A Secondary Analysis of Gender Respiratory Features for Ultrasonography Bilateral Diaphragm Thickness, Respiratory Pressures, and Pulmonary Function in Low Back Pain
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Recruitment and Ethical Aspects
2.2. Sample Size Calculation
2.3. Study Sample
2.4. Descriptive and Physical Data
2.5. Respiratory Outcomes
2.5.1. Bilateral Diaphragm Thickness
2.5.2. Respiratory Pressures
2.5.3. Pulmonary Function
2.6. Clinical Outcomes
2.6.1. Pain Intensity
2.6.2. Pressure Pain Threshold
2.6.3. Disability
2.6.4. Quality of Life
2.7. Statistical Analyses
3. Results
3.1. Descriptive and Physical Data
3.2. Respiratory Outcomes
3.3. Clinical Outcomes
3.4. Multivariate Linear Regression Analyses
4. Discussion
4.1. Limitations
4.2. Future Recommendations
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabey, M.; Smith, A.; Kent, P.; Beales, D.; Slater, H.; O’Sullivan, P. Chronic low back pain is highly individualised: Patterns of classification across three unidimensional subgrouping analyses. Scand. J. Pain 2019, 19, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef]
- López-López, D.; Vilar-Fernández, J.M.; Calvo-Lobo, C.; Losa-Iglesias, M.E.; Rodriguez-Sanz, D.; Becerro-De-Bengoa-Vallejo, R. Evaluation of depression in subacute low back pain: A case control study. Pain Physician 2017, 20, 499–505. [Google Scholar] [CrossRef]
- Lobo, C.C.; Fernández, J.M.V.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodríguez-Sanz, D.; López, P.P.; López, D.L. Relationship of depression in participants with nonspecific acute or subacute low back pain and no-pain by age distribution. J. Pain Res. 2017, 10, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Peña, R.; Calvo-Lobo, C.; Aiguadé, R.; Fernández-Carnero, J. Which Seems to Be Worst? Pain Severity and Quality of Life between Patients with Lateral Hip Pain and Low Back Pain. Pain Res. Manag. 2018, 2018, 9156247. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.C.; Vilar-Fernández, J.M.; Losa-Iglesias, M.E.; López-López, D.; Rodríguez-Sanz, D.; Palomo-López, P.; Bengoa-Vallejo, R.B. Depression Symptoms Among Older Adults with and Without Subacute Low Back Pain. Rehabil. Nurs. 2019, 44, 47–51. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, F.; Rostami, M.; Noormohammadpour, P.; Mehraki Zade, A.; Hassanmirazaei, B.; Faghih Jouibari, M.; Kordi, R.; Kennedy, D.J. Prevalence of low back pain among athletes: A systematic review. J. Back Musculoskelet. Rehabil. 2018, 31, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.; Hill, K.; Nicholl, D.; Schadrack, J. The burden of chronic low back pain with and without a neuropathic component: A healthcare resource use and cost analysis. J. Med. Econ. 2012, 15, 245–252. [Google Scholar] [CrossRef]
- Juniper, M.; Le, T.K.; Mladsi, D. The epidemiology, economic burden, and pharmacological treatment of chronic low back pain in France, Germany, Italy, Spain and the UK: A literature-based review. Expert Opin. Pharmacother. 2009, 10, 2581–2592. [Google Scholar] [CrossRef]
