A Critical Exploration of the Total Flavonoid Content Assay for Honey
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Honey Samples and Organic Honey Extracts
- (1)
- 20% (w/v) aqueous solutions.
- (2)
- 20% (w/v) aqueous solutions spiked with quercetin to serve as positive controls. For this, a 0.05% (w/v) quercetin solution in methanol was prepared. Each honey sample (0.4 g) was spiked with 140 µL of the quercetin solution (70 µg of quercetin) before being dissolved in and made up to 2 mL of deionised water.
- (3)
- Honey extracts were also prepared by dissolving 5 g of each honey in 10 mL of deionised water, followed by three extractions with 5 mL of acetonitrile and dichloromethane (1:1, v/v). The combined organic extracts were dried with anhydrous MgSO4, filtered, and the solvent evaporated under a nitrogen stream before being reconstituted in 2 mL of water to yield aqueous honey extracts. The same extraction method was also used for the artificial honey spiked with 70 µg quercetin.
3.3. Quercetin Calibration Curve
3.4. Colorimetric Assay
4. Results
Honey | Absorbance at 400 nm | |
---|---|---|
Blanking with Water–Methanol Solution | Blanking with Aqueous Honey–Methanol Solution | |
Red Clover Honey | 0.378 | 0.067 |
Sainfoin Clover Honey | 0.365 | 0.061 |
Manuka Honey | 0.747 | 0.174 |
Jarrah Honey | 0.751 | 0.176 |
Marri Honey | 0.403 | 0.071 |
Peppermint Honey | 0.795 | 0.161 |
Blackbutt Honey | 0.608 | 0.093 |
Melaleuca Honey | 0.419 | 0.091 |
Watermelon Honey | 0.777 | 0.172 |
Bush Honey | 0.778 | 0.177 |
Artificial Honey | 0 | 0 |
Honey | Absorbance at 400 nm | |
---|---|---|
Blanking with Quercetin-Spiked Aqueous Honey–Methanol Solution | Blanking with Water–Methanol Solution | |
Red Clover Honey | 0.41 | 0.988 |
Sainfoin Clover Honey | 0.404 | 0.969 |
Manuka Honey | 0.517 | 1.464 |
Jarrah Honey | 0.517 | 1.468 |
Marri Honey | 0.414 | 1.017 |
Peppermint Honey | 0.504 | 1.499 |
Blackbutt Honey | 0.436 | 1.244 |
Melaleuca Honey | 0.434 | 1.053 |
Watermelon Honey | 0.515 | 1.492 |
Bush Honey | 0.520 | 1.497 |
Artificial Honey | 0.343 | 0.652 |
Flavonoid-Spiked Honey | Flavonoid Content (µg QE/g of Honey) (Blanking with Quercetin-Spiked Aqueous Honey–Methanol Solution) | Calculated Natural Flavonoid Content (µg QE/g of Honey) |
---|---|---|
Red Clover | 81.38 | 12.20 |
Sainfoin Clover | 80.28 | 11.10 |
Manuka | 100.99 | 31.81 |
Jarrah | 100.99 | 31.81 |
Marri | 82.12 | 12.94 |
Peppermint | 98.61 | 29.43 |
Blackbutt | 86.15 | 16.97 |
Melaleuca | 85.78 | 16.60 |
Watermelon | 100.62 | 31.44 |
Bush | 101.54 | 32.36 |
Artificial honey | 69.18 | Not applicable |
Honey Extract | Flavonoid Content (µg QE/g of Extracted Honey) (Blanking with Aqueous Honey Extract–Methanol Solution) |
---|---|
Red Clover | 12.00 |
Sainfoin Clover | 9.40 |
Manuka | 31.23 |
Jarrah | 31.37 |
Marri | 15.80 |
Peppermint | 31.94 |
Blackbutt | 20.01 |
Melaleuca | 18.36 |
Watermelon | 31.19 |
Bush | 32.35 |
Quercetin-spiked artificial honey | 68.52 |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saranraj, P.; Sivasakthi, S.; Feliciano, G. Pharmacology of Honey: A review. Adv. Biol. Res. 2016, 10, 271–289. [Google Scholar]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Honey-Based Medicinal Formulations: A Critical Review. Appl. Sci. 2021, 11, 5159. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Sultana, S.; Foster, K.; Lim, L.Y.; Hammer, K.; Locher, C. A Review of the Phytochemistry and Bioactivity of Clover Honeys (Trifolium spp.). Foods 2022, 11, 1901. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022, 11, 975. [Google Scholar] [CrossRef]
