EvoDevo: Past and Future of Continuum and Process Plant Morphology
Abstract
:1. Introduction
2. Philosophy of Biology: Complementarity, Continuum, and Process Thinking in Development and Evolution
2.1. Philosophy of Biology
2.2. Scientific Perspectivism and Complementarity in Biology
“Individual scientists, and science as a whole in its specific historical context, only ever see a small proportion of all perceivable events or phenomena. Our understanding always remains incomplete and biased by our personal history and societal context.”Johannes Jaeger (2017, p. 139) [17]
2.3. Clear-Cut Language Versus Fuzzy Concepts in Natural Sciences Especially Biology
2.4. From Process Philosophy to Process Thinking in Biology
2.5. Evolutionary Developmental Biology (EvoDevo)
“Organization is a continuum in the physical world. Organization is also a continuum in the ontogenesis and reproduction of the individual organism and in the phyletic line of which it is a component.”C.W. Wardlaw [52] (p. 371)
- (i)
- In the last 20 years since 2000, there has been a rapid growth of EvoDevo as a new approach to understanding the evolution and development of organismic form.
- (ii)
- To a considerable extent, EvoDevo deals with developmental genes, their evolution, and their expression.
- (iii)
- EvoDevo explains the arrival of the fittest, whereas Darwinism explains its survival.
- (iv)
- There is a strong need to focus on the phenotype, which is at the same time the product of development and the direct target of selection.
3. Classical, Continuum, and Process View in Plant Morphology
3.1. Classical Plant Morphology as the Tradional Mainstream View
3.2. Morphological Misfits (Bauplan Oddities) as Test for Classical Plant Morphology
3.3. Scientific Perspectivism and Complementarity in Plant Morphology
“If we once accept the fact that ‘stem’ and ‘leaf’ are no more than convenient descriptive terms, which should not be placed in antithesis as if they corresponded to sharply opposed morphological categories, the problem of their delimitation and of their differentiating characters vanishes into thin air.”Agnes Arber 1930 [86] (pp. 308–309)
- (I)
- The classical stem-and-leaf model: This is the popular model, as favored by most plant biologists, including classical plant morphologists (see Section 3.2). Stems (caulomes) and leaves (phyllomes) are accepted as structural categories that build up the shoot in seed plants and ferns. We may use this model as a “rule of thumb” (Tomlinson in Sattler [90]).
- (II)
- The fertile-leaf model: This less known model accepts each leaf with one or more buds in its axils as one developmental unit, as part of one bifurcating meristem giving rise to both the subtending leaf and the axillary bud(s). This model, going back to Warming (1872) [91] and Goethe (1790) [92], explains why in seed plants (less so in ferns), lateral branches or flowers arise in the axil of leaves and may even form common primordia that bifurcate into a leaf and its axillary bud. Unequal bifurcation of such common primordia resulted in axillary flowers lacking their subtending leaves (nearly) completely, as it is typical for inflorescences in Arabidopsis and other members of the Brassicaceae [93]. Lyndon [94] (p. 21), as a proponent of this model wrote: “It is easy to forget that the leaf is not a single but a dual structure—a leaf with a bud in its axil.” Shoot buds or flowers arising on leaves (a phenomenon known as epiphylly) provide further evidence for the validity (or at least the heuristic value) of the fertile-leaf model [95,96] (see Section 4.4).
- (III)
- The leaf-skin model: In this model as proposed by Saunders [97] the terms leaf and stem are still accepted as structural categories, but the borderline between them is drawn differently. The stem cortex is conceived as being formed by the elongated leaf bases, which cover the stem core like a skin (see Section 4.3).
- (IV)
- Unlike the above-mentioned three complementary models (I–III) that still accept leaf and stem as primary units of the shoot, each leaf or leaf whorl can be seen as a growth unit with the stem zone just below the node of its insertion, leading to the phytomeric model. In this shoot model, the stem zone, called phytomere (also written ”phytomer”), consists of a leaf, its axillary bud, the node, and one internode below the leaf. There are many botanists and developmental biologists who favor this shoot model [26,27,32,93,98]. For example, Kinoshita and Tsukaya [69] wrote: “In the aboveground portion of a typical seed plant, a shoot is composed of the repetition of a unit called a phytomere consisting of a stem and a determinately growing leaf.” Rohweder (1963) [99] and more recently Vita et al. [100] described and illustrated obvious phytomeres in growing shoots of herbaceous flowering plants such as Commelinaceae while focusing on leaf-related vascular tissue inside the stems, somewhat similar to a chain of inverted cones sticking into each other. The term phytomere is also applied to Arabidopsis, e.g., by Müller-Xing et al. [93]: “Phytomeres are metameric units that are composed of internode and node (leaf plus axillary meristem).”
3.4. Historical Roots of Continuum Plant Morphology
3.5. Homology and Organ Identity in Classical and Continuum Plant Morphology: Acceptance of Partial Homology and Fuzzy Organ Identities
3.6. Process Plant Morphology and Morphospace in an Evolutionary Context
“I believe the apparent failure of botanists to internalize process morphology arises because this philosophy requires habits of thought and ways of communicating that are not natural for science in general (Seibt [33]). Due to these possibly hard-wired psychological biases, it is very hard to resist the tendency to perceive plants as objects, drawing us to a language of nouns not verbs.”David Baum (2019) [66].
3.7. Mathematical Tools as a Test for Continuum and Process Plant Morphology
3.8. Possible Lack of One-to-One Correspondence Between Structural Categories and Gene Expression in Higher Plants
“We are still far away from understanding how three-dimensional forms are generated by the genetic system.”Diethard Tautz (2019) [158]
3.9. The Explanatory Power of Process Morphology in Multicellular Plants
4. Case Studies: Developmental Genetic Studies Supporting the Continuum View in Plant Architecture
4.1. Ferns: Continuum Between Compound Leaves (Fronds) and Shoots
4.2. Flowering Plants—Leaf and Shoot Development in Flowering Plants
4.3. Flowering Plants—Bladderworts and Allies (Lentibulariaceae)
“It is probably best, as a purely provisional hypothesis, to accept the view that the vegetative body of Utricularias partakes of both stem nature and leaf nature. How such a condition can have arisen, historically, from an ancestor possessing well-defined stem and leaf organs, remains one of the unsolved mysteries of phylogeny.”Agnes Arber (1920, p. 107) [211]
4.4. Flowering Plants—Flowers, Inflorescences, and Intermediates
4.5. Phyllotaxis: The Algorithmic Beauty of Plants
5. Conclusions: Various Ways to Express Plant Growth and Architecture as Process Combinations and Developmental Continua
- (i)
- Recognize examples of unusual morphologies in plants by describing them as morphological misfits (see Section 3.2, Section 4.1, Section 4.2, Section 4.3, Section 4.4). Flowering plants with bauplans that deviate strongly from the approach of classical plant morphology were labelled as “morphological misfits” by Bell [75]. Being a misfit is not the problem of the plant, but the problem of our inadequate thinking and concepts. Morphological misfits do not fit classical plant morphology, which, however, is still useful as a rule of thumb in many usual (or normal) groups of flowering plants.
- (ii)
- Accept scientific perspectivism and complementary ways of describing the same plant in space and time: Stress that one kind of interpretation is often not enough to explain the architectural complexity. For example, the modular growth of a leafy shoot may be described by the phytomere model as well as by the traditional shoot–leaf model (see Section 3.3) [32].
- (iii)
- Consider the principle of iteration in plant development. A subunit such as a foliage leaf repeats to some degree the development of the whole shoot. This view coincides with the identity-in-parallel concept and the “partial-shoot theory” of Agnes Arber [28,49,72]. It has its counterpart in the anchor concept in zoology, where the paramorphism concept was proposed by Minelli [106,107] for multicellular animals such as tetrapods: Animal appendages can be regarded as a partial repetition of the main body axis (see Section 3.4).
