AI-Assisted High-Throughput Tissue Microarray Workflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Tissue
2.2. Annotation of Regions of Interest
2.3. TMA Construction
2.4. Semi-Automated TMA Construction
2.5. TMA Block Processing
2.6. Immunohistochemistry
2.7. QuPath Analysis
2.8. Statistical Analysis with RStudio
3. Results
3.1. Pseudonymization with Barcoded Labels
3.2. TMA Layout
3.3. Overlay of Digital H&Es and Digital Donor Blocks
3.4. Melting Process and Core Loss
3.5. Sectioning, Staining, and Digitization of TMAs
3.6. Staining Evaluation with QuPath
3.7. Correlation of Biomarker Expression and Clinicopathological Data with R
4. Discussion
- a.
- Semi-automatically created TMAs, available through existing patient consent forms and a positive ethical vote for research projects, annotated with clinicopathological data.
- b.
- AI-supported evaluation of AB expression of these TMAs.
- c.
- Script-based correlation of AB expression with clinicopathological parameters and statistical analysis, resulting in immediate generation of publication-ready figures and tables.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, W.-H.; Fortuna, M.B.; Furmanski, P. A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J. Immunol. Methods 1987, 103, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Casadonte, R.; Longuespée, R.; Kriegsmann, J.; Kriegsmann, M. MALDI IMS and Cancer Tissue Microarrays. Adv. Cancer Res. 2017, 134, 173–200. [Google Scholar] [PubMed]
- Galli, M.; Pagni, F.; De Sio, G.; Smith, A.; Chinello, C.; Stella, M.; L’Imperio, V.; Manzoni, M.; Garancini, M.; Massimini, D.; et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim. Biophys. Acta-Proteins Proteom. 2017, 1865, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Sauter, G. Tissue microarray (TMA) applications: Implications for molecular medicine. Expert Rev. Mol. Med. 2003, 5, 1–12. [Google Scholar] [CrossRef]
- Mengel, M.; Kreipe, H.; Von Wasielewski, R. Rapid and large-scale transition of new tumor biomarkers to clinical biopsy material by innovative tissue microarray systems. Appl. Immunohistochem. Mol. Morphol. 2003, 11, 261–268. [Google Scholar] [CrossRef]
- Camp, R.L.; Neumeister, V.; Rimm, D.L. A decade of tissue microarrays: Progress in the discovery and validation of cancer biomarkers. J. Clin. Oncol. 2008, 26, 5630–5637. [Google Scholar] [CrossRef]
- Märkl, B.; Füzesi, L.; Huss, R.; Bauer, S.; Schaller, T. Number of pathologists in Germany: Comparison with European countries, USA, and Canada. Virchows Arch. 2021, 478, 335. [Google Scholar] [CrossRef]
- da Silva, L.M.; Pereira, E.M.; Salles, P.G.O.; Godrich, R.; Ceballos, R.; Kunz, J.D.; Casson, A.; Viret, J.; Chandarlapaty, S.; Ferreira, C.G.; et al. Independent real-world application of a clinical-grade automated prostate cancer detection system. J. Pathol. 2021, 254, 147–158. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar] [CrossRef]
- Golden, J.A. Deep Learning Algorithms for Detection of Lymph Node Metastases from Breast Cancer: Helping Artificial Intelligence Be Seen. JAMA 2017, 318, 2184–2186. [Google Scholar] [CrossRef]
- Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.W.M.; CAMELYON16 Consortium. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA 2017, 318, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.F.; Macdonald, R.; Liu, Y.; Truszkowski, P.; Hipp, J.D.; Gammage, C.; Thng, F.; Peng, L.; Stumpe, M.C. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am. J. Surg. Pathol. 2018, 42, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Försch, S.; Klauschen, F.; Hufnagl, P.; Roth, W. Artificial Intelligence in Pathology. Dtsch. Arztebl. Int. 2021, 118, 199. [Google Scholar] [CrossRef] [PubMed]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef]
- Tizhoosh, H.R.; Diamandis, P.; Campbell, C.J.V.; Safarpoor, A.; Kalra, S.; Maleki, D.; Riasatian, A.; Babaie, M. Searching Images for Consensus: Can AI Remove Observer Variability in Pathology? Am. J. Pathol. 2021, 191, 1702–1708. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Baxi, V.; Lee, G.; Duan, C.; Pandya, D.; Cohen, D.N.; Edwards, R.; Chang, H.; Li, J.; Elliott, H.; Pokkalla, H.; et al. Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab. Mod. Pathol. 2022, 35, 1529. [Google Scholar] [CrossRef]
- Shafi, S.; Parwani, A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef]
- Aumann, K.; Niermann, K.; Asberger, J.; Wellner, U.; Bronsert, P.; Erbes, T.; Hauschke, D.; Stickeler, E.; Gitsch, G.; Kayser, G.; et al. Structured reporting ensures complete content and quick detection of essential data in pathology reports of oncological breast resection specimens. Breast Cancer Res. Treat. 2016, 156, 495–500. [Google Scholar] [CrossRef]
- Aumann, K.; Amann, D.; Gumpp, V.; Hauschke, D.; Kayser, G.; May, A.M.; Wetterauer, U.; Werner, M. Template-based synoptic reports improve the quality of pathology reports of prostatectomy specimens. Histopathology 2012, 60, 634–644. [Google Scholar] [CrossRef]
- Aumann, K.; Kayser, G.; Amann, D.; Bronsert, P.; Hauschke, D.; Palade, E.; Passlick, B.; Werner, M. The format type has impact on the quality of pathology reports of oncological lung resection specimens. Lung Cancer 2013, 81, 382–387. [Google Scholar] [CrossRef]
- Bundesregierung. Gesetz zur Weiterentwicklung der Krebsfrüherkennung und zur Qualitätssicherung durch klinische Krebsregister; Bundesgesetzblatt Teil I, Nr. 16. 8.4.2013; Deutscher Bundestag: Berlin, Germany, 2013. [Google Scholar]
- Camp, R.L.; Charette, L.A.; Rimm, D.L. Validation of tissue microarray technology in breast carcinoma. Lab. Investig. 2000, 80, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Torhorst, J.; Bucher, C.; Kononen, J.; Haas, P.; Zuber, M.; Köchli, O.R.; Mross, F.; Dieterich, H.; Moch, H.; Mihatsch, M.; et al. Tissue Microarrays for Rapid Linking of Molecular Changes to Clinical Endpoints. Am. J. Pathol. 2001, 159, 2249. [Google Scholar] [CrossRef] [PubMed]
- Oberländer, M.; Alkemade, H.; Bünger, S.; Ernst, F.; Thorns, C.; Braunschweig, T.; Habermann, J.K. A “waterfall” transfer-based workflow for improved quality of tissue microarray construction and processing in breast cancer research. Pathol. Oncol. Res. 2014, 20, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Grabsch, H.; Ellis, I.O.; Womack, C.; Brown, R.; Berney, D.; Fennell, D.; Salto-Tellez, M.; Jenkins, M.; Landberg, G.; et al. Guidelines and considerations for conducting experiments using tissue microarrays. Histopathology 2013, 62, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.S.; Schumacher, L.; Rubin, M.A. Constructing Tissue Microarrays for Research Use. Curr. Protoc. Hum. Genet. 2003, 39, 10.7.1–10.7.11. [Google Scholar] [CrossRef]