- Sultana, S.; Foster, K.; Bates, T.; Hossain, M.L.; Lim, L.Y.; Hammer, K.; Locher, C. Determination of Physicochemical Characteristics, Phytochemical Profile and Antioxidant Activity of Various Clover Honeys. Chem. Biodivers. 2024, 21, e202301880. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.J.; van den Worm, E.; van Ufford, H.C.; Halkes, S.B.; Hoekstra, M.J.; Beukelman, C.J. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J. Wound Care 2008, 17, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, E.; Simonetti, A.; Garrisi, N.; Intaglietta, I.; Perna, A. Antioxidant properties and phenolic content of sulla (Hedysarum spp.) honeys from Southern Italy. Int. J. Food Sci. Technol. 2014, 49, 2260–2268. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Küçük, M.; Kolaylı, S.; Karaoğlu, Ş.; Ulusoy, E.; Baltacı, C.; Candan, F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef]
- Ben Amor, S.; Mekious, S.; Allal Benfekih, L.; Abdellattif, M.H.; Boussebaa, W.; Almalki, F.A.; Ben Hadda, T.; Kawsar, S.M.A. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. Life 2022, 12, 927. [Google Scholar] [CrossRef]
- Capela, N.; Sarmento, A.; Simões, S.; Lopes, S.; Castro, S.; Alves da Silva, A.; Alves, J.; Dupont, Y.L.; de Graaf, D.C.; Sousa, J.P. Exploring the External Environmental Drivers of Honey Bee Colony Development. Diversity 2023, 15, 1188. [Google Scholar] [CrossRef]
- Donkersley, P.; Rhodes, G.; Pickup, R.W.; Jones, K.C.; Power, E.F.; Wright, G.A.; Kenneth Wilson, K. Nutritional composition of honeybee food stores varies with floral composition. Oecologia 2017, 185, 749–761. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, P.; Gadhwal, M.; Joshi, U.; Shetgiri, P. Modeling of COX-2 inhibitory activity of flavonoids. Int. J. Pharm. Sci. 2011, 3, 33–40. [Google Scholar]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Hossain, M.L.; Sostaric, T.; Lim, L.Y.; Foster, K.J.; Locher, C. Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent. Molecules 2024, 29, 5161. [Google Scholar] [CrossRef]
- Xue, S.; Cheng, J.; Ma, W.; Chen, K.L.; Liu, Y.; Li, J. Comparison of Lipoxygenase, Cyclooxygenase, Xanthine Oxidase Inhibitory Effects and Cytotoxic Activities of Selected Flavonoids. Earth Energy Sci. 2017, 55927488. [Google Scholar] [CrossRef]
- Aoki, T.; Akashi, T.; Ayabe, S. Flavonoids of Leguminous Plants: Structure, Biological Activity, and Biosynthesis. J. Plant Res. 2000, 113, 475–488. [Google Scholar] [CrossRef]
- Christ, B.; Mueller, K.H. On the serial determination of the content of flavonol derivatives in drugs. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1960, 293/65, 1033–1042. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Food Sci. Technol. 2021, 150, 111932. [Google Scholar] [CrossRef]
- Mwangi, M.W.; Wanjau, T.W.; Omwenga, E.O. Stingless bee honey: Nutritional, physicochemical, phytochemical and antibacterial validation properties against wound bacterial isolates. PLoS ONE 2024, 19, e0301201. [Google Scholar] [CrossRef]
- Martinović, L.S.; Birkic, T.N.; Pavlešić, T.; Planinić, A.; Gobin, I.; Ostojić, D.M.; Pedisić, S. Chemical Characterization of Rare Unifloral Honeys of Ailanthus (Ailanthus altissima), Fennel (Foenicum vulgare), and Raspberry (Rubus idaeus) and their Antimicrobial and Antioxidant Activity. Agric. Res. 2024. [Google Scholar] [CrossRef]
- Pavlešić, T.; Poljak, S.; Ostojić, D.M.; Lučin, I.; Reynolds, C.A.; Kalafatovic, D.; Martinović, L.S. Mint (Mentha spp.) Honey: Analysis of the Phenolic Profile and Antioxidant Activity. Food Technol. Biotechnol. 2022, 60, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, A.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Romero, C.A.; Sosa, N.; Vallejos, O.A.; Navarro, A.S.; Yamul, D.K.; Baldi Coronel, B.M. Physicochemical, microbiological, and sensory properties of stingless bee honey from Argentina. J. Apic. Res. 2024, 1–12. [Google Scholar] [CrossRef]