- Swain, C.T.V.; Bradshaw, E.J.; Whyte, D.G.; Ekegren, C.L. Life history and point prevalence of low back pain in pre-professional and professional dancers. Phys. Ther. Sport 2017, 25, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Lobo, C.; Almazán-Polo, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Palomo-López, P.; Rodríguez-Sanz, D.; López-López, D. Ultrasonography comparison of diaphragm thickness and excursion between athletes with and without lumbopelvic pain. Phys. Ther. Sport 2019, 37, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Beeckmans, N.; Vermeersch, A.; Lysens, R.; Van Wambeke, P.; Goossens, N.; Thys, T.; Brumagne, S.; Janssens, L. The presence of respiratory disorders in individuals with low back pain: A systematic review. Man. Ther. 2016, 26, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Uddin, B.; Vaish, H. Evaluation of pulmonary function in patients of non-specific low back pain. Rev. Pesqui. Fisioter. 2023, 13, e5364. [Google Scholar] [CrossRef]
- Kolar, P.; Sulc, J.; Kyncl, M.; Sanda, J.; Cakrt, O.; Andel, R.; Kumagai, K.; Kobesova, A. Postural function of the diaphragm in persons with and without chronic low back pain. J. Orthop. Sports Phys. Ther. 2012, 42, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Mohan MPT, V.; Paungmali, A.; Sitilerpisan, P.; Hashim, U.F.; Mazlan BPT, M.B.; Nasuha BPT, T.N.; Selangor, M.; Puncak Alam, B.; Alam, P.; MARA Selangor, T. Respiratory characteristics of individuals with non-specific low back pain: A cross-sectional study. Nurs. Health Sci. 2018, 20, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Harper, C.J.; Shahgholi, L.; Cieslak, K.; Hellyer, N.J.; Strommen, J.A.; Boon, A.J. Variability in diaphragm motion during normal breathing, assessed with B-mode ultrasound. J. Orthop. Sports Phys. Ther. 2013, 43, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Terada, M.; Kosik, K.B.; McCann, R.S.; Gribble, P.A. Diaphragm Contractility in Individuals with Chronic Ankle Instability. Med. Sci. Sports Exerc. 2016, 48, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rubio, H.; Becerro-de-Bengoa-Vallejo, R.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; Vicente-Campos, D.; Chicharro, J.L. Inspiratory Muscle Training in Patients with Heart Failure. J. Clin. Med. 2020, 9, 1710. [Google Scholar] [CrossRef]
- Aznar-Lain, S.; Webster, A.L.; Cañete, S.; San Juan, A.F.; López Mojares, L.M.; Pérez, M.; Lucia, A.; Chicharro, J.L. Effects of inspiratory muscle training on exercise capacity and spontaneous physical activity in elderly subjects: A randomized controlled pilot trial. Int. J. Sports Med. 2007, 28, 1025–1029. [Google Scholar] [CrossRef]
- Chicharro, J.L.; Hoyos, J.; Lucía, A. Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in professional cyclists. Br. J. Sports Med. 2000, 34, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Campos, D.; Sanchez-Jorge, S.; Terrón-Manrique, P.; Guisard, M.; Collin, M.; Castaño, B.; Rodríguez-Sanz, D.; Becerro-De-bengoa-vallejo, R.; Chicharro, J.L.; Calvo-Lobo, C. The Main Role of Diaphragm Muscle as a Mechanism of Hypopressive Abdominal Gymnastics to Improve Non-Specific Chronic Low Back Pain: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 4983. [Google Scholar] [CrossRef]
- Marugán-Rubio, D.; Chicharro, J.L.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodríguez-Sanz, D.; Vicente-Campos, D.; Molina-Hernández, N.; Calvo-Lobo, C. Effectiveness of Ultrasonography Visual Biofeedback of the Diaphragm in Conjunction with Inspiratory Muscle Training on Muscle Thickness, Respiratory Pressures, Pain, Disability, Quality of Life and Pulmonary Function in Athletes with Non-Specific Low Back Pain: A Randomized Clinical Trial. J. Clin. Med. 2022, 11, 4318. [Google Scholar] [CrossRef] [PubMed]