- (iv)
- Use process morphology and mathematical tools to define intermediacy between typical plant organs: Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as developmental continua, as process combinations rather than as assemblages of structural units (“organs”), such as roots, stems, leaves, and flowers. Therefore, we may use strict sets of developmental processes for defining leaves vs. stems vs. roots. Then let us code these characteristics and use statistical tools like principal component analysis (PCA) for the distinction of typical plant organs (as found in many vascular plants) and developmental mosaics between structural categories. Homology includes partial homology and quantitative homology, as proposed by Sattler [6,113,119,133]. In vascular plants, this leads to a continuum between structural categories (plant organs) such as roots, stems, leaves, and even multicellular hairs/trichomes. How intermediates between typical plant organs are best described has been discussed by Kirchoff et al. [34] and Lacroix et al. [49]. For example, the structures observed in the bladderworts (Utricularia) may be called leaf and stem for convenience, as done by Taylor [212], although other authors [22,218] interpreted them as developmental mosaics including root components (see Section 4.3).
- (v)
- Accept developmental genetics as the 4th homology criterion for defining the morphological significance of unusual plant structures. Traditionally, three homology criteria were used: position, special quality, and the existence of intermediates [62,108,113,117,118]. Unlike the more holistic Sattler school, reductionistic biologists such as Scheres et al. [286] (p. 963) emphasized the primacy of molecular genetics over traditional morphology/anatomy: “Regardless of how much faith one has in anatomical definitions, they should not be taken as more than a means of communication prior to subsequent genetic analysis.” Similarly, developmental geneticists may insist on the primacy of organ-identifying genes over the three traditional homology criteria [125]. For example, by stating that the bladderworts (Utricularia) lack important genes for roots, there is a genetic basis for the lack of (typical) roots in the bladderworts [223] (see Section 4.3).
- (vi)
- Accept developmental processes such as homeosis, ectopic expression, blurring, and upgrading of organ identities in plant structures that transcend typical bauplans. Although the concept of homeosis is much older than developmental and molecular genetics, it gained much additional explanatory power with the discovery of homeotic genes (organ-identity genes), such as the MADS box genes explaining the bauplan of typical flowers in angiosperms [119,124] (see Section 4.4). When classical bauplan rules of vascular plants (consisting of roots, stems, and leaves) are violated, then it becomes difficult to clearly define and discriminate between the three types of organs. Rutishauser et al. [35] described several examples of plants “having identity crises”. Identity crises result from our inadequate vocabularies while describing and interpreting plant architecture in space and time.
- (vii)
- Design virtual plants using iterated developmental processes. The development of new mathematical concepts and computational techniques for the description of growing plant structures can be based on developmental rules such as branching, repetition of growth units (e.g., phytomeres), and environmental parameters, as already done by Prusinkiewicz and colleagues [155,168,267,276,287].
- (viii)
- (ix)
- Last but not least: Celebrate your achievements towards process and continuum thinking with a sip of Agnes-Arber Gin: “A fantastic gin celebrating the renowned botanical historian Agnes Arber”. Cheers! https://agnesarbergin.signature-brands.co.uk/online/—In addition, you may listen to the song on EvoDevo (Despacito Biology Parody), a music video performed by the Canadian science communicator and youtuber Tim Blais (A Capella Science): https://www.youtube.com/watch?v=ydqReeTV_vketlist=PL20YbtNRgutzZftYyTI_p2G3ttd4R9dVs.
Funding
Acknowledgments
Conflicts of Interest
References
- Sattler, R.; Rutishauser, R. The fundamental relevance of morphology and morphogenesis to plant research. Ann. Bot. 1997, 80, 571–582. [Google Scholar]
- Pavlinov, I.Y. Multiplicity of Research Programs in the Biological Systematics: A Case for Scientific Pluralism. Philosophies 2020, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Amato, S.I. EvoDevo: An Ongoing Revolution? Philosophies 2020, 5, 35. [Google Scholar] [CrossRef]
- Minelli, A. Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts. Philosophies 2020, 5, 34. [Google Scholar] [CrossRef]
- Sattler, R. Biophilosophy. Analytic and Holistic Perspectives; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1986. [Google Scholar]
- Sattler, R. Structural and dynamic approaches to the development and evolution of plant form. In Perspectives on Evolutionary and Developmental Biology. Essays for Alessandro Minelli; Fusco, G., Ed.; Padova University Press: Padova, Italy, 2019; pp. 57–70. [Google Scholar]
- Sattler, R. Beyond Wilber. Available online: beyondwilber.ca (accessed on 28 November 2020).
- Flannery, M.C. Agnes Arber: Form in the mind and the eye. Int. Stud. Philos. Sci. 2003, 17, 281–300. [Google Scholar]
- Flannery, M.C. Spotlight. Agnes Arber in the 21st Century. Systematist 2005, 24, 13–17. [Google Scholar]
- Elkin, R.S. Live matter. Towards a theory of plant life. J. Landsc. Archit. 2017, 12, 60–73. [Google Scholar]
- Kirchoff, B.K. Preface: From Agnes Arber to new explanatory models for vascular plant development. Ann. Bot. 2001, 88, 1103–1104. [Google Scholar]
- Kirchoff, B.K. Character description in phylogenetic analysis: Insights from Agnes Arber’s concept of the plant. Ann. Bot. 2001, 88, 1203–1214. [Google Scholar]
- Rutishauser, R.; Isler, B. Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): Fuzzy Arberian Morphology complements Classical Morphology. Ann. Bot. 2001, 88, 1173–1202. [Google Scholar]
- Sattler, R. Some comments on the morphological, scientific, philosophical and spiritual significance of Agnes Arber’s life and work. Ann. Bot. 2001, 88, 1215–1217. [Google Scholar] [CrossRef] [Green Version]
- Claßen-Bockhoff, R. Plant morphology: The historical concepts of Wilhelm Troll, Walter Zimmermann, and Agnes Arber. Ann. Bot. 2001, 88, 1153–1172. [Google Scholar] [CrossRef] [Green Version]
- Lander, A.D. The edges of understanding. BMC Biol. 2010, 8, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, J. The importance of being dynamic: Systems biology beyond the hairball. In Philosophy of Systems Biology. Perspectives from Scientists and Philosophers; Green, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 135–146. [Google Scholar]
- Sattler, R.; Rutishauser, R. Structural and dynamic descriptions of the development of Utricularia foliosa and U. australis. Can. J. Bot. 1990, 68, 1989–2003. [Google Scholar] [CrossRef]
- Sattler, R. Classical morphology and continuum morphology: Opposition and continuum. Ann. Bot. 1996, 78, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Korzybski, A. Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics, 5th ed.; Institute of General Semantics: Fort Worth, TX, USA, 1994. [Google Scholar]
- Giere, R.N. Scientific Perspectivism; The University of Chicago Press: Chicago, IL, USA, 2006. [Google Scholar]
- Rutishauser, R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds). Ann. Bot. 2016, 117, 811–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassenstein, B. Wie viele Körner ergeben einen Haufen? Bemerkungen zu einem uralten und zugleich aktuellen Verständigungsproblem. In Der Mensch und Seine Sprache; Peisl, A., Mohler, A., Eds.; Propyläen: Berlin, Germany, 1978; pp. 219–242. [Google Scholar]