- Albu, A.; Simeanu, C.; Pop, I.M.; Pui, A.; Tarcău, D.; Cucu-Man, S.M. Selected Characteristics of Multifloral Honeys from North-Eastern Romania. Agriculture 2024, 14, 26. [Google Scholar] [CrossRef]
- Lima, A.C.O.; Dias, E.R.; Reis, I.M.A.; Carneiro, K.O.; Pinheiro, A.M.; Nascimento, A.S.; Silva, S.M.P.; Carvalho, C.A.L.; Mendonça, A.V.R.; Vieira, I.J.C.; et al. Ferulic acid as major antioxidant phenolic compound of the Tetragonisca angustula honey collected in Vera Cruz—Itaparica Island, Bahia, Brazil. Braz. J. Biol. 2024, 84, e253599. [Google Scholar] [CrossRef] [PubMed]
- Alcoléa, M.; Junior, M.B.S.; Oliveira, K.A.M.; Tussolini, L.; Leite, M.A.G.; Honorio-França, A.C.; França, E.L.; Pertuzatti, P.B. Bioactive compounds of honey from different regions of Brazil: The effect of simulated gastrointestinal digestion on antioxidant and antimicrobial properties. Food Funct. 2024, 15, 1310. [Google Scholar] [CrossRef] [PubMed]
- Tork, I.M.; Rashad, S.; Atwa, M.A.; Farag, S.A. Comparing the effects of gamma irradiation and thermal processing on unavoidable toxic substances in Egyptian honey. Egypt. J. Chem. 2023, 66, 37–44. [Google Scholar]
- Cheng, M.Z.S.Z.; Zawawi, N.; Ooi, D.J.; Chan, K.W.; Ismail, N.; Ishak, N.A.; Esa, N.M. In Vitro Investigation of Antioxidant and Antidiabetic Properties of Phenolic-Rich Extract from Stingless Bee Honey (Heterotrigona itama). Malays. J. Med. Health Sci. 2023, 19, 141–150. [Google Scholar]
- Wu, J.; Zhao, S.; Chen, X.; Jiu, Y.; Liu, J.; Gao, J.; Wang, S. Physicochemical properties, multi-elemental composition, and antioxidant activity of five unifloral honeys from Apis cerana cerana. Food Technol. Biotechnol. 2023, 32, 1821–1829. [Google Scholar] [CrossRef]
- Wongsa, K.; Meemongkolkiat, T.; Duangphakdee, O.; Prasongsuk, S.; Rattanawannee, A. Physicochemical Properties, Phenolic, Flavonoid Contents and Antioxidant Potential of Stingless Bee (Heterotrigona Itama) Honey from Thailand. Curr. Res. Nutr. Food Sci. 2023, 11, 246–257. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Guthami, F.M.A.; Ramadan, M.F.A.; Gethami, A.F.M.A.; Craig, A.M.; El-Seedi, H.R.; Rodríguez, I.; Serrano, S. The Bioactive Value of Tamarix gallica Honey from Different Geographical Origins. Insects 2023, 14, 319. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods 2023, 12, 1493. [Google Scholar] [CrossRef]
- Miłek, M.; Ciszkowicz, E.; Sidor, E.; Hęclik, J.; Lecka-Szlachta, K.; Dżugan, M. The Antioxidant, Antibacterial and Anti-Biofilm Properties of Rapeseed Creamed Honey Enriched with Selected Plant Superfoods. Antibiotics 2023, 12, 235. [Google Scholar] [CrossRef]
- Tesfaye, O. Evaluating the antioxidant properties of unifloral honey (Apis mellifera L.) from Ethiopia. Int. J. Food Sci. 2023, 2023, 7664957. [Google Scholar] [CrossRef]
- Ferreira, A.B.; Novaes, C.G.; de Jesus, H.O.; Borges, J.M.P.; Ramos, F.S.; Pereira, A.J.; de Oliveira, D.M.; Aguiar, R.M. Honey of Tetragonisca angustula from Southwestern Bahia: Influence of Seasonality on the Physicochemical Profile and Glioma Cell Inhibitory Effect. J. Braz. Chem. Soc. 2023, 34, 135–145. [Google Scholar] [CrossRef]
- Archilia, M.D.; Neto, A.A.L.; Marcucci, M.C.; Alonso, R.C.B.; de Camargo, T.C.; Camargo, R.C.; Sawaya, A.C.H.F. Characterization of Brazilian monofloral and polyfloral honey by UHPLC-MS and classic physical-chemical analyses. J. Apic. Res. 2023, 62, 578–589. [Google Scholar] [CrossRef]
- Pop, I.M.; Simeanu, D.; Cucu-Man, S.-M.; Pui, A.; Albu, A. Quality Profile of Several Monofloral Romanian Honeys. Agriculture 2023, 13, 75. [Google Scholar] [CrossRef]