- Kolar, P.; Sulc, J.; Kyncl, M.; Sanda, J.; Neuwirth, J.; Bokarius, A.V.; Kriz, J.; Kobesova, A. Stabilizing function of the diaphragm: Dynamic MRI and synchronized spirometric assessment. J. Appl. Physiol. 2010, 109, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Lomauro, A.; Aliverti, A. Sex differences in respiratory function. Breathe 2018, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Joseph Frank, W. Sex differences in diaphragmatic fatigue. M. Res. 2018, 2014. [Google Scholar] [CrossRef]
- Fernández-Rubio, H.; Becerro-De-bengoa-vallejo, R.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; Vicente-Campos, D.; Chicharro, J.L. Unraveling the role of respiratory muscle metaboloreceptors under inspiratory training in patients with heart failure. Int. J. Environ. Res. Public Health 2021, 18, 1697. [Google Scholar] [CrossRef] [PubMed]
- Ramsook, A.H. Sex Differences in Voluntary Activation of the Diaphragm. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2021. [Google Scholar] [CrossRef]
- Janssens, L.; Brumagne, S.; McConnell, A.K.; Hermans, G.; Troosters, T.; Gayan-Ramirez, G. Greater diaphragm fatigability in individuals with recurrent low back pain. Respir. Physiol. Neurobiol. 2013, 188, 119–123. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Holt, G.R. Declaration of Helsinki-the world’s document of conscience and responsibility. South. Med. J. 2014, 107, 407. [Google Scholar] [CrossRef]
- Marugán-Rubio, D.; Chicharro, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; Rodríguez-Sanz, D.; Vicente-Campos, D.; Dávila-Sánchez, G.; Calvo-Lobo, C. Concurrent Validity and Reliability of Manual Versus Specific Device Transcostal Measurements for Breathing Diaphragm Thickness by Ultrasonography in Lumbopelvic Pain Athletes. Sensors 2021, 21, 4329. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hernández, N.; López Chicharro, J.; Becerro-De-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodríguez-Sanz, D.; Vicente-Campos, D.; Marugán-Rubio, D.; Gutiérrez-Torre, S.E.; Calvo-Lobo, C. Ultrasonographic reliability and repeatability of simultaneous bilateral assessment of diaphragm muscle thickness during normal breathing. Quant. Imaging Med. Surg. 2023, 13, 6656–6667. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Paris-Alemany, A.; Torres-Palomino, A.; Marino, L.; Calvo-Lobo, C.; Gadea-Mateos, L.; La Touche, R. Comparison of lumbopelvic and dynamic stability between dancers and non-dancers. Phys. Ther. Sport 2018, 33, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Garrow, J.S. Quetelet index as indicator of obesity. Lancet 1986, 1, 1219. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.P.; Lariviere, M.; Young, N. Psychometric properties of the IPAQ: A validation study in a sample of northern Franco-Ontarians. J. Phys. Act. Health 2009, 6 (Suppl. 1), S54–S60. [Google Scholar] [CrossRef] [PubMed]
- Almazán-Polo, J.; López-López, D.; Romero-Morales, C.; Rodríguez-Sanz, D.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; Bravo-Aguilar, M.; Calvo-Lobo, C. Quantitative Ultrasound Imaging Differences in Multifidus and Thoracolumbar Fasciae between Athletes with and without Chronic Lumbopelvic Pain: A Case-Control Study. J. Clin. Med. 2020, 9, 2647. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; Miller, M.R.; et al. Standardization of spirometry 2019 update an official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; Macintyre, N.R.; Thompson, B.R.; Wanger, J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef]
- Cofré, R.M.; Del, M.; Calderón, S.; Medina González, P.; Saavedra, N.M.; Cabello, M.E. Reliability in the measurement of maximum inspiratory pressure and inspiratory capacity of a physiotherapist in training. Fisioter. Pesqui. 2018, 25, 444–451. [Google Scholar] [CrossRef]