- Minelli, A. Biological individuality—A complex pattern of distributed uniqueness. In The Extended Theory of Cognitive Creativity. Perspectives in Pragmatics, Philosophy & Psychology; Pennisi, A., Falzone, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 185–197. [Google Scholar]
- Pradeu, T. Organisms or biological individuals? Combining physiological and evolutionary individuality. Biol. Philos. 2016, 31, 797–817. [Google Scholar] [CrossRef]
- White, J. The plant as a metapopulation. Annu. Rev. Ecol. Syst. 1979, 10, 109–145. [Google Scholar] [CrossRef]
- White, J. Plant metamerism. In Perspectives on Plant Population Biology; Dirzo, R., Sarukhan, J., Eds.; Sinauer: Sunderland, MA, USA, 1984; pp. 15–47. [Google Scholar]
- Arber, A. The Natural Philosophy of Plant Form; Cambridge University Press: Cambridge, UK, 1950. [Google Scholar]
- Arber, A. The Mind and the Eye; (1964 paperbound reissue); Cambridge University Press: Cambridge, UK, 1954. [Google Scholar]
- Arber, A. The Manifold and the One; John Murray: London, UK, 1957. [Google Scholar]
- Woodger, J.H. Biological Principles; Reissued (with new introduction); Humanities: New York, NY, USA, 1967. [Google Scholar]
- Rutishauser, R.; Sattler, R. Complementarity and heuristic value of contrasting models in structural botany. I. General considerations. Bot. Jahrb. Syst. 1985, 107, 415–455. [Google Scholar]
- Seibt, J. Ontological tools for the process turn in biology: Some basic notions of general process theory. In Everything Flows: Towards a Processual Philosophy of Biology; Dupré, J., Nicholson, D., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 113–136. [Google Scholar]
- Kirchoff, B.K.; Pfeifer, E.; Rutishauser, R. Plant structure ontology: How should we label plant structures with doubtful or mixed identities? Zootaxa 2008, 1950, 103–122. [Google Scholar] [CrossRef]
- Rutishauser, R.; Grob, V.; Pfeifer, E. Plants are used to having identity crises. In Evolving Pathways. Key Themes in Evolutionary Developmental Biology; Minelli, A., Fusco, G., Eds.; Cambridge Univ. Press: Cambridge, UK, 2008; pp. 194–213. [Google Scholar]
- Minelli, A. Morphological misfits and the architecture of development. In Macroevolution. Explanation, Interpretation and Evidence; Serrelli, E., Gontier, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 329–343. [Google Scholar]
- Minelli, A. Grand challenges in evolutionary developmental biology. Front. Ecol. Evol. 2015, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Rescher, N. Process Metaphysics—An Introduction to Process Philosophy; State University of New York Press: Albany, NY, USA, 1996. [Google Scholar]
- Weber, M. (Ed.) After Whitehead. Rescher on Process Metaphysics; Ontos Verlag: Frankfurt, Germany; Lancaster, PA, USA, 2004. [Google Scholar]
- Nicholson, D.J.; Dupré, J. (Eds.) Everything Flows: Towards a Processual Philosophy of Biology; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Baedke, J.; Mc Manus, S.F. From seconds to eons: Time scales, hierarchies, and processes in evo-devo. Stud. Hist. Philos. Biol. Biomed. Sci. 2018, 72, 38–48. [Google Scholar] [CrossRef]
- Dupré, J. Processes of Life: Essays in the Philosophy of Biology; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Dupré, J.; Guttinger, S. Viruses as living processes. Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 59, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.N. Process and Reality: An Essay in Cosmology; Griffin, D.R., Sherbourne, D.W., Eds.; Macmillan: New York, NY, USA, 1929. [Google Scholar]
- Whitehead, A.N. Modes of Thought; Macmillan: New York, NY, USA, 1938. [Google Scholar]
- Mayr, E. The Growth of Biological Thought. Diversity, Evolution and Inheritance; German Edition 1984; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1982; ISBN 0674364457. [Google Scholar]
- Jahn, I. (Ed.) Geschichte der Biologie; Nikol: Hamburg, Germany, 2000. [Google Scholar]
- Mabberley, D.J.; Hay, A. Homoeosis, canalization, decanalization, ‘characters’ and angiosperm origins. Edinb. J. Bot. 1994, 51, 117–126. [Google Scholar] [CrossRef]
- Lacroix, C.; Jeune, B.; Barabé, D. Encasement in plant morphology: An integrative approach from genes to organisms. Can. J. Bot. 2005, 83, 1207–1221. [Google Scholar] [CrossRef]
- Baedke, J. Above the Gene, Beyond Biology: Towards a Philosophy of Epigenetics; University of Pittsburgh Press: Pittsburgh, PA, USA, 2018; ISBN 9780822983408. [Google Scholar]
- Benítez, M.; Hernández-Hernández, V.; Newman, S.A.; Niklas, K.J. Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants. Front. Plant Sci. 2018, 9, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardlaw, C.W. Organization and Evolution in Plants; Longmans, Green & Co.: London, UK, 1965. [Google Scholar]
- Zimmermann, W. Die Phylogenie der Pflanzen, 2nd ed.; G. Fischer: Stuttgart, Germany, 1959. [Google Scholar]
- Raff, R.A.; Kaufman, T.C. Embryos, Genes, and Evolution; Macmillan: New York, NY, USA, 1983; ISBN 0253206421. [Google Scholar]
- Hall, B.K. Evolutionary Developmental Biology; Chapman & Hall: London, UK, 1992. [Google Scholar] [CrossRef]
- Minelli, A. Plant Evolutionary Developmental Biology. The Evolvability of the Phenotype; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar]
- Langdale, J.A.; Harrison, C.J. Developmental transitions during the evolution of plant form. In Evolving Pathways. Key Themes in Evolutionary Developmental Biology; Minelli, A., Fusco, G., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 299–315. [Google Scholar]
- Wagner, A. Arrival of the Fittest: Solving Evolution’s Greatest Puzzle; Penguin: London, UK, 2014. [Google Scholar]
- Harrison, J.C. Development and genetics in the evolution of land plant body plans. Philos. Trans. R. Soc. B 2017, 372, 20150490. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.J.; Morris, J.L. The origin and early evolution of vascular plant shoots and leaves. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160496. [Google Scholar] [CrossRef] [PubMed]
- Rutishauser, R. Von Goethes dynamischer Pflanzenmorphologie zur evolutionären Entwicklungsbiologie (“EVO-DEVO“): Holismus and Reduktionismus ergänzen sich. Elem. Naturwiss. 2018, 108, 80–100. [Google Scholar]
- Müller, G.B. Homology: The evolution of morphological organization. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology; Müller, G.B., Newman, S.A., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 51–69. [Google Scholar]
- Kauffman, S. The Origins of Order: Self-Organizating and Selection in Evolution; Oxford University Press: Oxford, UK, 1993; ISBN 9780195058116. [Google Scholar]
- Callebaut, W. Self-organization and optimization: Conflicting or complementary approaches? In Evolutionary Systems; Van de Vijver, G., Salthe, S.N., Delpos, M., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 79–100. [Google Scholar]
- Troll, W. Vergleichende Morphologie der Höheren Pflanzen; Borntraeger: Berlin, Germany, 1937/1939/1941; Volumes 1/1–3. [Google Scholar]
- Baum, D.A. Plant parts: Processes, structures, or functions? Gard. Bull. Singap. 2019, 71 (Suppl. 2), 225–256. [Google Scholar] [CrossRef]
- Kaplan, D.R. The science of plant morphology: Definition, history, and role in modern biology. Am. J. Bot. 2001, 88, 1711–1741. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.R. Fundamental concepts of leaf morphology and morphogenesis: A contribution to the interpretation of developmental mutants. Int. J. Plant Sci. 2001, 162, 465–474. [Google Scholar] [CrossRef]
