surgery: The Transformative Role of Artificial Intelligence in Urologic Imaging. J. Endourol. 2024, 38, 824–835. [Google Scholar] [CrossRef]
- Madani, A.; Namazi, B.; Altieri, M.S.; Hashimoto, D.A.; Rivera, A.M.; Pucher, P.H.; Navarrete-Welton, A.; Sankaranarayanan, G.; Brunt, L.M.; Okrainec, A.; et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann. Surg. 2022, 276, 363–369. [Google Scholar] [CrossRef]
- Chadebecq, F.; Lovat, L.B.; Stoyanov, D. Artificial Intelligence and Automation in Endoscopy and Surgery. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 171–182. [Google Scholar] [CrossRef]
- von Ende, E.; Ryan, S.; Crain, M.A.; Makary, M.S. Artificial Intelligence, Augmented Reality, and Virtual Reality Advances and Applications in Interventional Radiology. Diagnostics 2023, 13, 892. [Google Scholar] [CrossRef]
- Gurgitano, M.; Angileri, S.A.; Rodà, G.M.; Liguori, A.; Pandolfi, M.; Ierardi, A.M.; Wood, B.J.; Carrafiello, G. Interventional Radiology Ex-Machina: Impact of Artificial Intelligence on Practice. Radiol. Med. 2021, 126, 998–1006. [Google Scholar] [CrossRef]
- Moussa, A.M.; Ziv, E. Radiogenomics in Interventional Oncology. Curr. Oncol. Rep. 2021, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; et al. Residual Convolutional Neural Network for Predicting Response of Transarterial Chemoembolization in Hepatocellular Carcinoma from CT Imaging. Eur. Radiol. 2020, 30, 413–424. [Google Scholar] [CrossRef]
- Mähringer-Kunz, A.; Wagner, F.; Hahn, F.; Weinmann, A.; Brodehl, S.; Schotten, S.; Hinrichs, J.B.; Düber, C.; Galle, P.R.; Pinto dos Santos, D.; et al. Predicting Survival after Transarterial Chemoembolization for Hepatocellular Carcinoma Using a Neural Network: A Pilot Study. Liver Int. 2020, 40, 694–703. [Google Scholar] [CrossRef]
- Morshid, A.; Elsayes, K.M.; Khalaf, A.M.; Elmohr, M.M.; Yu, J.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Wang, Z.; Hazle, J.D.; et al. A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization. Radiol. Artif. Intell. 2019, 1, e180021. [Google Scholar] [CrossRef]
- Iezzi, R.; Goldberg, S.N.; Merlino, B.; Posa, A.; Valentini, V.; Manfredi, R. Artificial Intelligence in Interventional Radiology: A Literature Review and Future Perspectives. J. Oncol. 2019, 2019, 6153041. [Google Scholar] [CrossRef]
- D’Amore, B.; Smolinski-Zhao, S.; Daye, D.; Uppot, R.N. Role of Machine Learning and Artificial Intelligence in Interventional Oncology. Curr. Oncol. Rep. 2021, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.Y.; Hough, M.; Hawes, R.H.; Varadarajulu, S. Use of Artificial Intelligence to Reduce Radiation Exposure at Fluoroscopy-Guided Endoscopic Procedures. Off. J. Am. Coll. Gastroenterol. ACG 2020, 115, 555. [Google Scholar] [CrossRef]
- Zimmermann, J.M.; Vicentini, L.; Van Story, D.; Pozzoli, A.; Taramasso, M.; Lohmeyer, Q.; Maisano, F.; Meboldt, M. Quantification of Avoidable Radiation Exposure in Interventional Fluoroscopy With Eye Tracking Technology. Investig. Radiol. 2020, 55, 457. [Google Scholar] [CrossRef]
- Kidd, A.C.; Anderson, O.; Cowell, G.W.; Weir, A.J.; Voisey, J.P.; Evison, M.; Tsim, S.; Goatman, K.A.; Blyth, K.G. Fully Automated Volumetric Measurement of Malignant Pleural Mesothelioma by Deep Learning AI: Validation and Comparison with Modified RECIST Response Criteria. Thorax 2022, 77, 1251–1259. [Google Scholar] [CrossRef]
- Dohan, A.; Gallix, B.; Guiu, B.; Malicot, K.L.; Reinhold, C.; Soyer, P.; Bennouna, J.; Ghiringhelli, F.; Barbier, E.; Boige, V.; et al. Early Evaluation Using a Radiomic Signature of Unresectable Hepatic Metastases to Predict Outcome in Patients with Colorectal Cancer Treated with FOLFIRI and Bevacizumab. Gut 2020, 69, 531–539. [Google Scholar] [CrossRef]
- Fowler, G.E.; Blencowe, N.S.; Hardacre, C.; Callaway, M.P.; Smart, N.J.; Macefield, R. Artificial Intelligence as a Diagnostic Aid in Cross-Sectional Radiological Imaging of Surgical Pathology in the Abdominopelvic Cavity: A Systematic Review. BMJ Open 2023, 13, e064739. [Google Scholar] [CrossRef]
- Hong, G.-S.; Jang, M.; Kyung, S.; Cho, K.; Jeong, J.; Lee, G.Y.; Shin, K.; Kim, K.D.; Ryu, S.M.; Seo, J.B.; et al. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J. Radiol. 2023, 24, 1061–1080. [Google Scholar] [CrossRef]
