Bile Imprint on Parietal Peritoneum of Gilthead Seabream and Red Seabream: Effects of Fasting Duration, Stress, and Ice Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Experimental Design
2.2. Sampling and Analytical Methods
2.3. Histology and Microscopy
2.4. Data Analysis
3. Results
3.1. Gilthead Seabream Trial
3.2. Red Seabream Trial
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crappie.com. Available online: https://www.crappie.com/crappie/main-crappie-fishing-forum/670-heres-yellow-fillets/ (accessed on 9 June 2023).
- The Fishing Website. Available online: https://www.fishing.net.nz/forum/a-funny-yellow-tinge_topic20604.html (accessed on 9 June 2023).
- Seasoned Advice. Available online: https://cooking.stackexchange.com/questions/42650/is-yellow-coloring-inside-a-fish-normal#:~:text=Yes%2C%20that’s%20the%20gall%20bladder%20fluid (accessed on 9 June 2023).
- Quora.com. Available online: https://www.quora.com/The-sea-bass-Im-buying-has-a-light-yellowish-green-mark-on-the-inside-Its-not-deep-in-the-skin-but-on-top-of-it-Usually-it-is-located-just-below-the-gill-on-the-left-What-is-it/log (accessed on 9 June 2023).
- Miller, M.A.; Zachary, J.F. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. In Pathologic Basis of Veterinary Disease; Zachary, J.F., Ed.; Elsevier: St. Louis, MO, USA, 2022; ISBN 978-0-323-71314-6. [Google Scholar]
- Reece, W.O. Digestion and Absorption. In Functional Anatomy and Physiology of Domestic Animals; Wiley-Blackwell: Chichester, UK, 2009; ISBN 978-0-8138-1451-3. [Google Scholar]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile Acid Metabolism in Fish: Disturbances Caused by Fishmeal Alternatives and Some Mitigating Effects From Dietary Bile Inclusions. Rev. Aquac. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Cornelius, C.E. Bile Pigments in Fishes: A Review. Vet. Clin. Pathol. 1991, 20, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F.; Hagey, L.R.; Krasowski, M.D. Bile Salts of Vertebrates: Structural Variation and Possible Evolutionary Significance. J. Lipid Res. 2010, 51, 226–246. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.B. Nutritional Physiology. In Fish Nutrition; Halver, J.E., Hardy, R.W., Eds.; Pedio Books: Athens, Greece, 2015; ISBN 978-960-546-612-1. (In Greek) [Google Scholar]
- Bone, Q.; Moore, R.H. Food and Feeding. In Biology of Fishes; Taylor & Francis: Milton Park, UK, 2008; ISBN 978-960-546-612-1. [Google Scholar]
- Bermejo-Poza, R.; Villaroel, M.; Perez, C.; Gonzalez de Chavarri, E.; Diaz, M.T.; Torrent, F.; de la Fuente, J. Fasting Combined with Long Catch Duration Modifies the Physio-Metabolic Response and Flesh Quality of Rainbow Trout. Aquac. Res. 2020, 51, 1244–1255. [Google Scholar] [CrossRef]
- Orisasona, O.; Ajani, E.K.; Jenyo-Oni, A.; Olanrewaju, N.A. Effects of Fasting Period on Post-Harvest Flesh Quality of Clarias gariepinus. Trop. Anim. Prod. Investig. 2016, 19, 26–32. [Google Scholar]
- Wall, A.J. Ethical Considerations in the Handling and Slaughter of Farmed Fish. In Farmed Fish Quality; Kestin, S., Warriss, P.D., Eds.; Blackwell Science: Bristol, UK, 2001; pp. 108–119. [Google Scholar]