- Da Silva, L.F.C.; Lemos, P.V.F.; de Souza Santos, T.; Tavares, P.P.L.G.; Nascimento, R.Q.; Almeida, L.M.R.; de Souza, C.O.; Druzian, J.I. Storage conditions significantly influence the stability of stingless bee (Melipona scutellaris) honey. J. Apic. Res. 2023, 62, 530–541. [Google Scholar] [CrossRef]
- Bouddine, T.; Laaroussi, H.; Bakour, M.; Guirrou, I.; Khallouki, F.; Mazouz, H.; Hajjaj, H.; Hajji, L. Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods 2022, 11, 3362. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, M.; Dumitrel, G.-A.; Bostan, R.; Matei, H.V.; Kartalska, Y.; Popa, M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics 2022, 11, 1552. [Google Scholar] [CrossRef]
- Wu, J.; Han, B.; Zhao, S.; Zhong, Y.; Han, W.; Gao, J.; Wang, S. Bioactive characterization of multifloral honeys from Apis cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Res. Int. 2022, 161, 111808. [Google Scholar] [CrossRef]
- Edo, G.I.; Onoharigho, F.O.; Akpoghelie, P.O.; Emakpor, O.L.; Ozgor, E.; Akhayere, E. Physicochemical, Phytochemical, Antioxidant, and Inhibition Properties of Key Enzymes Linked to Raw and Regular Honey. Chem. Afr. 2022, 5, 1351–1364. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, R.-M.; Simeanu, D.; Radu-Rusu, C.-G.; Pop, I.M. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture 2022, 12, 1378. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Al Guthami, F.M.; Ramadan, M.F.A.; Al Gethami, A.F.M.; Craig, A.M.; Serrano, S. Characterization of Sidr (Ziziphus spp.) Honey from Different Geographical Origins. Appl. Sci. 2022, 12, 9295. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Miłek, M.; Sidor, E.; Puchalski, C.; Dżugan, M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022, 27, 4859. [Google Scholar] [CrossRef]
- Yildiz, O.; Gurkan, H.; Sahingil, D.; Atiye Degirmenci, A.; Kemal, M.E.; Kolayli, S.; Hayaloglu, A.A. Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. Eur. Food Res. Technol. 2022, 248, 2145–2155. [Google Scholar] [CrossRef]
- Sakika, K.A.; Saiman, M.Z.; Zamakshshar, N.H.; Ahmed, I.A.; Nasharuddin, M.N.A.; Hashim, N.M. Analysis of Antioxidant Properties and Volatile Compounds of Honeys from Different Botanical and Geographical Origins. Sains Malays. 2022, 51, 1111–1121. [Google Scholar] [CrossRef]
- Osés, S.M.; Cantero, L.; Puertas, G.; Fernández-Muiño, M.A.; Sancho, M.T. Antioxidant, antimicrobial and anti-inflammatory activities of ling-heather honey powder obtained by different methods with several carriers. LWT—Food Sci. Technol. 2022, 159, 113235. [Google Scholar] [CrossRef]
- Czigle, S.; Filep, R.; Balažová, E.; Szentgyörgyi, H.; Balázs, V.L.; Kocsis, M.; Purger, D.; Papp, N.; Farkas, Á. Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants 2022, 11, 792. [Google Scholar] [CrossRef]
- Velásquez, P.; Giordano, A.; Valenzuela, L.M.; Montenegro, G. Combined antioxidant capacity of Chilean bee hive products using mixture design methodology. LWT—Food Sci. Technol. 2022, 155, 112982. [Google Scholar] [CrossRef]
- Lyoussi, B.; Bakour, M.; El-Haskoury, R.; Imtara, H.; Hano, C. Characterization of Various Honey Samples from Different Regions of Morocco Using Physicochemical Parameters, Minerals Content, Antioxidant Properties, and Honey-Specific Protein Pattern. J. Food Qual. 2022, 2022, 6045792. [Google Scholar] [CrossRef]
- Pena Júnior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; de Melo Junior, A.F.; Brandão, M.M.; de Oliveira, D.A.; de Souza, L.F.; Silva, J.C.; et al. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). PLoS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef] [PubMed]
