Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size Calculation
2.4. Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curtis, B.R.; Huang, B.K.; Pathria, M.N.; Resnick, D.L.; Smitaman, E. Pes Anserinus: Anatomy and Pathology of Native and Harvested Tendons. Am. J. Roentgenol. 2019, 213, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.H. A unique case of an accessory sartorius muscle. Surg. Radiol. Anat. 2019, 41, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Kendir, S.; Torun, B.İ.; Akkaya, T.; Comert, A.; Tuccar, E.; Tekdemir, I. Re-defining the anatomical structures for blocking the nerves in adductor canal and sciatic nerve through the same injection site: An anatomical study. Surg. Radiol. Anat. 2018, 40, 1267–1274. [Google Scholar] [CrossRef]
- Wong, W.Y.; Bjørn, S.; Strid, J.M.; Børglum, J.; Bendtsen, T.F. Defining the Location of the Adductor Canal Using Ultrasound. Reg. Anesth. Pain Med. 2017, 42, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiayagarajan, M.K.; Kumar, S.V.; Venkatesh, S. An Exact Localization of Adductor Canal and Its Clinical Significance: A Cadaveric Study. Anesth. Essays Res. 2019, 13, 284–286. [Google Scholar]
- Donnelly, J.M. (Ed.) Travell, Simons & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual, 3rd ed.; Wolters Kluwer: Philadelphia, PA, USA, 2019. [Google Scholar]
- Samani, M.; Ghaffarinejad, F.; Abolahrari-Shirazi, S.; Khodadadi, T.; Roshan, F. Prevalence and sensitivity of trigger points in lumbo-pelvic-hip muscles in patients with patellofemoral pain syndrome. J. Bodyw. Mov. Ther. 2020, 24, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Kordi-Yoosefinejad, A.; Samani, M.; Jabarifard, F.; Setooni, M.; Mirsalari, R.; Kaviani, F.; Shooshtari, S.M.J. Comparison of the prevalence of myofascial trigger points of muscles acting on knee between patients with moderate degree of knee osteoarthritis and healthy matched people. J. Bodyw. Mov. Ther. 2021, 25, 113–118. [Google Scholar] [CrossRef]
- Khan, I.; Ahmad, A.; Ahmed, A.; Sadiq, S.; Asim, H.M. Effects of dry needling in lower extremity myofascial trigger points. J. Pak. Med. Assoc. 2021, 71, 2596–2603. [Google Scholar] [CrossRef]
- Dommerholt, J.; Finnegan, M.; Hooks, T.; Chou, L.W. A critical overview of the current myofascial pain literature—October 2017. J. Bodyw. Mov. Ther. 2017, 21, 902–913. [Google Scholar] [CrossRef]
- Cox, J.; Varatharajan, S.; Côté, P. Optima Collaboration. Effectiveness of Acupuncture Therapies to Manage Musculoskeletal Disorders of the Extremities: A Systematic Review. J. Orthop. Sports Phys. Ther. 2016, 46, 409–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, K.; Hirota, S.; Katsumi, Y.; Ochi, H.; Kitakoji, H. Trigger point acupuncture for treatment of knee osteoarthritis—A preliminary RCT for a pragmatic trial. Acupunct. Med. 2008, 26, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanz, J.; Pérez-Bellmunt, A.; López-de-Celis, C.; Hidalgo-García, C.; Koppenhaver, S.L.; Canet-Vintró, M.; Fernández-De-Las-Peñas, C. Accuracy and safety of dry needling placement in the popliteus muscle: A cadaveric study. Int. J. Clin. Pract. 2021, 75, e14669. [Google Scholar] [CrossRef] [PubMed]