- Kinoshita, A.; Tsukaya, H. One-leaf plants in the Gesneriaceae: Natural mutants of the typical shoot system. Dev. Growth Differ. 2019, 61, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dengler, N.G.; Tsukaya, H. Leaf morphogenesis in dicotyledons: Current issues. Int. J. Plant Sci. 2001, 162, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Frangedakis, E.; Saint-Marcoux, D.; Moody, L.A.; Rabbinowitsch, E.; Langdale, J.A. Nonreciprocal complementation of KNOX gene function in land plants. New Phytol. 2017, 216, 591–604. [Google Scholar] [CrossRef]
- Cruz, R.; Melo-de-Pinna, G.F.A.; Vasco, A.; Prado, J.; Ambrose, B.A. Class I KNOX is related to determinacy during the leaf development of the fern Mickelia scandens (Dryopteridaceae). Int. J. Mol. Sci. 2020, 21, 4295. [Google Scholar] [CrossRef]
- Ilic, K.; Kellogg, E.A.; Jaiswal, P.; Zapata, F.; Stevens, P.F.; Vincent, L.P.; Avraham, S.; Reiser, L.; Pujar, A.; Sachs, M.M.; et al. The Plant Structure Ontology, a unified vocabulary of anatomy and morphology of a flowering plant. Plant Physiol. 2007, 143, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Schneider, H. Evolutionary morphology of ferns (Monilophytes). Annu. Plant Rev. 2013, 45, 115–140. [Google Scholar] [CrossRef]
- Bell, A.D. Plant Form—An Illustrated Guide to Flowering Plant Morphology; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Theissen, G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci. 2006, 124, 349–369. [Google Scholar] [CrossRef]
- Theissen, G. Saltational evolution: Hopeful monsters are here to stay. Theory Biosci. 2009, 128, 43–51. [Google Scholar] [CrossRef]
- Masel, J.; Siegal, M.L. Robustness: Mechanisms and consequences. Trends Genet. 2009, 25, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, W. Evolution: A Developmental Approach; Wiley Blackwell: Chichester, UK, 2011. [Google Scholar]
- Minelli, A. Tracing homologies in an ever-changing world. Riv. Estet. 2016, 62, 40–55. [Google Scholar] [CrossRef]
- Lemon, G.; Posluszny, U. Comparative shoot development and evolution in the Lemnaceae. Int. J. Plant Sci. 2000, 161, 733–748. [Google Scholar] [CrossRef]
- Katayama, N.; Koi, S.; Kato, M. Expression of Shoot Meristemless, Wuschel, and Asymmetric Leaves1 homologs in the shoots of Podostemaceae: Implications for the evolution of novel shoot organogenesis. Plant Cell 2010, 22, 2131–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, N.; Kato, M.; Yamada, T. Origin and development of the cryptic shoot meristem in Zeylanidium lichenoides. Am. J. Bot. 2013, 100, 635–646. [Google Scholar] [CrossRef]
- Kato, M. The Illustrated Book of Plant Systematics in Color: Podostemaceae of the World; (in Japanese, with English summaries); Hokuryukan: Tokyo, Japan, 2013. [Google Scholar]
- Tsukaya, H. Comparative leaf development in angiosperms. Curr. Opin. Plant Biol. 2014, 17, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Arber, A. Root and shoot in the angiosperms: A study of morphological categories. New Phytol. 1930, 29, 297–315. [Google Scholar] [CrossRef]
- Howard, R.A. The stem-node-leaf continuum of the Dicotyledoneae. J. Arnold Arbor. 1974, 55, 125–181. [Google Scholar]
- Cusset, G. The conceptual bases of plant morphology. Acta Biotheor. 1982, 31, 8–86. [Google Scholar]
- Cusset, G. A simple classification of the complex parts of vascular plants. Bot. J. Linn. Soc. 1994, 114, 229–242. [Google Scholar] [CrossRef]
- Sattler, R. (Ed.) Axioms and Principles of Plant Construction; (Acta Biotheoretica 31A); Nijhoff/Junk: The Hague, The Netherlands, 1982. [Google Scholar]
- Warming, E. Om forskjellen mellem trichomer og epiblastemer af höjere rang. Vidensk. Medd. Dansk. Naturhist. Foren. Kjobenhavn 1872, 16–27, 159–205. [Google Scholar]
- von Goethe, J.W. Versuch die Metamorphose der Pflanzen zu erklären; Ettingersche Buchhandlung: Gotha, Germany, 1790. [Google Scholar]
- Müller-Xing, R.; Schubert, D.; Goodrich, J. Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana. Plant Signal. Behav. 2015, 10, e1010868. [Google Scholar] [CrossRef]
- Lyndon, R.F. The mechanism of leaf initiation. In The Growth and Functioning of Leaves; Dale, J.E., Milthorpe, F.L., Eds.; Cambridge University Press: Cambridge, UK, 1983; pp. 3–24. [Google Scholar]
- Dickinson, T.A. Epiphylly in angiosperms. Bot. Rev. 1978, 44, 181–232. [Google Scholar] [CrossRef]
- Garcês, H.M.P.; Champagne, C.E.M.; Townsley, B.T.; Park, S.; Malhó, R.; Pedroso, M.C.; Harada, J.J.; Sinha, N.R. Evolution of asexual reproduction in leaves of the genus Kalanchoë. Proc. Natl. Acad. Sci. USA 2007, 104, 15578–15583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, E.R. The leaf-skin theory of the stem: A consideration of certain anatomico-physiological relations in the spermatophyte shoot. Ann. Bot. 1922, 36, 135–165. [Google Scholar] [CrossRef]
- Evans, M.W.; Grover, F.O. Developmental morphology of the growing point of the shoot and the inflorescence in grasses. J. Agric. Res. 1940, 61, 481–520. [Google Scholar]
- Rohweder, O. Anatomische und histogenetische Untersuchungen an Laubsprossen und Blüten der Commelinaceen. Bot. Jahrb. Syst. 1963, 82, 1–99. [Google Scholar]
- Vita, R.S.B.; Menezes, N.L.; Pellegrini, M.O.O.; Melo-de-Pinna, G.F.A. A new interpretation on vascular architecture of the cauline system in Commelinaceae (Commelinales). PLoS ONE 2019, 14, e0218383. [Google Scholar] [CrossRef]
- Sattler, R. Ein neues Spross-Modell. Ber. Dtsch. Bot. Ges. 1971, 84, 139. [Google Scholar]
- Sattler, R. A new conception of the shoot of higher plants. J. Theor. Biol. 1974, 47, 367–382. [Google Scholar] [CrossRef]
- Arber, A. The interpretation of leaf and root in the angiosperms. Biol. Rev. 1941, 16, 81–105. [Google Scholar] [CrossRef]
- Cruz, R.; Prado, J.; Melo-de-Pinna, G.F.A. Leaf development in some ferns with variable dissection patterns (Dryopteridaceae and Lomariopsidaceae). Flora 2020, 151658. [Google Scholar] [CrossRef]
- Mueller, B. (Ed.) Goethe’s Botanical Writings; Ox Bow Press: Woodbridge, CT, USA, 1989. [Google Scholar]
- Minelli, A. Limbs and tail as evolutionarily diverging duplicates of the main body axis. Evol. Dev. 2000, 2, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Minelli, A. The Development of Animal Form: Ontogeny, Morphology, and Evolution; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Rutishauser, R.; Moline, P. Evo-devo and the search for homology (‘sameness‘) in biological systems. Theory Biosci. 2005, 124, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Plackett, A.R.G.; Di Stilio, V.S.; Langdale, J.A. Ferns: The missing link in shoot evolution and development. Front. Plant Sci. 2015, 6, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerling, D.J. Leaf evolution: Gases, genes and geochemistry. Ann. Bot. 2005, 96, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feild, T.S.; Brodribb, T.J.; Iglesias, A.; Chatelet, D.S.; Baresch, A.; Upchurch, G.R., Jr.; Gomez, B.; Mohr, B.A.R.; Coiffard, C.; Kvacek, J.; et al. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc. Natl. Acad. Sci. USA 2011, 108, 8363–8366. [Google Scholar] [CrossRef] [Green Version]
- Huxley, J.S. Introduction to Vertebrate Zoology; de Beer, G.R., Ed.; Macmillan Co.: New York, NY, USA, 1928. [Google Scholar]
- Sattler, R. Homology—A continuing challenge. Syst. Bot. 1984, 9, 382–394. [Google Scholar] [CrossRef]
- Minelli, A.; Fusco, G. Homology. In The Philosophy of Biology: A Companion for Educators; Kampourakis, K., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 289–322. [Google Scholar] [CrossRef]
- Ochoterena, H.; Vrijdaghs, A.; Smets, E.; Classen-Bockhoff, R. The search for common origin: Homology revisited. Syst. Biol. 2019, 68, 767–780. [Google Scholar] [CrossRef]
- Owen, R. Lectures on Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons in 1843; Longman, Brown, Green & Longmans: London, UK, 1843. [Google Scholar]
- Remane, A. Die Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik, 2nd ed.; Geest et Portig: Leipzig, Germany, 1956. [Google Scholar]