- Yayinie, M.; Atlabachew, M.; Tesfaye, A.; Hilluf, W.; Reta, C.; Alemneh, T. Polyphenols, flavonoids, and antioxidant content of honey coupled with chemometric method: Geographical origin classification from Amhara region, Ethiopia. Int. J. Food Prop. 2022, 25, 76–92. [Google Scholar] [CrossRef]
- Abdullah, H.; Ibrahim, M.; Ahmed, I.A.; Ramli, N.; Mhd Jalil, A.M.; Fatihah, N.A.R. Optimisation of phenolic compounds and antioxidant capacity of Trigona honey and propolis using response surface methodology from fermented food products. Int. Food Res. J. 2021, 28, 1233–1244. [Google Scholar]
- Yalçın, G. Effects of Thermal Treatment, Ultrasonication, and Sunlight Exposure on Antioxidant Properties of Honey. Turk. J. Pharm. Sci. 2021, 18, 776–780. [Google Scholar] [CrossRef]
- Mat Ramlan, N.A.F.; Md Zin, A.S.; Safari, N.F.; Chan, K.W.; Zawawi, N. Application of Heating on the Antioxidant and Antibacterial Properties of Malaysian and Australian Stingless Bee Honey. Antibiotics 2021, 10, 1365. [Google Scholar] [CrossRef]
- Ganaie, T.A.; Masoodi, F.A.; Rather, S.A.; Wani, S.M. Physicochemical, antioxidant and FTIR-ATR spectroscopy evaluation of Kashmiri honeys as food quality traceability and Himalayan brand. J. Food Sci. Technol. 2021, 58, 4139–4148. [Google Scholar] [CrossRef] [PubMed]
- Seder, N.; Rayyan, W.A.; Dayyih, W.A.; Al-Natour, M.A.; Hilmi, A.B.M. Phytochemical Investigation, Comparison and Characterization Study of Malaysian Stingless Bee Honey versus Jordanian Honey by LC-MS/MS. Trop. J. Nat. Prod. Res. 2021, 5, 1597–1605. [Google Scholar]
- Issaad, F.Z.; Bouhedjar, K.; Ikhlef, A.; Lachlah, H.; Smain, D.H.; Boutaghane, K.; Bensouici, C. Multivariate analysis of physico-chemical, bioactive, microbial and spectral data characterisation of Algerian honey. Food Measure 2021, 15, 3634–3648. [Google Scholar] [CrossRef]
- Galhardo, D.; Garcia, R.C.; Schneider, C.R.; Braga, G.C.; Chambó, E.D.; de França, D.L.B.; Ströher, S.M. Physicochemical, bioactive properties and antioxidant of Apis mellifera L. honey from western Paraná, Southern Brazil. Food Sci. Tech. 2021, 41 (Suppl. 1), 247–253. [Google Scholar] [CrossRef]
- Ouradi, H.; Hanine, H.; Fauconnier, M.L.; Kenne, T.; Rizki, H.; Ennahli, S.; Hssaini, L. Determination of physico-biochemical proprieties and composition in volatile constituents by solid phase micro-extraction of honey samples from different botanical and geographical origins in Morocco. J. Apic. Res. 2021, 60, 84–98. [Google Scholar] [CrossRef]
- Bayram, N.E.; Kara, H.H.; Can, A.M.; Bozkurt, F.; Akman, P.K.; Vardar, S.U.; Çebi, N.; Yılmaz, M.T.; Sağdı, O.; Dertli, E. Characterization of physicochemical and antioxidant properties of Bayburt honey from the North-east part of Turkey. J. Apic. Res. 2021, 60, 46–56. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M.; Hamzah, M.H. Phytochemical content, antioxidant activity and mineral elements of honey produced by four different species of Malaysian stingless bees. Food Res. 2021, 5 (Suppl. 1), 39–46. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.G.; Al Guthami, F.M.; Al Gethami, A.F.M.; Fouad, E.A.; Abdou, A.M. Antibacterial activity and characterisation of some Egyptian honey of different floral origin. Bulg. J. Vet. Med. 2021, 24, 278–290. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Maouche, N.; Otmani, A.; Terrab, A.; Madani, K.; Ouchemoukh, S. Evaluation of Algerian’s Honey in Terms of Quality and Authenticity Based on the Melissopalynology and Physicochemical Analysis and Their Antioxidant Powers. Med. J. Nutr. Metab. 2021, 14, 305–324. [Google Scholar] [CrossRef]