- Ball, A.M.; Finnegan, M.; Koppenhaver, S.; Freres, W.; Dommerholt, J.; Del Moral, O.M.; Bron, C.; Moore, R.; Ball, E.E.; Gaffney, E.E. The relative risk to the femoral nerve as a function of patient positioning: Potential implications for trigger point dry needling of the iliacus muscle. J. Man. Manip. Ther. 2019, 27, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Boyce, D.; Wempe, H.; Campbell, C.; Fuehne, S.; Zylstra, E.; Smith, G.; Wingard, C.; Jones, R. Adverse events associated with therapeutic dry needling. Int. J. Sports Phys. Ther. 2020, 15, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.; McEvoy, J.; Dommerholt, J.; Doody, C. Adverse events following trigger point dry needling: A prospective survey of chartered physiotherapists. J. Man Manip. Ther. 2014, 22, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Cushman, D.; Henrie, M.; Vernon Scholl, L.; Ludlow, M.; Teramoto, M. Ultrasound verification of safe needle examination of the rhomboid major muscle. Muscle Nerve 2018, 57, 61–64. [Google Scholar] [CrossRef]
- Halle, J.S.; Halle, R.J. Pertinent dry needling considerations for minimizing adverse effects—Part two. Int. J. Sports Phys. Ther. 2016, 11, 810–819. [Google Scholar]
- Valera-Calero, J.A.; Laguna-Rastrojo, L.; De-Jesús-Franco, F.; Cimadevilla-Fernández-Pola, E.; Cleland, J.A.; Fernández-De-Las-Peñas, C.; Arias-Buría, J.L. Prediction Model of Soleus Muscle Depth Based on Anthropometric Features: Potential Applications for Dry Needling. Diagnostics 2020, 10, 284. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [Green Version]
- Beneciuk, J.M.; Bishop, M.D.; George, S.Z. Clinical prediction rules for physical therapy interventions: A systematic review. Phys. Ther. 2009, 89, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Travell, J.G.; Simons, D.G. Myofascial Pain and Dysfunction: The Trigger Point Manual; Lippincott Williams & Wilkins: London, UK, 1983; Volume 2. [Google Scholar]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Valera-Calero, J.A.; Cendra-Martel, E.; Fernández-Rodríguez, T.; Fernández-de-Las-Peñas, C.; Gallego-Sendarrubias, G.M.; Guodemar-Pérez, J. Prediction model of rhomboid major and pleura depth based on anthropometric features to decrease the risk of pneumothorax during dry needling. Int. J. Clin. Pract. 2021, 75, e14176. [Google Scholar] [CrossRef] [PubMed]
- Dor, A.; Kalichman, L. A myofascial component of pain in knee osteoarthritis. J. Bodyw. Mov. Ther. 2017, 21, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque-García, A.; Rodrigues-de-Souza, D.P.; Fernández-de-las-Peñas, C.; Alburquerque-Sendín, F. Association between muscle trigger points, ongoing pain, function, and sleep quality in elderly women with bilateral painful knee osteoarthritis. J. Manip. Physiol. Ther. 2015, 38, 262–268. [Google Scholar] [CrossRef]
Variables | Sample (n = 84) | Males (n = 49) | Females (n = 35) |
---|---|---|---|
Age (years) † | 24.1 ± 8.2 | 25.9 ± 9.6 | 21.6 ± 4.8 |
Height (m) * | 1.73 ± 0.09 | 1.78 ± 0.07 | 1.65 ± 0.06 |
Weight (kg) * | 71.2 ± 14.5 | 77.6 ± 13.5 | 62.2 ± 10.6 |
BMI (kg/m2) † | 23.6 ± 3.6 | 24.3 ± 3.6 | 22.5 ± 3.3 |
Variables | Gender | Leg Side | ||||
---|---|---|---|---|---|---|
Males (n = 49) | Females (n = 35) | Difference | Left (n = 84) | Right (n = 84) | Difference | |
Thigh Length (cm) | 57.6 ± 3.4 | 54.3 ± 3.1 | 3.2 (1.8; 4.7) p < 0.001 | 56.1 ± 3.6 | 56.2 ± 3.6 | 0.9 (−1.2; 1.0) p = 0.87 |
Thigh Girth (cm) | ||||||
Proximal Third | 60.1 ± 6.7 | 58.4 ± 7.6 | 1.7 (−1.4; 4.9) p = 0.27 | 59.3 ± 6.6 | 59.4 ± 7.1 | 0.1 (−2.1; 2.1) p = 0.98 |