- Eckardt, T.H. Das Homologieproblem und Fälle strittiger Homologien. Phytomorphology 1964, 14, 79–92. [Google Scholar]
- Sattler, R. Homology, homeosis, and process morphology in plants. In Homology: The Hierarchical Basis of Comparative Morphology; Hall, B.K., Ed.; Academic Press: New York, NY, USA, 1994; pp. 423–475. [Google Scholar]
- Brigandt, I. Homology in comparative, molecular and evolutionary developmental biology: The radiation of a concept. J. Exp. Zool. 2003, 299, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Abouheif, E. Developmental genetics and homology: A hierarchical approach. Trends Ecol. Evol. 1997, 12, 405–408. [Google Scholar] [CrossRef]
- Abouheif, E. Establishing homology criteria for regulatory gene networks: Prospects and challenges. In Homology; Bock, G.R., Cardew, G., Eds.; Wiley: Chichester, UK, 1999; pp. 207–225. [Google Scholar]
- Brigandt, I. How are biology concepts used and transformed? In Philosophy of Science for Biologists; Kampourakis, K., Uller, T., Eds.; University Press Cambridge: Cambridge, UK, 2020; pp. 79–101. [Google Scholar]
- Jaramillo, M.A.; Kramer, E.M. The role of developmental genetics in understanding homology and morphological evolution in plants. Int. J. Plant Sci. 2007, 168, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Koentges, G. Evolution of anatomy and gene control. Evo–devo meets systems biology. Nature 2008, 451, 658–663. [Google Scholar] [CrossRef]
- Shubin, N.; Tabin, C.; Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 1997, 388, 639–648. [Google Scholar] [CrossRef]
- Wilkins, A.S. The Evolution of Developmental Pathways; Sinauer: Sunderland, MA, USA, 2002. [Google Scholar]
- Blochlinger, K.; Jan, L.Y.; Jan, Y.N. Transformation of sensory organ identity by ectopic expression of Cut in Drosophila. Genes Dev. 1991, 5, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Moreau, C.; Hofer, J.M.I.; Eléouet, M.; Sinjushin, A.; Ambrose, M.; Skøt, K.; Blackmore, T.; Swain, M.; Hegarty, M.; Balanzà, V.; et al. Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum). New Phytol. 2018, 220, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, A.W.; Smith, L.; Freeling, M. Acquisition of identity in the developing leaf. Annu. Rev. Cell Dev. Biol. 1996, 12, 257–304. [Google Scholar] [CrossRef]
- Steeves, T.A.; Hicks, G.; Steeves, M.; Retallack, B. Leaf determination in the fern Osmunda cinnamomea: A reinvestigation. Ann. Bot. 1993, 71, 511–517. [Google Scholar] [CrossRef]
- Claßen-Bockhoff, R.; Frankenhäuser, H. The ‘Male Flower’ of Ricinus communis (Euphorbiaceae) interpreted as a multi-flowered unit. Front. Cell Dev. Biol. 2020, 8, 313. [Google Scholar] [CrossRef]
- Sattler, R. Towards a more adequate approach to comparative morphology. Phytomorphology 1966, 16, 417–429. [Google Scholar]
- Sattler, R. Philosophy of plant morphology. Elem. Nat. 2018, 108, 55–79. [Google Scholar]
- Sattler, R. Process morphology: Structural dynamics in development and evolution. Can. J. Bot. 1992, 70, 708–714. [Google Scholar] [CrossRef]
- Langdale, J.A. Evolution of developmental mechanisms in plants. Curr. Opin. Gen. Dev. 2008, 18, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Silva, F. Plants and the conceptual articulation of evolutionary developmental biology. Biol. Philos. 2003, 18, 261–264. [Google Scholar] [CrossRef]
- Jeune, B.; Barabe, D.; Lacroix, C. Classical and dynamic morphology: Toward a synthesis through the space of forms. Acta Biotheor. 2006, 54, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, C.; Jeune, B.; Purcell-MacDonald, S. Shoot and compound leaf comparisons in eudicots: Dynamic morphology as an alternative approach. Bot. J. Linn. Soc. 2003, 143, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J. The Evolutionary Biology of Plants; The University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Cronk, Q. The Molecular Organography of Plants; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Donoghue, M.J.; Kadereit, J.W. Walter Zimmermann and the growth of phylogenetic theory. Syst. Biol. 1992, 41, 74–85. [Google Scholar] [CrossRef]
- Zimmermann, W. Main results of the ‘Telome Theory’. Palaeobotanist 1952, 1, 456–470. [Google Scholar]
- Floyd, S.K.; Bowman, J.L. The ancestral developmental tool kit of land plants. Int. J. Plant Sci. 2007, 168, 1–35. [Google Scholar] [CrossRef]
- Beerling, D.J.; Fleming, A.J. Zimmermann’s telome theory of megaphyll leaf evolution. Curr. Opin. Plant Biol. 2007, 10, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Tomescu, A.M.F. Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci. 2009, 14, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Boyce, C.K. The evolution of plant development in a paleontological context. Curr. Opin. Plant Biol. 2010, 13, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.J.; Coriey, S.B.; Moylan, E.C.; Alexander, D.L.; Scotland, R.W.; Langdale, J.A. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 2005, 434, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F.; Bolker, J.A. Homologies of process and modular elements of embryonic construction. J. Exp. Zool. 2001, 291, 1–12. [Google Scholar] [CrossRef]
- Albert, V.A.; Jobson, R.W. Relaxed Structural Constraints in Utricularia (Lentibulariaceae): A Possible Basis in One or Few Genes Regulating Polar Auxin Transport; Abstract, AIBS Meeting Albuquerque: New Mexico, NM, USA, 2001. [Google Scholar]
- Sinha, N.R. Leaf development in angiosperms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 419–446. [Google Scholar] [CrossRef]
- Hofer, J.M.I.; Gourlay, C.W.; Ellis, T.H.N. Genetic control of leaf morphology: A partial view. Ann. Bot. 2001, 88, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Baum, D.A.; Donoghue, M.J. Transference of function, heterotopy and the evolution of plant development. In Developmental Genetics and Plant Evolution; Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A., Eds.; Taylor & Francis: London, UK, 2002; pp. 52–69. [Google Scholar]
- James, P.J. Tree and Leaf: A different angle. Linnean 2009, 25, 13–19. [Google Scholar]
- Prusinkiewicz, P.; Runions, A. Computational models of plant development and form. New Phytol. 2012, 193, 549–569. [Google Scholar] [CrossRef]
- Jeune, B.; Sattler, R. Multivariate analysis in process morphology. J. Theor. Biol. 1992, 156, 147–167. [Google Scholar] [CrossRef]
- Sattler, R.; Jeune, B. Multivariate analysis confirms the continuum view of plant form. Ann. Bot. 1992, 69, 249–262. [Google Scholar] [CrossRef]
- Tautz, D. The continued mystery of the phylotypic stage. In Perspectives on Evolutionary and Developmental Biology: Essays for Alessandro Minelli; Fusco, G., Ed.; Padova University Press: Padova, Italy, 2019; pp. 141–149. [Google Scholar]
- Gilbert, S.F.; Bard, J. Formalizing theories of development: A fugue on the orderliness of change. In Towards a Theory of Development; Minelli, A., Pradeu, T., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014; pp. 129–143. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, L.; Beddington, R.; Jessell, T.; Lawrence, P.; Meyerowitz, E.; Smith, J. Principles of Development, 2nd ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Butler, A.; Saidel, W.M. Defining sameness: Historical, biological, and generative homology. BioEssays. 2000, 22, 846–853. [Google Scholar] [CrossRef]
- DiFrisco, J. Developmental Homology. In Evolutionary Developmental Biology: A Reference Guide; Nuno de la Rosa, L., Müller, G., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Kessler, S.; Sinha, N. Shaping up: The genetic control of leaf shape. Curr. Opin. Plant Biol. 2004, 7, 65–72. [Google Scholar] [CrossRef]