- Hernández-Fuentes, A.D.; Chávez-Borges, D.; Cenobio-Galindo, A.J.; Zepeda-Velázquez, A.P.; Figueira, A.C.; Jiménez-Alvarado, R.; Campos-Montiel, R.G. Characterization of total phenol and flavonoid contents, colour, functional properties from honey samples with different floral origins. Int. J. Food Stud. 2021, 10, 346–358. [Google Scholar] [CrossRef]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chuah, W.C.; Chye, F.Y. Effect of drying on physicochemical and functional properties of stingless bee honey. J. Food Process. Preserv. 2021, 45, e15328. [Google Scholar] [CrossRef]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef]
- Liu, H.; Song, Y.; Zhang, X. Determination of Total Flavonoids in Leek by AlCl3 Colorimetric Assay. Chem. Eng. Trans. 2017, 59, 775–780. [Google Scholar]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Design, Preparation, and Physicochemical Characterisation of Alginate-Based Honey-Loaded Topical Formulations. Pharmaceutics 2023, 15, 1483. [Google Scholar] [CrossRef]
Nectar or Honeydew Floral Source | Bee Species | Blank | Wavelength (nm) | Standard | Reported Range of Results * | Reference |
---|---|---|---|---|---|---|
Multifloral | Stingless bee | not specified | 420 | Rutin | 23.7 mg RE/100 g | [26] |
Ailanthus (Ailanthus altissima), fennel (Foeniculum sp.), and raspberry (Rubus idaeus) | Honeybee | honey and methanol | 415 | Quercetin | 4.51 to 9.57 mg QE/100 g | [27] |
mint (Mentha spp.) | Honeybee | honey and methanol | 415 | Quercetin | 6.70 to 12.50 mg QE/100 g | [28] |
Juazeiro (Ziziphus joazeiro Mart.), malícia (Mimosa quadrivalvis L.), jurema branca (Mimosa arenosa Willd Poir), and velame branco (Croton heliotropiifolius Kunth) | Meliponini | honey and methanol | 415 | Quercetin | 1.90 to 4.40 mg QE/100 g | [29] |
Multifloral, combretaceae, vitellaria (Vitellaria paradoxa), acacia (Acacia spp.), and lannea (Lannea spp.) | Honeybee | honey and methanol | 415 | Quercetin | 0.17 to 8.35 mg QE/100 g | [30] |
Multifloral | Stingless bee | not specified | 415 | Quercetin | 2.31 to 2.77 mg QE/100 g | [31] |
Multifloral | Honeybee | not specified | 437 | Quercetin | 1.64 to 3.01 mg QE/100 g | [32] |
Multifloral | Stingless bee | not specified | 437 | Quercetin | 0.05 to 0.07 mg QE/g | [33] |
Eucalyptus (Eucalyptus sp.), orange blossom (Citrus sinensis), acacia (Acacia sp.), sucupira (Pterodon emarginatus), and multifloral | Honeybee | not specified | 415 | Quercetin | 1.14 to 13.52 mg QE/100 g | [34] |
Multifloral | Honeybee | not specified | 415 | Quercetin | 8.06 mg QE/100 g | [35] |
Multifloral | Stingless bee | not specified | 435 | Quercetin | 242.57 µg QE/g | [36] |
Coconut (Cocos nucifera L.), burmese rosewood (Dalbergia benthami Prain), red silk cotton tree (Bombax ceiba L.), chinese chestnut (Castanea mollissima Bl.), and mangrove (Rhizophoraceae) | Apis cerana | not specified | 405 | Rutin | 4.02 to 29.22 mg RE/100 g | [37] |
Multifloral | Honeybee | honey and methanol | 405 | Quercetin | 17.06 to 58.47 mg QE/g | [38] |
Tamarisk (Tamarix gallica) | Honeybee | not specified | 415 | Rutin | 63.60 to 83.10 mg RE/100 g | [39] |
Rubus (Rubus spp.), chestnut (Castanea sativa), broom (Cytisus spp.), heather (Erica spp.), eucalyptus (Eucalyptus spp.), clover (Trifolium spp.), oak (Quercus spp.), and viper’s bugloss (Echium spp.) | Honeybee | not specified | 425 | Quercetin | 1.28 to 16.70 mg QE/100 g | [40] |
Rapeseed (Brassica napus) | Honeybee | methanol | 415 | Quercetin | 9.16 mg QE/100 g | [41] |
Arabica coffee (Coffea arabica), macrostachys coffee (Coffea macrostachyus), niger seed (Guizotia abyssinica), ironweed (Vernonia spp.), eucalyptus (Eucalyptus spp.), and umbrella tree (Schefflera abyssinica) | Honeybee | not specified | 415 | Quercetin | 18.60 to 65.00 mg QE/100 g | [42] |