- Egervari, K.; Szollosi, Z.; Nemes, Z. Tissue microarray technology in breast cancer HER2 diagnostics. Pathol. Res. Pract. 2007, 203, 169–177. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Nocito, A.; Bubendorf, L.; Tinner, E.M.; Süess, K.; Wagner, U.; Forster, T.; Kononen, J.; Fijan, A.; Bruderer, J.; Schmid, U.; et al. Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J. Pathol. 2001, 194, 349–357. [Google Scholar] [CrossRef]
- Hoos, A.; Cordon-Cardo, C. Tissue Microarray Profiling of Cancer Specimens and Cell Lines: Opportunities and Limitations. Lab. Investig. 2001, 81, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Hoos, A.; Urist, M.J.; Stojadinovic, A.; Mastorides, S.; Dudas, M.E.; Leung, D.H.Y.; Kuo, D.; Brennan, M.F.; Lewis, J.J.; Cordon-Cardo, C. Validation of Tissue Microarrays for Immunohistochemical Profiling of Cancer Specimens Using the Example of Human Fibroblastic Tumors. Am. J. Pathol. 2001, 158, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Huntsman, D. Fluorescent in situ hybridization on tissue microarrays: Challenges and solutions. J. Mol. Histol. 2007, 38, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Viratham Pulsawatdi, A.; Craig, S.G.; Bingham, V.; McCombe, K.; Humphries, M.P.; Senevirathne, S.; Richman, S.D.; Quirke, P.; Campo, L.; Domingo, E.; et al. A robust multiplex immunofluorescence and digital pathology workflow for the characterisation of the tumour immune microenvironment. Mol. Oncol. 2020, 14, 2384–2402. [Google Scholar] [CrossRef]
- Steurer, S.; Seddiqi, A.S.; Singer, J.M.; Bahar, A.S.; Eichelberg, C.; Rink, M.; Dahlem, R.; Huland, H.; Sauter, G.; Simon, R.; et al. MALDI Imaging on Tissue Microarrays Identifies Molecular Features Associated with Renal Cell Cancer Phenotype. Anticancer Res. 2014, 34, 2255–2261. [Google Scholar]
- Senosain, M.F.; Zou, Y.; Novitskaya, T.; Vasiukov, G.; Balar, A.B.; Rowe, D.J.; Doxie, D.B.; Lehman, J.M.; Eisenberg, R.; Maldonado, F.; et al. HLA-DR cancer cells expression correlates with T cell infiltration and is enriched in lung adenocarcinoma with indolent behavior. Sci. Rep. 2021, 11, 14424. [Google Scholar] [CrossRef]
- Ho, W.J.; Zhu, Q.; Durham, J.; Popovic, A.; Xavier, S.; Leatherman, J.; Mohan, A.; Mo, G.; Zhang, S.; Gross, N.; et al. Neoadjuvant cabozantinib and nivolumab convert locally advanced hepatocellular carcinoma into resectable disease with enhanced antitumor immunity. Nat. Cancer 2021, 2, 891–903. [Google Scholar] [CrossRef]
- Moutafi, M.K.; Bates, K.M.; Aung, T.N.; Milian, R.G.; Xirou, V.; Vathiotis, I.A.; Gavrielatou, N.; Angelakis, A.; Schalper, K.A.; Salichos, L.; et al. High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC). J. Immunother. Cancer 2024, 12, e009039. [Google Scholar] [CrossRef]
- Zhang, Q.; Abdo, R.; Iosef, C.; Kaneko, T.; Cecchini, M.; Han, V.K.; Li, S.S.C. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat. Commun. 2022, 13, 5983. [Google Scholar] [CrossRef]
- Mi, H.; Gong, C.; Sulam, J.; Fertig, E.J.; Szalay, A.S.; Jaffee, E.M.; Stearns, V.; Emens, L.A.; Cimino-Mathews, A.M.; Popel, A.S. Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Front. Physiol. 2020, 11, 583333. [Google Scholar] [CrossRef]