- Kim, M.; Pham, T.; Hamidi, A.; McCormick, S.; Kuzoff, R.K.; Sinha, N. Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 2003, 130, 4405–4415. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.E.M.; Goliber, T.E.; Wojciechowski, M.F.; Mei, R.W.; Townsley, B.T.; Wang, K.; Paz, M.M.; Geeta, R.; Sinha, N.R. Compound leaf development and evolution in the Legumes. Plant Cell. 2007, 19, 3369–3378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, K.M. The phenogenetic logic of life. Nat. Rev. Genet. 2005, 6, 36–46. [Google Scholar] [CrossRef]
- Sussex, I.M.; Kerk, N.M. The evolution of plant architecture. Curr. Opin. Plant Biol. 2001, 4, 33–37. [Google Scholar] [CrossRef]
- Prusinkiewicz, P.; Lindenmayer, A. The Algorithmic Beauty of Plants; Springer: New York, NY, USA, 1990. [Google Scholar]
- Tsukaya, H. The role of meristematic activities in the formation of leaf blades. J. Plant Res. 2000, 113, 119–126. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nukazuka, A.; Tsukaya, H. Leaf adaxial–abaxial polarity specification and lamina outgrowth: Evolution and development. Plant Cell Physiol. 2012, 53, 1180–1194. [Google Scholar] [CrossRef]
- Nakayama, H.; Yamaguchi, T.; Tsukaya, H. Acquisition and diversification of cladodes: Leaf-like organs in the genus Asparagus. Plant Cell 2012, 24, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Cooney-Sovetts, C.; Sattler, R. Phylloclade development in the Asparagaceae: An example of homeosis. Bot. J. Linn. Soc. 1987, 94, 327–371. [Google Scholar] [CrossRef]
- Stewart, W.N.; Rothwell, G.W. Paleobotany and the Evolution of Plants; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Sanders, H.L.; Darrah, P.R.; Langdale, J.A. Sector analysis and predictive modelling reveal iteratives hoot-like development in fern fronds. Development 2011, 138, 2925–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hébant-Mauri, R. The branching of Trichomanes proliferum (Hymenophyllaceae). Can. J. Bot. 1990, 68, 1091–1097. [Google Scholar] [CrossRef]
- Steeves, T.A.; Sussex, I.M. Patterns in Plant Development, 2nd ed.; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Vasco, A.; Ambrose, B.A. Simple and divided leaves in ferns: Exploring the genetic basis for leaf morphology differences in the genus Elaphoglossum (Dryopteridaceae). Int. J. Mol. Sci. 2020, 21, 5180. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.H.; Beck, J.Z.; Hirsch, A.M. Structural investigations of asexual reproduction in Nephrolepis exaltata and Platycerium bifurcatum. Am. J. Bot. 1983, 70, 993–1001. [Google Scholar] [CrossRef]
- Reiser, L.; Sanchez-Baracaldo, P.; Hake, S. Knots in the family tree: Evolutionary relationships and functions of KNOX homeobox genes. Plant Mol. Biol. 2000, 42, 151–166. [Google Scholar] [CrossRef]
- Vasco, A.; Moran, R.C.; Ambrose, B.A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 2013, 4, 345. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.E.M.; Sinha, N. Compound leaves: Equal to the sum of their parts? Development 2004, 131, 4401–4412. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.G.; Hake, S. The initiation and determination of leaves. Plant Cell 1992, 4, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Sattler, R.; Rutishauser, R. Partial homology of pinnate leaves and shoots: Orientation of leaflet inception. Bot. Jahrb. Syst. 1992, 114, 61–79. [Google Scholar]
- Lacroix, C.R.; Sattler, R. Expression of shoot features in early leaf development of Murraya paniculata (Rutaceae). Can. J. Bot. 1994, 72, 678–687. [Google Scholar] [CrossRef]
- Lacroix, C.R. Changes in leaflet and leaf lobe form in developing compound and finely divided leaves. Bot. Jahrb. Syst. 1995, 117, 317–331. [Google Scholar]
- Rutishauser, R. Developmental patterns of leaves in Podostemaceae compared with more typical flowering plants: Saltational evolution and fuzzy morphology. Can. J. Bot. 1995, 73, 1305–1317. [Google Scholar] [CrossRef]
- Jeune, B.; Lacroix, C.R. A quantitative model of leaflet initiation illustrated by Murraya paniculata (Rutaceae). Can. J. Bot. 1993, 71, 457–465. [Google Scholar] [CrossRef]
- Bharathan, G.; Sinha, N.R. The regulation of compound leaf development. Plant Physiol. 2001, 127, 1533–1538. [Google Scholar] [CrossRef]
- Kaplan, D.R. Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot. Jahrb. Syst. 1975, 95, 1–105. [Google Scholar]
- Hagemann, W. Morphological Aspects of Leaf Development in Ferns and Angiosperms; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Fisher, J.B.; Rutishauser, R. Leaves and epiphyllous shoots in Chisocheton (Meliaceae), a continuum of woody leaf and stem axes. Can. J. Bot. 1990, 68, 2316–2328. [Google Scholar] [CrossRef]
- Melo-de-Pinna, G.F.A.; Cruz, R. Leaf development in vascular plants. In Plant Ontogeny; Demarco, D., Ed.; Nova Science Publ.: Hauppauge, NY, USA, 2020; pp. 83–105. [Google Scholar]
- Bar, M.S.; Ori, N. Leaf development and morphogenesis. Development 2014, 141, 4219–4230. [Google Scholar] [CrossRef] [Green Version]
- Bar, M.S.; Ori, N. Compound leaf development in model plant species. Curr. Opin. Plant Biol. 2015, 23, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Steingraeber, D.A.; Fisher, J.B. Indeterminate growth of leaves in Guarea (Meliaceae): A twig analogue. Am. J. Bot. 1986, 73, 852–862. [Google Scholar] [CrossRef]
- Fukuda, T.; Yokoyama, J.; Tsukaya, H. Phylogenetic relationships among species in the genera Chisocheton and Guarea that have unique indeterminate leaves as inferred from sequences of chloroplast DNA. Int. J. Plant Sci. 2001, 164, 13–24. [Google Scholar] [CrossRef]
- Fisher, J.B. Indeterminate leaves of Chisocheton (Meliaceae): Survey of structure and development. Bot. J. Linn. Soc. 2002, 139, 207–221. [Google Scholar] [CrossRef]
- Stevens, P.F. Review of Chisocheton (Meliaceae) in Papuasia. Contrib. Herb. Aust. 1975, 11, 1–55. [Google Scholar]
- Rutishauser, R. Polymerous leaf whorls in vascular plants: Developmental morphology and fuzziness of organ identities. Int. J. Plant Sci. 1999, 160 (Suppl. 6), S81–S103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutishauser, R.; Sattler, R. Architecture and development of the phyllode-stipules whorls in Acacia longipedunculata: Controversial interpretations and continuum approach. Can. J. Bot. 1986, 64, 1987–2019. [Google Scholar] [CrossRef]
- Cruz, R.; Duarte, M.; Pirani, J.R.; Melo-dePinna, G.F.A. Development of leaves and shoot apex protection in Metrodorea and related species (Rutaceae). Bot. J. Linn. Soc. 2015, 178, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Yaxley, J.L.; Jablonski, W.; Reid, J.B. Leaf and flower development in pea (Pisum sativum L.): Mutants cochleata and unifoliata. Ann. Bot. 2001, 88, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Marx, G.A. A suite of mutants that modify pattern formation in pea leaves. Plant Mol. Biol. Report. 1987, 5, 311–335. [Google Scholar] [CrossRef]
- Tattersall, A.D.; Turner, L.; Knox, M.R.; Ambrose, M.J.; Ellis, T.H.N.; Hofer, J.M.I. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 2005, 17, 1046–1060. [Google Scholar] [CrossRef] [Green Version]
- Jong, K.; Burtt, B.L. The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol. 1975, 75, 297–311. [Google Scholar] [CrossRef]
- Tsukaya, H. Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development 1997, 124, 1275–1280. [Google Scholar] [PubMed]
- Weber, A.; Clark, J.L.; Möller, M. A new formal classification of Gesneriaceae. Selbyana 2013, 31, 68–94. [Google Scholar]
- Kinoshita, A.; Koga, H.; Tsukaya, H. Expression profiles of ANGUSTIFOLIA3 and SHOOT MERISTEMLESS, key genes for meristematic activity in a one-leaf plant Monophyllaea glabra, revealed by whole-mount in situ hybridization. Front. Plant Sci. 2020, 11, 1160. [Google Scholar] [CrossRef]
- Nishii, K.; Spada, A.; Möller, M. Hormonal crosstalk in the regulation of meristem activity and the phyllomorph architecture in Streptocarpus (Gesneriaceae): A review. Rheedea 2020, 30, 96. [Google Scholar] [CrossRef]