- Calvo-Lobo, C.; Painceira-Villar, R.; López-López, D.; García-Paz, V.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Palomo-López, P. Tarsal Tunnel Mechanosensitivity Is Increased in Patients with Asthma: A Case-Control Study. J. Clin. Med. 2018, 7, 541. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int. J. Rehabil. Res. 2008, 31, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Lobo, C.; Diez-Vega, I.; Martínez-Pascual, B.; Fernández-Martínez, S.; de la Cueva-Reguera, M.; Garrosa-Martín, G.; Rodríguez-Sanz, D. Tensiomyography, sonoelastography, and mechanosensitivity differences between active, latent, and control low back myofascial trigger points: A cross-sectional study. Medicine 2017, 96, e6287. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Guo, J.; Brown, C.M. Test-retest reliability, repeatability, and sensitivity of an automated deformation-controlled indentation on pressure pain threshold measurement. J. Manip. Physiol. Ther. 2013, 36, 84–90. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Llobera, J.; Gil Del Real, M.T.; Abraira, V.; Gestoso, M.; Fernández, C.; Primaria Group, K.-A. Validation of the spanish version of the Roland-Morris questionnaire. Spine 2002, 27, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Vilagut, G.; Valderas, J.M.; Ferrer, M.; Garin, O.; López-García, E.; Alonso, J. Interpretación de los cuestionarios de salud SF-36 y SF-12 en España: Componentes físico y mental. Med. Clin. 2008, 130, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; 567p. [Google Scholar]
- Austin, P.C.; Steyerberg, E.W. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 2015, 68, 627–636. [Google Scholar] [CrossRef]
- Ostelo, R.W.J.G.; de Vet, H.C.W. Clinically important outcomes in low back pain. Best Pract. Res. Clin. Rheumatol. 2005, 19, 593–607. [Google Scholar] [CrossRef]
- Bizzoca, D.; Solarino, G.; Pulcrano, A.; Brunetti, G.; Moretti, A.M.; Moretti, L.; Piazzolla, A.; Moretti, B. Gender-Related Issues in the Management of Low-Back Pain: A Current Concepts Review. Clin. Pract. 2023, 13, 1360–1368. [Google Scholar] [CrossRef]
- Van Bogaert, W.; Liew, B.X.W.; Fernández-de-las-Peñas, C.; Valera-Calero, J.A.; Varol, U.; Coppieters, I.; Kregel, J.; Nijs, J.; Meeus, M.; Cagnie, B.; et al. Exploring Interactions Between Sex, Pain Characteristics, Disability, and Quality of Life in People With Chronic Spinal Pain: A Structural Equation Model. J. Pain 2023, 25, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, T.; Truong, C.; Haldenby, H.; Riazi, S.; Kendall, M.; Cimek, T.; Macedo, L.G. Sex and gender considerations in low back pain clinical practice guidelines: A scoping review. BMJ Open Sport—Exerc. Med. 2020, 6, e000972. [Google Scholar] [CrossRef]
- Bento, T.P.F.; Genebra, C.V.d.S.; Maciel, N.M.; Cornelio, G.P.; Simeão, S.F.A.P.; de Vitta, A. Low back pain and some associated factors: Is there any difference between genders? Braz. J. Phys. Ther. 2020, 24, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Rathinaraj, L.A.; Irani, A.; Sharma, S.K. Forced Expiratory Volume in the first second [FEV1] in patients with chronic low back pain. J. Res. Med. Dent. Sci. 2017, 5, 27–32. [Google Scholar] [CrossRef]
- Oguri, M.; Okanishi, T.; Ikeguchi, T.; Ogo, K.; Kanai, S.; Maegaki, Y.; Wada, S.; Himoto, T. Influence of gender on diaphragm thickness using a method for determining intima media thickness in healthy young adults. BMC Med. Imaging 2022, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, R.; Harif, N.; Al-Rahbi, B.; Aziz, C.B.A.; Ahmad, A.H. Gender Differences and Obesity Influence on Pulmonary Function Parameters. Oman Med. J. 2019, 34, 44. [Google Scholar] [CrossRef] [PubMed]