- Salahuddin, Z.; Woodruff, H.C.; Chatterjee, A.; Lambin, P. Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods. Comput. Biol. Med. 2022, 140, 105111. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, Trustworthy, and Ethical Machine Learning for Healthcare: A Survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef]
- Rockwell, H.D.; Cyphers, E.D.; Makary, M.S.; Keller, E.J. Ethical Considerations for Artificial Intelligence in Interventional Radiology: Balancing Innovation and Patient Care. Semin. Interv. Radiol. 2023, 40, 323–326. [Google Scholar] [CrossRef]
- Morris, M.X.; Song, E.Y.; Rajesh, A.; Asaad, M.; Phillips, B.T. Ethical, Legal, and Financial Considerations of Artificial Intelligence in Surgery. Am. Surg. 2023, 89, 55–60. [Google Scholar] [CrossRef]
- Martín-Noguerol, T.; López-Úbeda, P.; Luna, A. AI in Radiology: Legal Responsibilities and the Car Paradox. Eur. J. Radiol. 2024, 175, 111462. [Google Scholar] [CrossRef]
- Mezrich, J.L. Is Artificial Intelligence (AI) a Pipe Dream? Why Legal Issues Present Significant Hurdles to AI Autonomy. AJR Am. J. Roentgenol. 2022, 219, 152–156. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Jingwa, K.A.; Okoye, O.K.; John Okah, M.; Ladele, J.A.; Farah, A.H.; Alimi, H.A. Ethical Implications of AI and Robotics in Healthcare: A Review. Medicine 2023, 102, e36671. [Google Scholar] [CrossRef]
- Sumner, C.; Kietzman, A.; Kadom, N.; Frigini, A.; Makary, M.S.; Martin, A.; McKnight, C.; Retrouvey, M.; Spieler, B.; Griffith, B. Medical Malpractice and Diagnostic Radiology: Challenges and Opportunities. Acad. Radiol. 2024, 31, 233–241. [Google Scholar] [CrossRef]
Imaging Modality | AI Model AUC | AI Model Sensitivity | AI Model Specificity | AI Model Accuracy | Comparison to Radiologists |
---|---|---|---|---|---|
B-Mode US [21] | 0.77–0.85 | 80–87% | 78% | 79–84% | AI model showed greater accuracy than radiologist experts for lesions deemed unknown by the Code Abdomen rating system. |
B-Mode US [10] | 0.924 | 86.50% | 85.50% | 84.70% | Sensitivity and specificity were greater for the AI model compared to experienced radiologists. |
B-Mode US [11] | 0.947 | 86.70% | 98.70% | 82.20% | Not specified |
CEUS [12] | 0.934 | 92.70% | 85% | 91% | AI model displayed greater accuracy than radiology residents and similar accuracy to experienced radiology attendings. |
CEUS + Hepatic Markers + AFP [13] | 0.969 | 96.60% | 91% | 94% | The AUC of the AI model was greater than that of radiologists (0.864–0.935). |
Endoscopic US (Image) [14] | 0.861 | 90% | 71% | N/a | Not specified |
Endoscopic US (Video) [15] | 0.904 | 100% | 80% | N/a | Not specified |
Imaging Modality | AI Model AUC | AI Model Sensitivity | AI Model Specificity | AI Model Accuracy | Comparison to Radiologists |
---|---|---|---|---|---|
MRI [22] | 0.79 | 65–75% | 75–79% | 73–75% | Sensitivity and specificity of the AI model to identify HCC was similar to that of radiologists, but identification of non-HCC malignancies was inferior to that of radiologists. |
MRI [15] | 0.9 | 87% | 93% | 94% | Less experienced radiologists performed similar to the AI model (AUC 0.893). Expert radiologists outperformed the AI model (AUC 0.957). |
MRI [16] | 0.925 | 87.20% | 91.60% | N/a | Similar performance of AI model to three experienced radiologists. |
CT [17] | 0.986 | N/a | N/a | 83% | Radiologists with access to the AI model had greater accuracy than those who did not have access (79.1% vs. 70.8%). |
CT [18] | 0.949 | N/a | N/a | N/a | Not specified |
CT [23] | 0.87 | 75% | 88% | 61% | AI model had greater accuracy than 2 radiologists (61% vs. 53–55%). |
CT [24] | 0.883 | 89% | 74% | 79.3–81.8% | Radiologists who used the AI model achieved greater accuracy than those who did not have AI assistance. |
3-Phase CT [19] | 0.92 | 74% | 94% | 86% | Not specified |
4-Phase CT [19] | 0.925 | 92% | 77% | 83% | Not specified |
CT [20] | 0.92 | 73.9% | 96.40% | 91.60% | Not specified |
Pathology | Findings |
---|---|