- Eckardt, N.A.; Baum, D. The podostemad puzzle: The evolution of unusual morphology in the Podostemaceae. Plant Cell 2010, 22, 2131–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arber, A. Water Plants. A Study of Aquatic Angiosperms; Cambridge University Press: Cambridge, UK, 1920. [Google Scholar]
- Taylor, P. The Genus Utricularia—A Taxonomic Monograph; HMSO: London, UK, 1989. [Google Scholar]
- Jobson, R.W.; Baleeiro, P.C.; Guisande, C. Systematics and evolution of Lentibulariaceae: III. Utricularia. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A.M., Adamec, L., Eds.; Oxford Univ. Press: Oxford, UK, 2018; pp. 89–104. [Google Scholar]
- Silva, S.R.; Moraes, A.P.; Penha, H.A.; Julião, M.H.M.; Domingues, D.S.; Michael, T.P.; Miranda, V.F.O.; Varani, A.M. The terrestrial carnivorous plant Utricularia reniformis sheds light on environmental and life-form genome plasticity. Int. J. Mol. Sci. 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitewoods, C.D. Quick Guide—Utricularia. Curr. Biol. 2020, 30, R143–R144. [Google Scholar] [CrossRef]
- Whitewoods, C.D.; Gonçalves, B.; Cheng, J.; Cui, M.; Kennaway, R.; Lee, K.; Bushell, C.; Yu, M.; Piao, C.; Coen, E. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 2020, 367, 91–96. [Google Scholar] [CrossRef]
- Goebel, K. Pflanzenbiologische Schilderungen; Part II; Elwert: Marburg, Germany, 1891. [Google Scholar]
- Reut, M.S.; Plachno, B.J. Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotoma—Leaf, shoot and root dynamics. Protoplasma 2020, 257, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Paulet, L.; Chang, T.-H.; Librado, P.; Ibarra-Laclette, E.; Herrera-Estrella, L.; Rozas, J.; Albert, V.A. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba. Genome Biol. Evol. 2015, 7, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Paulet, L.; Librado, P.; Chang, T.-H.; Ibarra-Laclette, E.; Herrera-Estrella, L.; Rozas, J.; Albert, V.A. High gene family turnover rates and gene space adaptation in the compact genome of the carnivorous plant Utricularia gibba. Mol. Biol. Evol. 2015, 32, 1284–1295. [Google Scholar] [CrossRef] [Green Version]
- Albert, V.A.; Jobson, R.W.; Michael, T.P.; Taylor, D.J. The carnivorous bladderwort (Utricularia, Lentibulariaceae): A system inflates. J. Exp. Bot. 2010, 61, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Barta, J.; Stone, J.D.; Pech, J.; Sirová, D.; Adamec, L.; Campbell, M.A.; Štorchová, H. The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate similarity with Utricularia gibba. BMC Plant Biol. 2015, 15, 78. [Google Scholar] [CrossRef] [Green Version]
- Renner, T.; Lan, T.; Farr, K.M.; Ibarra-Laclette, E.; Herrera-Estrella, L.; Schuster, S.C.; Hasebe, M.; Fukushima, K.; Albert, V.A. Carnivorous plant genomes. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A.M., Adamec, L., Eds.; Oxford Univ. Press: Oxford, UK, 2018; pp. 135–153. [Google Scholar]
- Brugger, J.; Rutishauser, R. Bau und Entwicklung landbewohnender Utricularia-Arten. Bot. Helv. 1989, 99, 91–146. [Google Scholar]
- Guédès, M. Morphology of Seed-Plants; J. Cramer: Vaduz, Liechtenstein, 1979. [Google Scholar]
- Ibarra-Laclette, E.; Albert, V.A.; Perez-Torres, C.A.; Zamudio-Hernández, F.; Ortega-Estrada, M.J.; Herrera-Estrella, A. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biol. 2011, 11, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarra-Laclette, E.; Lyons, E.; Hernandez-Guzman, G.; Pérez-Torres, C.A.; Carretero-Paulet, L.; Chang, T.H.; Lan, T.; Welch, A.J.; Juárez, M.J.A.; Fernández-Cortés, A.; et al. Architecture and evolution of a minute plant genome. Nature 2013, 498, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronk, Q.C.B. Plant evolution and development in a post-genomic context. Nat. Rev. Genet. 2001, 2, 607–619. [Google Scholar] [CrossRef]
- Hofhuis, H.; Laskowski, M.; Du, Y.; Prasad, K.; Grigg, S.; Pinon, V.; Scheres, B. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr. Biol. 2013, 23, 956–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, W.E.; Moore, R.C.; Purugganan, M.D. The evolution of plant development. Am. J. Bot. 2004, 91, 1726–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, J.A.; Edwards, D. Roots: Evolutionary origins and biogeochemical significance. J. Exp. Bot. 2001, 52, 381–401. [Google Scholar] [CrossRef]
- Schneider, H.; Pryer, K.M.; Cranfill, R.; Smith, A.R.; Wolf, P.G. The evolution of vascular plant body plans—A phylogenetic perspective. In Developmental Genetics and Plant Evolution; Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A., Eds.; Taylor & Francis: London, UK, 2002; pp. 330–364. [Google Scholar]
- Sattler, R. Organogenesis of Flowers. A Photographic Text-Atlas; Univ. of Toronto Press: Toronto, ON, Canada, 1973. [Google Scholar]
- Endress, P.K. Diversity and Evolutionary Biology of Tropical Flowers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Soltis, D.; Soltis, P.; Endress, P.; Chase, M.; Manchester, S.; Judd, W.; Majure, L.; Mavrodiev, E. Phylogeny and Evolution of the Angiosperms; Revised and updated edition; The University of Chicago Press: Chicago, IL, USA; London, UK, 2018. [Google Scholar]
- Johnson, S.D.; Schiestl, F.P. Floral Mimicry; Oxford Univ. Press: Oxford, UK, 2016. [Google Scholar]
- De Ronse Craene, L.P. Floral Diagrams: An Aid to Understanding Flower Morphology and Evolution; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Coen, E.S.; Meyerowitz, E.M. The war of the whorls: Genetic interactions controlling flower development. Nature 1991, 353, 31–37. [Google Scholar] [CrossRef]
- Theissen, G.; Melzer, R. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 2007, 100, 603–619. [Google Scholar] [CrossRef]
- Endress, P.K. Angiosperm floral evolution: Morphological and developmental framework. Adv. Bot. Res. 2006, 44, 1–61. [Google Scholar]
- Chanderbali, A.S.; Berger, B.A.; Howarth, D.G.; Soltis, D.E.; Soltis, P.S. Evolution of floral diversity: Genomics, genes and gamma. Philos. Trans. R. Soc. B 2017, 372, 20150509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltis, D.E.; Chanderbali, A.S.; Kim, S.; Buzgo, M.; Soltis, P.S. The ABC model and its applicability to basal angiosperms. Ann. Bot. 2007, 100, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Soltis, P.S.; Soltis, D.E. Flower Diversity and Angiosperm Diversification. In Flower Development; Riechmann, J.L., Wellmer, F., Eds.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2014; pp. 85–102. [Google Scholar]
- Buzgo, M.; Soltis, P.S.; Soltis, D.E. Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 2004, 165, 925–947. [Google Scholar] [CrossRef]
- Buzgo, M.; Soltis, P.S.; Kim, S.; Soltis, D.E. The making of the flower. Biologist 2005, 52, 149–154. [Google Scholar]
- Warner, K.A.; Rudall, P.J.; Frohlich, M.W. Environmental control of sepalness and petalness in perianth organs of waterlilies—A new Mosaic Theory on the evolutionary origin of a differentiated perianth. J. Exp. Bot. 2009, 60, 3559–3574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Candolle, A.P. Organographie Végétale; Deterville: Paris, France, 1827; Volume 2. [Google Scholar]
- Prenner, G.; Rudall, P.J. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: Exploring the organ-flower-inflorescence boundary. Am. J. Bot. 2007, 94, 1612–1629. [Google Scholar] [CrossRef]
- Sokoloff, D.; Rudall, P.J.; Remizowa, M. Flower-like terminal structures in racemose inflorescences: A tool in morphogenetic and evolutionary research. J. Exp. Bot. 2006, 57, 3517–3530. [Google Scholar] [CrossRef]
- Prenner, G.; Box, M.S.; Cunniff, J.; Rudall, P.J. Branching stamens of Ricinus and the homologies of the angiosperm stamen fascicle. Int. J. Plant Sci. 2008, 169, 735–744. [Google Scholar] [CrossRef]