Mid-Third | 54.9 ± 6.6 | 52.6 ± 7.9 | 2.3 (−0.9; 5.5) p = 0.15 | 53.8 ± 7.1 | 54.0 ± 7.2 | 0.2 (−2.3; 2.0) p = 0.88 |
Sartorius Depth (mm) | ||||||
Proximal Third | 26.9 ± 7.3 | 31.6 ± 6.2 | 4.6 (1.6; 7.6) p = 0.003 | 28.9 ± 6.7 | 28.9 ± 7.2 | 0.0 (−2.1; 2.1) p = 0.98 |
Mid-Third | 30.5 ± 7.1 | 34.8 ± 5.6 | 4.3 (1.4; 7.2) p = 0.004 | 32.0 ± 6.8 | 32.3 ± 6.8 | 0.3 (−1.7; 2.4) p = 0.73 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Thigh Length | ||||||||||
2. Proximal-Third Girth | 0.183 * | |||||||||
3. Mid-Third Girth | 0.339 ** | 0.430 ** | ||||||||
4. Gender | −0.444 ** | n.s. | n.s. | |||||||
5. Age | n.s. | n.s. | n.s. | −0.257 ** | ||||||
6. Weight | 0.840 ** | 0.199 ** | 0.253 ** | −0.656 ** | n.s. | |||||
7. Height | 0.603 ** | 0.614 ** | 0.705 ** | −0.527 ** | −0.208 ** | 0.660 ** | ||||
8. BMI | 0.209 ** | 0.656 ** | 0.757 ** | −0.249 ** | 0.261 ** | 0.173 * | 0.848 ** | |||
9. Side | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||
10. Proximal-Third Sartorius Depth | n.s. | 0.520 ** | 0.382 ** | 0.361 ** | n.s. | n.s. | 0.305 ** | 0.470 ** | n.s. | |
11. Mid-Third Sartorius Depth | n.s. | 0.505 ** | 0.293 ** | 0.316 ** | n.s. | n.s. | 0.284 ** | 0.422 ** | n.s. | 0.771 ** |
Predictor Outcome | B | SE B | 95% CI | β | t | p | |
---|---|---|---|---|---|---|---|
Proximal-Third | Step 1 | ||||||
Gender | 0.508 | 0.102 | (0.306; 0.709) | 0.361 | 4.972 | <0.001 | |
Step 2 | |||||||
Gender | 0.581 | 0.083 | (0.418; 0.744) | 0.413 | 7.038 | <0.001 | |
Proximal-Third Girth | 0.057 | 0.006 | (0.045; 0.068) | 0.559 | 9.519 | <0.001 | |
Step 3 | |||||||
Gender | 0.684 | 0.079 | (0.528; 0.841) | 0.487 | 8.643 | <0.001 | |
Proximal-Third Girth | 0.032 | 0.007 | (0.017; 0.046) | 0.311 | 4.310 | <0.001 | |
BMI | 0.075 | 0.014 | (0.046; 0.103) | 0.387 | 5.211 | <0.001 | |
Mid-Third | Step 1 | ||||||
Gender | 0.438 | 0.103 | (0.236; 0.641) | 0.316 | 4.275 | <0.001 | |
Step 2 | |||||||
Gender | 0.508 | 0.085 | (0.340; 0.676) | 0.366 | 5.968 | <0.001 | |
Proximal-Third Girth | 0.054 | 0.006 | (0.042; 0.066) | 0.540 | 8.797 | <0.001 | |
Step 3 | |||||||
Gender | 0.587 | 0.085 | (0.420; 0.755) | 0.423 | 6.929 | <0.001 | |
Proximal-Third Girth | 0.035 | 0.008 | (0.019; 050) | 0.349 | 4.453 | <0.001 | |
BMI | 0.057 | 0.015 | (0.027; 087) | 0.299 | 3.711 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valera-Calero, J.A.; Varol, U.; Plaza-Manzano, G.; Fernández-de-las-Peñas, C.; Agudo-Aguado, A. Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture. Tomography 2022, 8, 2498-2507. https://doi.org/10.3390/tomography8050208
Valera-Calero JA, Varol U, Plaza-Manzano G, Fernández-de-las-Peñas C, Agudo-Aguado A. Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture. Tomography. 2022; 8(5):2498-2507. https://doi.org/10.3390/tomography8050208
Chicago/Turabian StyleValera-Calero, Juan Antonio, Umut Varol, Gustavo Plaza-Manzano, César Fernández-de-las-Peñas, and Adolfo Agudo-Aguado. 2022. "Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture" Tomography 8, no. 5: 2498-2507. https://doi.org/10.3390/tomography8050208
APA StyleValera-Calero, J. A., Varol, U., Plaza-Manzano, G., Fernández-de-las-Peñas, C., & Agudo-Aguado, A. (2022). Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture. Tomography, 8(5), 2498-2507. https://doi.org/10.3390/tomography8050208