HCC Biomarker Prediction | AI models can analyze imaging data to detect molecular changes and biomarkers associated with HCC, enabling individualized treatment planning to increase success rates [25,26]. |
HCC Progression and Relapse | AI can predict HCC progression and relapse risk based on imaging, histopathology, and molecular markers, aiding in follow-up management and timing of interventions [27,28,29]. |
Liver Steatosis | AI-assisted ultrasound improves accuracy in diagnosing liver steatosis [29]. |
Fibrosis Staging | AI applied to CT imaging shows potential in accurately staging liver fibrosis [30,31,32,33]. |
Hepatic Ascites | AI aids in detecting and assessing hepatic ascites with CT imaging, improving diagnostic accuracy [34]. |
NAFLD/MAFLD | AI-assisted ultrasound significantly enhances sensitivity and specificity in NAFLD/MAFLD diagnosis [33]. |
Liver Iron Concentration | AI enables accurate, non-invasive quantification of liver iron concentration via MRI, reducing reliance on biopsies [36]. |
Application | AI Methodology | Outcome | References |
---|---|---|---|
Diagnosis of PDAC | AI with CT, endoscopic ultrasound | High sensitivity and specificity in differentiating PDAC from other pancreatic masses. PANDA model shows higher accuracy than radiologists in non-contrast CT. | [20,37,38,39,40,41,42,43] |
Prognostic Assessment | Deep learning with 18F-FDG-PET/CT | Accurate tumor grading, treatment response prediction, and relapse probability outcomes. | [44,45,46] |
Lymph Node Metastasis Prediction | AI with CT | Detects PDAC lymph node metastases with AUC of 0.91, significantly higher than the radiologist AUC of 0.65. | [47] |
Detection of Occult Preinvasive Cancer | AI on pre-diagnostic CT images | Identifies visually occult preinvasive cancer, aiding in early diagnosis. | [40] |
Overall Impact | Multiple modalities | Enhances early detection, prognostic assessments, treatment planning, and relapse prediction in PDAC, facilitating personalized treatment plans for better outcomes. | [37,38,39,40,41,42,43,44,45,46,47] |
Application | Outcome | References |
---|---|---|
Endoscopic Diagnosis | Increases adenoma detection rate, reduces adenoma miss rate, and improves endoscopy quality. | [48] |
Detection of Neoplastic Changes | Identifies early-stage neoplastic changes, enabling timely colorectal cancer management using endoscopy. | [49,50,51,52] |
Gastric and Esophageal Cancer | Increases diagnostic accuracy and decreases miss rate, and can predict differentiation and depth of invasion of early gastric tumors. | [53,54,55,56] |
Detection of H. pylori and Gastritis | Accurately identifies the presence of H. pylori and diagnosis gastritis using endoscopic images. | [58,59] |
Vascular Bleeding Detection | Detects mesenteric and celiac artery bleeding effectively with angiography. | [60,61] |
Pediatric Conditions | Diagnosis necrotizing enterocolitis and intussusception in pediatric patients with high accuracy. | [62,63,64,65] |
IBD Differentiation | Differentiates Crohn’s disease from ulcerative colitis with high accuracy and reduced reading time with endoscopic images. | [66,67,68] |
Small Bowel Obstructions | Recognizes small bowel obstructions accurately, enhancing diagnostic accuracy and supporting quick intervention. | [69,70,71] |
Overall Impact | Improves the interpretation of gastric and colorectal imaging across diverse conditions, assisting in cancer and non-cancer diagnoses and treatment. Further research needed in metastasis. | [48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loper, M.R.; Makary, M.S. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024, 10, 1814-1831. https://doi.org/10.3390/tomography10110133
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography. 2024; 10(11):1814-1831. https://doi.org/10.3390/tomography10110133
Chicago/Turabian StyleLoper, Mark R., and Mina S. Makary. 2024. "Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging" Tomography 10, no. 11: 1814-1831. https://doi.org/10.3390/tomography10110133
APA StyleLoper, M. R., & Makary, M. S. (2024). Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography, 10(11), 1814-1831. https://doi.org/10.3390/tomography10110133