- Apaolaza, P.S.; Petropoulou, P.I.; Rodriguez-Calvo, T. Whole-Slide Image Analysis of Human Pancreas Samples to Elucidate the Immunopathogenesis of Type 1 Diabetes Using the QuPath Software. Front. Mol. Biosci. 2021, 8, 689799. [Google Scholar] [CrossRef]
Test | Barcode-Detection | t-Test | |||
---|---|---|---|---|---|
Without Label | With Labels | ||||
Detected Barcodes/ FFPE Blocks | Detection in % | Detected Barcodes/ FFPE Blocks | Detection in % | ||
1. | 5/60 | 8.3% | 54/60 | 90% | p < 0.001 * |
2. | 3/60 | 5.0% | 50/60 | 83% | |
3. | 5/60 | 8.3% | 52/60 | 86% | |
4. | 4/60 | 6.6% | 53/60 | 88% |
Cohort | Absolute Cores | Core Loss | Core Loss in % | Core Loss Within the Cohorts | |
---|---|---|---|---|---|
A TMA 1 | 170 | 6 | 3.5% | 4% | p = 0.001 * * two-sample t-test, two-tailed |
A TMA 2 | 139 | 5 | 3.5% | ||
A TMA 3 | 120 | 6 | 5.0% | ||
B TMA 1 | 165 | 4 | 2.4% | 1.25% | |
B TMA 2 | 168 | 3 | 1.7% | ||
B TMA 3 | 156 | 3 | 1.9% | ||
B TMA 4 | 132 | 1 | 0.7% | ||
B TMA 5 | 129 | 1 | 0.8% | ||
B TMA 6 | 123 | 0 | 0% |
Cohort A | TMAs | Whole-Slides |
---|---|---|
Number of blocks | 2 TMAs | 91 FFPE blocks |
Number of IHC-stains | 6 | 6 |
Slides required | 12 | 546 |
Sectioning | 40 min | 2730 min (45.5 h) |
IHC staining | 480 min * | 6552 min (109.2 h) * |
Digitization | 90 min | 4095 min (68.25 h) |
Necessary storage space | 17.4 GB | 791.7 GB |
Evaluation of IHC | 630 min (10.5 h) | 2730 min (45.5 h) |
Statistical analysis with R | 120 min (2 h) | 300 min (5 h) |
Total working hours | 22.67 | 273.45 |
Antibody amount | 0.6 µg ** | 27.3 µg ** |
Cohort B | TMAs | Whole-Slides |
Number of blocks | 6 TMAs | 305 FFPE Blocks |
Number of IHC-stains | 1 | 1 |
Slides required | 6 | 305 |
Sectioning | 20 min | 1525 min (25.4 h) |
IHC staining | 240 min * | 3660 min (61 h) * |
Digitization | 45 min | 2287.5 min (38.1 h) |
Necessary storage space | 8.7 GB | 442.25 GB |
Evaluation of IHC | 315 min (5.25 h) | 1525 min (25.4 h) |
Statistical analysis with R | 60 min (1 h) | 120 min (2 h) |
Total working hours | 11.25 | 164.6 |
Antibody amount | 4.8 µg | 244 µg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurowski, K.; Timme, S.; Föll, M.C.; Backhaus, C.; Holzner, P.A.; Bengsch, B.; Schilling, O.; Werner, M.; Bronsert, P. AI-Assisted High-Throughput Tissue Microarray Workflow. Methods Protoc. 2024, 7, 96. https://doi.org/10.3390/mps7060096
Kurowski K, Timme S, Föll MC, Backhaus C, Holzner PA, Bengsch B, Schilling O, Werner M, Bronsert P. AI-Assisted High-Throughput Tissue Microarray Workflow. Methods and Protocols. 2024; 7(6):96. https://doi.org/10.3390/mps7060096
Chicago/Turabian StyleKurowski, Konrad, Sylvia Timme, Melanie Christine Föll, Clara Backhaus, Philipp Anton Holzner, Bertram Bengsch, Oliver Schilling, Martin Werner, and Peter Bronsert. 2024. "AI-Assisted High-Throughput Tissue Microarray Workflow" Methods and Protocols 7, no. 6: 96. https://doi.org/10.3390/mps7060096
APA StyleKurowski, K., Timme, S., Föll, M. C., Backhaus, C., Holzner, P. A., Bengsch, B., Schilling, O., Werner, M., & Bronsert, P. (2024). AI-Assisted High-Throughput Tissue Microarray Workflow. Methods and Protocols, 7(6), 96. https://doi.org/10.3390/mps7060096