- Lines, J.A.; Spence, J. Safeguarding the Welfare of Farmed Fish at Harvest. Fish Physiol. Biochem. 2012, 38, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Tort, L.; Pavlidis, M.A.; Woo, N.Y.S. Stress and Welfare in Sparid Fishes. In Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species; Pavlidis, M.A., Mylonas, C.C., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 75–94. ISBN 978-1-4051-9772-4. [Google Scholar]
- Mozes, N.; Papandroulakis, N.; Vergara, J.M.; Biswas, A.; Takii, K.; Ntatsopoulos, A. Chapter 6: Production Systems. In Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species; Pavlidis, M.A., Mylonas, C.C., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 169–195. ISBN 978-1-4051-9772-4. [Google Scholar]
- FAO; WHO. Code of Practice for Fish and Fishery Products; FAO; WHO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- HAPO. Aquaculture Annual Report 2024; Hellenic Aquaculture Producers Organisation: Peania, Greece, 2024. [Google Scholar]
- Carleton, H.M.; Drury, R.A.B.; Wallington, E.A. Carleton’s Histological Technique, 5th ed.; Oxford University Press: Oxford, NY, USA, 1980; ISBN 978-0-19-261310-3. [Google Scholar]
- Allen, M.T.; Patterson, S.M. Hemoconcentration and Stress: A Review of Physiological Mechanisms and Relevance for Cardiovascular Disease Risk. Biol. Physiol. 1995, 41, 1–27. [Google Scholar] [CrossRef]
- Austin, A.W.; Patterson, S.M.; von Känel, R. Hemoconcentration and Hemostasis During Acute Stress: Interacting and Independent Effects. Ann. Behav. Med. 2011, 42, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Jobling, M. Fish in Aquaculture Environments. In Aquaculture and Behavior; Huntingford, F., Jobling, M., Kadri, S., Eds.; Wiley-Blackwell: Chichester, UK, 2012; pp. 36–64. ISBN 978-1-4051-3089-9. [Google Scholar]
- Najem, O.; Shah, M.M.; Zubair, M.; de Jesus, O. Serum Osmolality. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Diamond, J.M. The Mechanism of Water Transport by the Gallbladder. J. Physiol. 1962, 161, 503–527. [Google Scholar] [CrossRef]
- Grossel, M.; O’Donnel, M.J.; Wood, C.M. Hepatic versus Gallbladder Bile Composition: In Vivo Transport Physiology of the Gallbladder in Rainbow Trout. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 278, R1674–R1684. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Pacheco-Aguilar, R.; Díaz-Rojas, E.I.; Lugo-Sánchez, M.E. Postmortem Changes in Black Skipjack Muscle During Storage in Ice. J. Food Sci. 2000, 65, 774–779. [Google Scholar] [CrossRef]
- Zhang, M.; Su, R.; Corazzin, M.; Hou, R.; Zhang, Y.; Sun, L.; Hu, G.; Dou, L.; Guo, Y.; Su, L.; et al. Lipid Transformation during Postmortem Chilled Aging in Mongolian Sheep Using Lipidomics. Food Chem. 2023, 405, 134882. [Google Scholar] [CrossRef] [PubMed]
- Särkioja, T.; Ylä-Herttuala, S.; Solakivi, T.; Nikkari, T.; Hirvonen, J. Stability of Plasma Total Cholesterol, Triglycerides, and Apolipoproteins B and A-I During the Early Postmortem Period. J. Forensic Sci. 1988, 33, 1432–1438. [Google Scholar] [CrossRef]
- Vacchiano, G.; Maldonado, A.L.; Ros, M.M.; Di Lorenzo, P.; Pieri, M. The Cholesterol Levels in Median Nerve and Post-Mortem Interval Evaluation. Forensic Sci. Int. 2016, 265, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Duane, W.C.; Ginsberg, R.L.; Bennion, L.J. Effects of Fasting on Bile Acid Metabolism and Biliary Lipid Composition in Man. J. Lipid Res. 1976, 17, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Mok, H.Y.I.; von Bergmann, K.; Grundy, S.M. Kinetics of the Enterohepatic Circulation During Fasting: Biliary Lipid Secretion and Gallbladder Storage. Gastroenterology 1980, 78, 1023–1033. [Google Scholar] [CrossRef]