- Prenner, G.; Cacho, N.I.; Baum, D.; Rudall, P.J. Is LEAFY a useful marker gene for the flower-inflorescence boundary in the Euphorbia cyathium? J. Exp. Bot. 2011, 62, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekemans, D.; Viaene, T.; Caris, P.; Geuten, K. Transference of function shapes organ identity in the dove tree inflorescence. New Phytol. 2012, 193, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Grob, V.; Moline, P.; Pfeifer, E.; Novelo, A.R.; Rutishauser, R. Developmental morphology of branching flowers in Nymphaea prolifera. J. Plant Res. 2006, 119, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arber, A. The Gramineae. In A Study of Cereal, Bamboo, and Grass; (Reprint 1965 by J. Cramer, Weinheim); Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Stebbins, G.L.; Yagil, E. The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes. Genetics 1966, 54, 727–741. [Google Scholar]
- Yagil, E.; Stebbins, G.L. The morphogenetic effects of the hooded gene in barley. II. Cytological and environmental factors affecting gene expression. Genetics 1969, 62, 307–319. [Google Scholar]
- Müller, K.J.; Romano, N.; Gerstner, O.; Garcia-Maroto, F.; Pozzi, F.; Salamini, F.; Rohde, W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 1995, 374, 727–730. [Google Scholar] [CrossRef]
- Roig, C.; Pozzi, C.; Santi, L.; Müller, J.; Wang, Y.; Stile, M.R.; Rossini, L.; Stanca, M.; Salamini, F. Genetics of barley Hooded suppression. Genetics 2004, 167, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Williams-Carrier, R.E.; Lie, Y.S.; Hake, S.; Lemaux, P.G. Ectopic expression of the maize knl gene phenocopies the Hooded mutant of barley. Development 1997, 124, 3737–3745. [Google Scholar]
- Bommert, P.; Whipple, C. Grass inflorescence architecture and meristem determinacy. Semin. Cell Dev. Biol. 2018, 79, 37–47. [Google Scholar] [CrossRef]
- Reinhardt, D. Phyllotaxis—A new chapter in an old tale about beauty and magic numbers. Curr. Opin. Plant Biol. 2005, 8, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, J.-E. La Phyllotaxie; Masson: Paris, France, 1969. [Google Scholar]
- Zagorska-Marek, B. Phyllotactic patterns and transitions in Abies balsamea. Can. J. Bot. 1985, 63, 1844–1854. [Google Scholar] [CrossRef]
- Rutishauser, R.; Peisl, P. Phyllotaxy. In Encyclopedia of Life Sciences; Macmillan Publishers Ltd.: Basingstoke, UK, 2001. [Google Scholar]
- Rutishauser, R. Plastochrone ratio and leaf arc as parameters of a quantitative quantitative phyllotaxis analysis in vascular plants. In Symmetry in Plants; Jean, R.V., Barabé, D., Eds.; World Scientific: Singapore, 1998; pp. 171–212. [Google Scholar]
- Rutishauser, R. Acacia (wattle) and Cananga (ylang-ylang): From spiral to whorled and irregular (chaotic) phyllotactic patterns—A pictorial report. Acta Soc. Bot. Pol. 2016, 85, 3531. [Google Scholar] [CrossRef] [Green Version]
- Strauss, S.; Lempe, J.; Prusinkiewicz, P.; Tsiantis, M.; Smith, R.S. Phyllotaxis: Is the golden angle optimal for light capture? New Phytol. 2020, 225, 499–510. [Google Scholar] [CrossRef]
- Barabé, D.; Lacroix, C. Phyllotactic Patterns: A Multidisciplinary Approach; World Scientific Publ.: Singapore, 2020. [Google Scholar]
- Bartlett, M.E.; Thompson, B. Meristem identity and phyllotaxis in inflorescence development. Front. Plant Sci. 2014, 5, 508. [Google Scholar] [CrossRef] [Green Version]
- Cutter, E.G. The inception and distribution of flowers in the Nymphaeaceae. Proc. Linn. Soc. Bot. 1961, 172, 93–100. [Google Scholar] [CrossRef]
- El, E.S.; Remizowa, M.V.; Sokoloff, D.D. Developmental flower and rhizome morphology in Nuphar (Nymphaeales): An interplay of chaos and stability. Front. Cell Dev. Biol. 2020, 8, 303. [Google Scholar] [CrossRef]
- Stevenson, D.W. Observations on phyllotaxis, stelar morphology, the shoot apex and gemmae of Lycopodium lucidulum Michaux (Lycopodiaceae). Bot. J. Linn. Soc. 1976, 72, 81–100. [Google Scholar] [CrossRef]
- Rutishauser, R. Ever since Darwin: Why plants are important for evo-devo research. In Perspectives on Evolutionary and Developmental Biology: Essays for Alessandro Minelli; Fusco, G., Ed.; Padova University Press: Padova, Italy, 2019; pp. 41–55. [Google Scholar]
- Grob, V.; Pfeifer, E.; Rutishauser, R. Sympodial construction of Fibonacci-type leaf rosettes in Pinguicula moranensis (Lentibulariaceae). Ann. Bot. 2007, 100, 857–863. [Google Scholar] [CrossRef]
- Endress, P.K. Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Bot. Acta 1989, 102, 159–163. [Google Scholar] [CrossRef]
- Smith, R.; Guyomarc’h, S.; Mandel, T.; Reinhardt, D.; Kuhlemeier, C.; Prusinkiewicz, P. A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA 2006, 103, 1301–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X. Phyllotaxis: From classical knowledge to molecular genetics. J. Plant Res. under review.
- Fierz, V. Aberrant phyllotactic patterns in cones of some conifers: A quantitative study. Acta Soc. Bot. Pol. 2014, 84, 261–265. [Google Scholar] [CrossRef]
- Gola, E.M.; Jernstedt, J.A.; Zagórska-Marek, B. Vascular architecture in shoots of early divergent vascular plants. New Phytol. 2007, 174, 774–786. [Google Scholar] [CrossRef]
- Yin, X.; Meicenheimer, R.D. The ontogeny, phyllotactic diversity, and discontinuous transitions of Diphasiastrum digitatum (Lycopodiaceae). Am. J. Bot. 2017, 104, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, W. Allgemeine Morphologie der Gewächse; W. Engelmann: Leipzig, Germany, 1868. [Google Scholar]
- Imaichi, R.; Hiyama, Y.; Kato, M. Leaf development in the absence of a shoot apical meristem in Zeylanidium subulatum (Podostemaceae). Ann. Bot. 2005, 96, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.E.; Stotz, K. Developmental systems theory as a process theory. In Everything Flows: Towards a Processual Philosophy of Biology; Nicholson, D.J., Dupré, J., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 225–245. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, J.; Monk, N. Everything flows: A process perspective on life. EMBO Rep. 2015, 36, 1064–1067. [Google Scholar] [CrossRef]
- Jaeger, J. Dynamic structures in evo-devo: From morphogenetic fields to evolving organisms. In Perspectives on Evolutionary and Developmental Biology. Essays for Alessandro Minelli; Fusco, G., Ed.; Padova University Press: Padova, Italy, 2019; pp. 335–355. [Google Scholar]
- Scheres, B.; McKhann, H.I.; van den Berg, C. Roots redefined: Anatomical and genetic analysis of root development. Plant Physiol. 1996, 111, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Louarn, G.; Song, Y. Two decades of functional-structural plant modelling: Now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 2020, 126, 501–509. [Google Scholar] [CrossRef]
- Keller, E.F. A Feeling for the Organism. The Life and Work of Barbara McClintock; Macmillan: New York, NY, USA; San Francisco, CA, USA, 1983. [Google Scholar]
- Arber, A. Goethe’s Botany: The Metamorphosis of Plants (1790) and Tobler’s Ode to Nature (1782). Chron. Bot. 1946, 10, 63–126. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutishauser, R. EvoDevo: Past and Future of Continuum and Process Plant Morphology. Philosophies 2020, 5, 41. https://doi.org/10.3390/philosophies5040041
Rutishauser R. EvoDevo: Past and Future of Continuum and Process Plant Morphology. Philosophies. 2020; 5(4):41. https://doi.org/10.3390/philosophies5040041
Chicago/Turabian StyleRutishauser, Rolf. 2020. "EvoDevo: Past and Future of Continuum and Process Plant Morphology" Philosophies 5, no. 4: 41. https://doi.org/10.3390/philosophies5040041
APA StyleRutishauser, R. (2020). EvoDevo: Past and Future of Continuum and Process Plant Morphology. Philosophies, 5(4), 41. https://doi.org/10.3390/philosophies5040041