Multifloral | Stingless bee | methanol | 415 | Quercetin | 0.20 mg QE/ kg | [43] |
Orange (Citrus sinensis), eucalyptus (Eucalyptus spp.), coffee (Coffea Arabica), cipo uva (Cissus rhombifolia), quince (Cydonia oblonga), monjoleiro (Acacia polyphylla), mangrove, and honeydew | Honeybee | not specified | 425 | Quercetin | 0.04 to 0.63 mg QE/100 g | [44] |
Multifloral | Honeybee | not specified | 430 | Quercetin | 0.46 to 5.27 mg QE/100 g | [45] |
Multifloral | Stingless bee | not specified | 425 | Quercetin | 32.00 to 91.16 mg QE/100 g | [46] |
Buckthorn (Rhamnaceae), wild mustard (Sinapis arvensis), pea family (Fabaceae), toothpickweed (Ammi visnaga), carrot family (Apiaceae), mint family (Lamiaceae), rosemary (Rosmarinus officinalis), thyme (Thymus vulgaris), and multifloral | Honeybee | not specified | 425 | Quercetin | 5.52 to 20.69 mg QE/100 g | [47] |
Multifloral | Honeybee | not specified | 415 | Quercetin | 1.92 to 7.39 mg QE/100 g | [48] |
Multifloral | Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis | not specified | 415 | Quercetin | 3.39 to 11.67 mg QE/100 g | [49] |
Mint (Mentha spp.) | Honeybee | not specified | 415 | Quercetin | 6.70 to 11.50 mg QE/100 g | [28] |
Multifloral | Honeybee | not specified | 420 | Rutin | 77.97 to 92.87 µg RE/g | [50] |
Acacia (Robinia pseudoacacia), linden (Tilia spp.), rapeseed (Brassica napus), sunflower (Helianthus annuus), and mint (Mentha spp.). | Honeybee | not specified | 430 | Quercetin | 0.44 to 3.97 mg QE/100 g | [51] |
Sidr (Ziziphus spp.) | Honeybee | not specified | 415 | Rutin | 45.1 to 83.1 mg RE/100 g | [52] |
Rapeseed (Brassica napus) | Honeybee | not specified | 415 | Quercetin | 77.86 to 425.85 mg QE/kg | [53] |
Rhododendron (Rhododendron ponticum L.), chestnut (Castanea sativa Mill.) lavandula, (Lavandula Stoechas L.), astragalus (Astragalus microcephalus Willd.), chaste tree (Vitex agnus castus), polyfloraland honeydew honeys oak (Quercus robur L.), and pine (Pinus L.) | Honeybee | not specified | 415 | Quercetin | 0.67 to 6.50 mg QE/100 g | [54] |
Sidr (Ziziphus lotus) and multifloral | Honeybee | not specified | 415 | Quercetin | 20.44 to 338.56 mg QE/100 g | [13] |
Tualang (Koompassia excelsa), acacia (Acacia mangium), pine (Pinus spp.), kelulut, and sumar (Vachellia tortilis) | Honeybee, Stingless Bee, and Apis cerana | not specified | 430 | Quercetin | 0.03 to 0.11 µg QE/g | [55] |
Ling-heather (Calluna vulgaris (L.) Hull) | Honeybee | not specified | 415 | Quercetin | 0.71 to 1.69 mg QE/100 g | [56] |
Giant goldenrod (Solidago gigantea), canada goldenrod (Solidago canadensis) | Honeybee | not specified | 425 | Hyperoside | 0.53 to 2.21% hyperoside | [57] |
Ulmo (Eucryphia cordifolia) | Honeybee | not specified | 415 | Quercetin | 6.09 to 62.44 µmol QE/L | [58] |
Azir (Salvia rosmarinus), bouchnikha (Ammi visnaga), daghmouss (Euphorbia resinifera), sadra (Ziziphus lotus), latchin (Citrus sinensis), multifloral blends, kharob (Ceratonia siliqua), khzama (Lavandula angustifolia), hamd (Citrus limon), chouk (Silybum marianum), kebbar (Capparis spinosa), bakhenou (Arbutus unedo), zandaz (Bupleurum spinosum), z’îtra (Thymus vulgaris), and zaatar (Origanum vulgare) | Honeybee | not specified | 420 | Quercetin | 0.70 to 23.30 mg QE/100 g | [59] |
Brazilian monoflorals and manuka | Honeybee | not specified | 417 | Rutin, Quercetin | 0.92 to 7.58 mg RE/100 g, 2.24 to 20.43 mg QE/100 g | [60] |
Multifloral | Honeybee | honey and methanol | 417 | Catechin, Quercetin | 3.20 to 7.40 mg CE/100 g, 1.67 to 5.08 mg QE/100 g | [61] |
Multifloral | Stingless bee | honey and water | 417 | Quercetin | 1.80 to 2.30 mg QE/g | [62] |