- Roussel, N.; Nijs, J.; Truijen, S.; Vervecken, L.; Mottram, S.; Stassijns, G. Altered breathing patterns during lumbopelvic motor control tests in chronic low back pain: A case–control study. Eur. Spine J. 2009, 18, 1066. [Google Scholar] [CrossRef]
- Durmic, T.; Lazovic Popovic, B.; Zlatkovic Svenda, M.; Djelic, M.; Zugic, V.; Gavrilovic, T.; Mihailovic, Z.; Zdravkovic, M.; Leischik, R. The training type influence on male elite athletes’ ventilatory function. BMJ Open Sport Exerc. Med. 2017, 3, e000240. [Google Scholar] [CrossRef]
Descriptive and Physical Data (n = 90) | Female LBP Patients (n = 45) | Male LBP Patients (n = 45) | p-Value | ||
---|---|---|---|---|---|
Mean ± SD (95% CI) | Median ± IR (Range) | Mean ± SD (95% CI) | Median ± IR (Range) | ||
Age (y) | 49.15 ± 8.89 (46.48–51.82) | 50.00 ± 11.00 (24.00–62.00) | 45.75 ± 13.05 (41.83–49.67) | 50.00 ± 14.50 (18.00–64.00) | 0.343 † |
Height (cm) | 162.76 ± 4.73 (161.33–164.18) | 163.00 ± 6.00 (152.00–172.00) | 177.98 ± 6.92 (175.90–180.06) | 178.00 ± 10.00 (162.00–195.00) | <0.001† |
Weight (kg) | 64.64 ± 9.68 (61.77–67.52) | 63.00 ± 17.50 (49.00–80.00) | 81.84 ± 11.22 (78.47–85.21) | 82.00 ± 16.50 (49.00–105.00) | <0.001 * |
BMI (kg/m2) | 24.37 ± 3.28 (23.38–25.36) | 26.61 ± 5.33 (19.38–30.48) | 25.80 ± 2.95 (24.91–26.68) | 26.17 ± 3.61 (16.76–30.67) | 0.033 * |
IPAQ (METs/min/week) | 1619.34 ± 1136.88 (1277.78–1960.90) | 1404.34 ± 1455.00 (160.00–5544.00) | 2416.77 ± 1888.78 (1849.31–2984.22) | 1584.00 ± 2385.00 (184.80–8586.00) | 0.062 † |
Nijmegen (scores) | 13.95 ± 5.57 (12.28–15.62) | 14.00 ± 7.50 (0.00–22.00) | 11.02 ± 6.20 (9.15–12.88) | 11.00 ± 10.00 (2.00–23.00) | 0.020 * |
Respiratory Outcome Differences (n = 90) | Female LBP Patients (n = 45) | Male LBP Patients (n = 45) | Cohen d | p-Value | ||
---|---|---|---|---|---|---|
Mean ± SD (95% CI) | Median ± IR (Range) | Mean ± SD (95% CI) | Median ± IR (Range) | |||
Right diaphragm thickness at Tins (cm) | 0.20 ± 0.06 (0.18–0.22) | 0.19 ± 0.00 (0.00–0.36) | 0.22 ± 0.06 (0.20–0.24) | 0.22 ± 0.10 (0.12–0.38) | 0.33 | 0.197 * |
Right diaphragm thickness at Texp (cm) | 0.18 ± 0.04 (0.16–0.19) | 0.17 ± 0.05 (0.11–0.35) | 0.19 ± 0.05 (0.17–0.21) | 0.18 ± 0.07 (0.10–0.34) | 0.22 | 0.253 † |
Right diaphragm thickness at Tins-exp (cm) | 0.02 ± 0.05 (0.00–0.04) | 0.02 ± 0.04 (−0.17–0.18) | 0.02 ± 0.03 (0.01–0.03) | 0.02 ± 0.04 (−0.03–0.12) | 0.00 | 0.651 † |
Left diaphragm thickness at Tins (cm) | 0.23 ± 0.07 (0.20–0.25) | 0.21 ± 0.08 (0.11–0.48) | 0.21 ± 0.05 (0.19–0.22) | 0.21 ± 0.07 (0.12–0.38) | 0.32 | 0.264 † |
Left diaphragm thickness (cm) at Texp | 0.19 ± 0.05 (0.19–0.21) | 0.19 ± 0.09 (0.10–0.33) | 0.18 ± 0.05 (0.16–0.19) | 0.17 ± 0.06 (0.08–0.31) | 0.20 | 0.285 * |
Left diaphragm thickness at Tins-exp (cm) | 0.03 ± 0.04 (0.02–0.04) | 0.02 ± 0.05 (−0.05–0.16) | 0.02 ± 0.03 (0.01–0.03) | 0.02 ± 0.03 (−0.04–0.18) | 0.28 | 0.990 † |
MIP (cm H2O) | 53.42 ± 19.17 (47.66–59.18) | 48.67 ± 25.33 (17.67–100.33) | 85.68 ± 30.62 (76.48–94.88) | 84.67 ± 46.00 (33.67–153.33) | 1.26 | <0.001† |
MEP (cm H2O) | 76.88 ± 24.79 (69.43–84.33) | 77.33 ± 27.50 (27.73–150.33) | 127.55 ± 37.77 (116.20–138.90) | 128.33 ± 54.17 (52.67–185.67) | 1.58 | <0.001† |
FEV1 (L) | 2.51 ± 0.56 (2.34–2.68) | 2.51 ± 0.64 (1.37–3.69) | 3.44 ± 0.69 (3.23–3.64) | 3.57 ± 0.88 (1.87–4.93) | 1.48 | <0.001 * |