- Schlierf, G.; Schellenberg, B.; Stiehl, A.; Czygan, P.; Oster, P. Biliary Cholesterol Saturation and Weight Reduction—Effects of Fasting and Low Calorie Diet. Digestion 1981, 21, 44–49. [Google Scholar] [CrossRef]
- Kok, T.; Wolters, H.; Bloks, V.W.; Havinga, R.; Jansen, P.L.M.; Staels, B.; Kuipers, F. Induction of Hepatic ABC Transporter Expression Is Part of the PPARα–Mediated Fasting Response in the Mouse. Gastroenterology 2003, 124, 160–171. [Google Scholar] [CrossRef]
- Magnuson, T.H.; Ahrendt, S.A.; Lillemoe, K.D.; Kaufman, H.S.; Watt, P.C.; Pitt, H.A. Short-Term Fasting Increases Biliary Calcium and Bilirubin. J. Surg. Res. 1991, 50, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Bloch, H.M.; Thornton, J.R.; Heaton, K.W. Effects of Fasting on the Composition of Gallbladder Bile. Gut 1980, 21, 1087–1089. [Google Scholar] [CrossRef]
- Goto, T.; Takagi, S.; Ichiki, T.; Sakai, T.; Endo, M.; Yoshida, T.; Ukawa, M.; Murata, H. Studies on the Green Liver in Cultured Red Sea Bream Fed Low Level and Non-Fish Meal Diets: Relationship between Hepatic Taurine and Biliverdin Levels. Fish. Sci. 2001, 67, 58–63. [Google Scholar] [CrossRef]
- Takagi, S.; Murata, H.; Goto, T.; Ichiki, T.; Endo, M.; Hatate, H.; Yoshida, T.; Sakai, T.; Yamashita, H.; Ukawa, M. Efficacy of Taurine Supplementation for Preventing Green Liver Syndrome and Improving Growth Performance in Yearling Red Sea Bream Pagrus major Fed Low-Fishmeal Diet. Fish. Sci. 2006, 72, 1191–1199. [Google Scholar] [CrossRef]
- Fang, L.S. Study of the Heme Catabolism of Fish. Comp. Biochem. Physiol. Part B Comp. Biochem. 1987, 88, 667–673. [Google Scholar] [CrossRef]
- Le Bail, B.; Balabaud, C.; Bioulac-Sage, P. Anatomy and Structure of the Liver and Biliary Tree. In Hepatobiliary Diseases; Prieto, J., Rodes, J., Shafritz, D.A., Eds.; Springer: Berlin, Germany, 1992; ISBN 978-3-642-76804-0. [Google Scholar]
- Mathisen, Ø.; Ræder, M. Role of Sodium, Bicarbonate, and Plasma Osmolality in Biliary Secretion. Scand. J. Gastroenterol. 1983, 18, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Omland, E.; Mathisen, Ø. Effect of Insulin on Hepatic Bile Secretion during Normoglycaemia and Hyperglycaemia. Scand. J. Gastroenterol. 1991, 26, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marin, J.J.; Villanueva, G.R.; Esteller, A. Diabetes-Induced Cholestasis in the Rat: Possible Role of Hyperglycemia and Hypoinsulinemia. Hepatology 1988, 8, 332–340. [Google Scholar] [CrossRef]
- Demir, A.; Özütemiz, Ö.; Yildiz, C.; Yüce, G.; Tekeşin, O.; İlter, T. The Effect of Trimetazidine on Intrahepatic Cholestasis Caused by Carmustine in Rats. Hepatol. Res. 2001, 20, 133–143. [Google Scholar] [CrossRef]
- Tavoloni, N. Bile Secretion and Its Control in the Newborn Puppy. Pediatr. Res. 1986, 20, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Silveira, P.F.; Mimura, O.M. Concentrating Ability of the Bothrops jararaca Gallbladder. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 123, 25–33. [Google Scholar] [CrossRef]