Multifloral | Honeybee | not specified | 417 | Quercetin | 5.62 to 6.79 mg QE/g | [63] |
Multifloral | Stingless bee | ethanol | 417 | Quercetin | 28 to 300 µg QE/g | [64] |
Saharian sidr (Ziziphus spina-christi) | Honeybee | not specified | 415 | Quercetin | 2.13 mg QE/100 g | [65] |
Black locust (Robinia pseudoacacia), plectranthus (Plectranthus rugosus), and multifloral | Honeybee | not specified | 415 | Quercetin | 1.48 to 4.98 mg QE/100 g | [65] |
Multifloral, citrus (Citrus spp.), knapweed (Centaurea hyalolepis) | honeybee and stingless bee | not specified | 425 | Rutin | 70.62 to 237.25 mg RE/kg | [66] |
Arbutus (Arbutus unedo), multifloral, dryas (Dryas octopetala), asphodelus (Asphodelus albus), eucalyptus (Eucalyptus spp.), ziziphus (Ziziphus jujuba), euphorbia (Euphorbia spp.), thymus (Thymus vulgaris), citrus (Citrus spp.), and quercus (Quercus spp. | Honeybee | not specified | 415 | Quercetin | 15.11 to 38.23 mg QE/100 g | [67] |
Multifloral | honey and methanol | 415 | Quercetin | 7.97 to 44.99 mg QE/100 g | [68] | |
Caralluma (Caralluma europaea), eucalyptus (Eucalyptus spp.), thyme (Thymus spp.), orange blossom (Citrus x sinensis), carob (Ceratonia siliqua), jujube (Ziziphus lotus), spurge (Euphorbia spp.), and multifloral | Honeybee | not specified | 430 | Rutin | 10.43 to 58.28 mg RE/100 g | [69] |
Multifloral | Honeybee | not specified | 415 | Catechin | 26.74 to 101.53 mg CE/kg | [70] |
Multifloral | Stingless bee | not specified | 430 | Quercetin | 3.74 to 14.85 mg QE/100 g | [71] |
Sahrawy (desert plants), zater (Thymus vulgaris), flower (various flowers), bardakosh (Origanum majorana), black seed (Nigella sativa), aashab (wild herbs), and manuka (Leptospermum scoparium) | Honeybee | not specified | 415 | Rutin | 20.30 to 32.90 mg RE/100 g | [72] |
Multifloral | Honeybee | not specified | 415 | Quercetin | 8.90 to 80.02 mg QE/100 g | [73] |
Cactus (Cactaceae), citrus (Citrus spp.), gramineae (Poaceae), conifers (Pinophyta), walnut (Juglans spp.), and multifloral | Honeybee | not specified | 415 | Quercetin | 1.28 to 7.63 mg QE/100 g | [74] |
Multifloral | Honeybee | not specified | 415 | Quercetin | 1.90 to 6.40 mg QE/100 g | [75] |
Multifloral | Stingless bee | not specified | 415 | Quercetin | 261.6 to 273.0 mg QE/kg | [76] |
Honey | Botanical Origin |
---|---|
Red Clover Honey | Trifolium pratense |
Sainfoin Clover Honey | Onobrychis viciifolia |
Manuka Honey | Leptospermum scoparium |
Jarrah Honey | Eucalyptus marginata |
Marri Honey | Corymbia calophylla |
Peppermint Honey | Agonis flexuosa |
Blackbutt Honey | Eucalyptus patens |
Melaleuca Honey | Melaleuca alternifolia |
Watermelon Honey | Citrullus lanatus |
Bush Honey | N.A. (multifloral) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, S.; Lawag, I.L.; Lim, L.Y.; Foster, K.J.; Locher, C. A Critical Exploration of the Total Flavonoid Content Assay for Honey. Methods Protoc. 2024, 7, 95. https://doi.org/10.3390/mps7060095
Sultana S, Lawag IL, Lim LY, Foster KJ, Locher C. A Critical Exploration of the Total Flavonoid Content Assay for Honey. Methods and Protocols. 2024; 7(6):95. https://doi.org/10.3390/mps7060095
Chicago/Turabian StyleSultana, Sharmin, Ivan Lozada Lawag, Lee Yong Lim, Kevin J. Foster, and Cornelia Locher. 2024. "A Critical Exploration of the Total Flavonoid Content Assay for Honey" Methods and Protocols 7, no. 6: 95. https://doi.org/10.3390/mps7060095
APA StyleSultana, S., Lawag, I. L., Lim, L. Y., Foster, K. J., & Locher, C. (2024). A Critical Exploration of the Total Flavonoid Content Assay for Honey. Methods and Protocols, 7(6), 95. https://doi.org/10.3390/mps7060095