FVC (L) | 2.68 ± 0.63 (2.49–2.87) | 2.72 ± 0.85 (1.39–3.96) | 3.69 ± 0.84 (3.43–3.94) | 3.80 ± 1.07 (1.87–6.03) | 1.36 | <0.001 * |
FEV1/FVC (%) | 93.70 ± 5.70 (91.99–95.41) | 95.47 ± 9.41 (78.90–99.83) | 93.95 ± 6.59 (91.97–95.93) | 96.58 ± 9.80 (75.80–99.94) | 0.04 | 0.264 † |
Clinical Outcome Differences (n = 90) | Female LBP Patients (n = 45) | Male LBP Patients (n = 45) | Cohen d | p-Value | ||
---|---|---|---|---|---|---|
Mean ± SD (95% CI) | Median ± IR (Range) | Mean ± SD (95% CI) | Median ± IR (Range) | |||
VAS (scores) | 4.91 ± 1.96 (4.32–5.50) | 4.80 ± 3.10 (1.50–8.90) | 4.82 ± 1.74 (4.29–5.34) | 5.00 ± 2.40 (0.70–8.80) | 0.04 | 0.808 * |
Paraspinal right PPT (kg/cm2) | 3.72 ± 1.35 (3.31–4.13) | 3.80 ± 2.20 (1.40–6.33) | 5.53 ± 1.84 (4.98–6.08) | 5.67 ± 2.65 (1.90–10.00) | 1.12 | <0.001 * |
Paraspinal left PPT (kg/cm2) | 3.70 ± 1.29 (3.31–4.09) | 3.67 ± 1.84 (1.30–6.80) | 5.48 ± 2.00 (4.87–6.08) | 5.47 ± 2.74 (1.50–9.93) | 1.05 | <0.001† |
RMDQ (scores) | 5.06 ± 3.15 (4.11–6.01) | 4.00 ± 3.50 (1.00–12.00) | 3.51 ± 2.77 (2.67–3.34) | 3.00 ± 2.50 (0.00–11.00) | 0.52 | 0.009† |
SF-12 Physical health (optimal normalized values) | 62.55 ± 18.06 (57.12–67.98) | 64.00 ± 25.50 (0.00–86.00) | 70.80 ± 14.12 (66.55–75.04) | 71.00 ± 18.50 (36.00–93.00) | 0.50 | 0.023† |
SF-12 Mental health (optimal normalized values) | 64.20 ± 15.57 (59.52–68.87) | 67.00 ± 19.00 (29.00–95.00) | 67.86 ± 12.02 (64.25–71.47) | 67.00 ± 14.00 (38.00–90.00) | 0.26 | 0.280 † |
SF-12 Total score (optimal normalized values) | 63.48 ± 15.31 (58.88–68.09) | 66.00 ± 20.00 (17.00–91.00) | 69.02 ± 9.71 (66.10–71.94) | 71.00 ± 12.50 (43.00–89.00) | 0.43 | 0.064 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Hernández, N.; Rodríguez-Sanz, D.; Chicharro, J.L.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Vicente-Campos, D.; Marugán-Rubio, D.; Gutiérrez-Torre, S.E.; Calvo-Lobo, C. A Secondary Analysis of Gender Respiratory Features for Ultrasonography Bilateral Diaphragm Thickness, Respiratory Pressures, and Pulmonary Function in Low Back Pain. Tomography 2024, 10, 880-893. https://doi.org/10.3390/tomography10060067
Molina-Hernández N, Rodríguez-Sanz D, Chicharro JL, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Vicente-Campos D, Marugán-Rubio D, Gutiérrez-Torre SE, Calvo-Lobo C. A Secondary Analysis of Gender Respiratory Features for Ultrasonography Bilateral Diaphragm Thickness, Respiratory Pressures, and Pulmonary Function in Low Back Pain. Tomography. 2024; 10(6):880-893. https://doi.org/10.3390/tomography10060067
Chicago/Turabian StyleMolina-Hernández, Nerea, David Rodríguez-Sanz, José López Chicharro, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, Davinia Vicente-Campos, Daniel Marugán-Rubio, Samuel Eloy Gutiérrez-Torre, and César Calvo-Lobo. 2024. "A Secondary Analysis of Gender Respiratory Features for Ultrasonography Bilateral Diaphragm Thickness, Respiratory Pressures, and Pulmonary Function in Low Back Pain" Tomography 10, no. 6: 880-893. https://doi.org/10.3390/tomography10060067
APA StyleMolina-Hernández, N., Rodríguez-Sanz, D., Chicharro, J. L., Becerro-de-Bengoa-Vallejo, R., Losa-Iglesias, M. E., Vicente-Campos, D., Marugán-Rubio, D., Gutiérrez-Torre, S. E., & Calvo-Lobo, C. (2024). A Secondary Analysis of Gender Respiratory Features for Ultrasonography Bilateral Diaphragm Thickness, Respiratory Pressures, and Pulmonary Function in Low Back Pain. Tomography, 10(6), 880-893. https://doi.org/10.3390/tomography10060067