- Waagbø, R.; Jørgensen, S.M.; Timmerhaus, G.; Breck, O.; Olsvik, P.A. Short-Term Starvation at Low Temperature Prior to Harvest Does Not Impact the Health and Acute Stress Response of Adult Atlantic Salmon. PeerJ 2017, 5, e3273. [Google Scholar] [CrossRef]
- Skadhauge, E.; Lotan, R. Drinking Rate and Oxygen Consumption in the Euryhaline Teleost Aphanius Dispar in Waters of High Salinity. J. Exp. Biol. 1974, 60, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.G.; Nawata, C.M.; Wood, C.M.; Piercey-Normore, M.D.; Weihrauch, D. Body Fluid Osmolytes and Urea and Ammonia Flux in the Colon of Two Chondrichthyan Fishes, the Ratfish, Hydrolagus colliei, and Spiny Dogfish, Squalus acanthias. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 161, 27–35. [Google Scholar] [CrossRef]
- Laverty, G.; Skadhauge, E. Adaptation of Teleosts to Very High Salinity. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 163, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Genten, F.; Terwinghe, E.; Danguy, A. Atlas of Fish Histology; Science Publishers: Enfield, NH, USA, 2009; ISBN 978-1-57808-544-6. [Google Scholar]
- Gilloteaux, J.; Ott, D.W.; Oldham-Ott, C.K. The Gallbladder of Uranoscopus scaber L. (Teleost Perciform Fish) Is Lined by Specialized Cholecystocytes. Anat. Rec. 2011, 294, 1890–1903. [Google Scholar] [CrossRef]
- Kaptaner, B.; Aykut, H.; Dogan, E. A Histological and Histochemical Study on the Gallbladder of the Alburnus tarichi (Güldenstädt, 1814) (Cyprinidae). Int. J. Morphol. 2020, 38, 869–875. [Google Scholar] [CrossRef]
- Munger, L.L.; McGavin, M.D. Sequential Postmortem Changes in Chicken Liver At 4, 20, Or 37 °C. Avian Dis. 1972, 16, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Salako, M.A. Sequence of Histologic Alterations in Porcine Liver and Gall Bladder Undergoing Postmortem Autolysis. Master’s Thesis, Ahmadu Bello University, Zaria, Nigeria, 1978. [Google Scholar]
- Katharios, P.; Varvarigos, P.; Keklikoglou, K.; Ruetten, M.; Sojan, J.; Akter, M.; Cascarano, M.C.; Tsertou, M.I.; Kokkari, C. Native Parasite Affecting an Introduced Host in Aquaculture: Cardiac Henneguyosis in the Red Seabream Pagrus major Temminck & Schlegel (Perciformes: Sparidae) Caused by Henneguya aegea n. sp. (Myxosporea: Myxobolidae). Parasites Vectors 2020, 13, 27. [Google Scholar] [CrossRef]
Gilthead Seabream | Red Seabream | |
---|---|---|
0 h (No Imprint) 1 | 5.8 ± 0.18 | 6.7 ± 0.11 |
48 h | ||
DoF (Days of Fasting) | ||
1 DoF | 13.8 ± 0.89 a | 14.2 ± 0.35 a |
2 DoF | 13.5 ± 0.43 a | 17 2 ± 0.61 b |
3 DoF | 15 0 ± 0.63 b | 19.4 ± 0.33 c |
Stress | ||
Stressed | 14.9 ± 0.64 b | 17.2 ± 0.70 b |
Unstressed | 13.5 ± 0.38 a | 16.5 ± 0.76 a |
DoF × Stress | ||
1 DoF, Stressed | 15.2 ± 0.84 | 14.6 ± 0.57 |
1 DoF, Unstressed | 12.4 ± 1.11 | 13.8 ± 0.37 |
2 DoF, Stressed | 13.2 ± 0.78 | 18.4 ± 0.75 |
2 DoF, Unstressed | 13.8 ± 0.54 | 16.0 ± 0.48 |
3 DoF, Stressed | 16.0 ± 1.13 | 19.1 ± 0.14 |
3 DoF, Unstressed | 14.1 ± 0.08 | 19.6 ± 0.58 |
Significance Level (p) | ||
DoF | * | *** |
Stress | * | * |
DoF × Stress | ns | ns |
Gilthead Seabream | Red Seabream | |||
---|---|---|---|---|
Osmolality (Osmol/kg) | Cholesterol (mg/dL) | Osmolality (Osmol/kg) | Cholesterol (mg/dL) | |
Plasma 0 h | ||||
DoF | ns | ns | ns | ns |
Stress | ** | ns | *** | *** |
DoF × Stress | ns | ns | ns | ns |
Bile 0 h | ||||
DoF | ns | ** | ns | ns |
Stress | *** | ns | ns | ns |
DoF × Stress | ns | ns | ns | ns |
Bile 48 h | ||||
DoF | ns | ns | ns | * |
Stress | * | ns | *** | *** |
DoF × Stress | ns | ns | ns | ns |
Plasma 0 h vs. Bile 0 h | ||||
DoF | ns | ns | ns | ns |
Stress | *** | ns | *** | ** |
Tissue | *** | *** | *** | *** |
DoF × Stress | ns | ns | ns | ns |
Stress × Tissue | ns | ns | ns | ns |
DoF × Tissue | * | ns | *** | *** |
Bile 0 h vs. Bile 48 h | ||||
DoF | ns | *** | ns | * |
Stress | *** | ns | *** | ns |
Ice Storage | *** | *** | *** | *** |
DoF × Stress | ns | ns | ns | ns |
Stress × Ice Storage | ns | * | ns | ns |
DoF × Ice Storage | ns | ns | *** | * |
Gilthead Seabream | Red Seabream | |
---|---|---|
Bile Imprint | ||
Ice storage | Absent at 0 h Present in all fish at 48 h of ice storage | Absent at 0 h Present in all fish at 48 h of ice storage |
Stress | Darker in stressed fish | Darker in stressed fish |
Days of Fasting (DoF) | Darker as DoF increased | Darker as DoF increased |
Bile components | ||
Ice storage | Increased osmolality at 48 h Reduced cholesterol at 48 h | Increased osmolality at 48 h Reduced cholesterol at 48 h |
Stress | Increased osmolality at 0 h and 48 h No effect on cholesterol | Increased osmolality at 48 h Increased cholesterol at 48 h |
Days of Fasting | Reduced cholesterol at 0 h | Reduced cholesterol at 0 h and 48 h |
Plasma components | ||
Stress | Increased osmolality at 0 h No effect on cholesterol | Increased osmolality at 0 h Increased cholesterol at 0 h |
Days of Fasting | No effect | No effect |
Plasma vs. bile components | ||
Plasma osmolality higher than bile osmolality Plasma cholesterol higher than bile cholesterol | Plasma osmolality higher than bile osmolality Plasma cholesterol higher than bile cholesterol | |
Histology (gallbladder) | No significant differences between treatments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougali, S.B.; Karakatsouli, N.; Balaskas, C.; Petropoulos, K.; Trampouli, D.; Batzina, A.; Laskari, P.-P. Bile Imprint on Parietal Peritoneum of Gilthead Seabream and Red Seabream: Effects of Fasting Duration, Stress, and Ice Storage. Fishes 2025, 10, 32. https://doi.org/10.3390/fishes10010032
Bougali SB, Karakatsouli N, Balaskas C, Petropoulos K, Trampouli D, Batzina A, Laskari P-P. Bile Imprint on Parietal Peritoneum of Gilthead Seabream and Red Seabream: Effects of Fasting Duration, Stress, and Ice Storage. Fishes. 2025; 10(1):32. https://doi.org/10.3390/fishes10010032
Chicago/Turabian StyleBougali, Sofia Brinkmann, Nafsika Karakatsouli, Christos Balaskas, Konstantinos Petropoulos, Despoina Trampouli, Alkisti Batzina, and Pinelopi-Paraskevi Laskari. 2025. "Bile Imprint on Parietal Peritoneum of Gilthead Seabream and Red Seabream: Effects of Fasting Duration, Stress, and Ice Storage" Fishes 10, no. 1: 32. https://doi.org/10.3390/fishes10010032
APA StyleBougali, S. B., Karakatsouli, N., Balaskas, C., Petropoulos, K., Trampouli, D., Batzina, A., & Laskari, P.-P. (2025). Bile Imprint on Parietal Peritoneum of Gilthead Seabream and Red Seabream: Effects of Fasting Duration, Stress, and Ice Storage. Fishes, 10(1), 32. https://doi.org/10.3390/fishes10010032