Effects of Chinese Herbal Medicines on Growth Performance, Antioxidant Capacity, and Liver and Intestinal Health of Hybrid Snakehead (Channa maculata ♀ × Channa. argus ♂)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Production
2.2. Experimental Fish and Management
2.3. Sample Collection
2.4. Measurement and Methods
2.4.1. Growth Performance and Physical Indices
2.4.2. Composition of the Diet
2.4.3. Biochemical Indices
2.5. Hepatic and Intestinal Histology Analysis
2.6. Quantitative Real-Time PCR Analysis
2.7. Intestine Microbiome Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Hematological Indexes
3.3. Liver Morphology
3.4. Intestinal Morphology
3.5. Antioxidant Indicators
3.6. Gene Expression in Liver and Intestine
3.7. Intestinal Microbiota
3.8. Correlation Between Intestinal Microbiota and Inflammatory Gene Expression, Antioxidant Indices, and Growth Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHM | Chinese herbal medicines |
CG | Control group |
IRE | I. radix extract |
FSE | F. suspensa extract |
SCE | S. chinensis extract |
CHMM | Chinese herbal medicine extract mixture |
WGR | Weight gain rate |
SGR | Specific growth rate |
FE | Feed efficiency ratio |
FR | Feeding rate |
SR | Survival rate |
FCR | Feed conversion ratio |
CF | Condition factor |
HSI | Hepatosomatic index |
VSI | Viscerosomatic index |
HDL-C | High-density lipoprotein cholesterol |
LDL-C | Low-density lipoprotein cholesterol |
TC | Total cholesterol |
TG | Triglyceride |
BUN | Blood urea nitrogen |
GLU | Glucose |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
AKP | Alkaline phosphatase |
SOD | Superoxide dismutase |
CAT | Catalase |
MDA | Malondialdehyde |
iκbα | inhibitor of NF-κBα |
nfκb-p65 | nuclear factor kappa B p65 subunit |
il-8 | interleukin-8 |
il-10 | interleukin-10 |
sod | Cu/Zn superoxide dismutase |
cat | catalase |
keap 1 | Kelch-like ECH-associated protein 1 |
References
- Gilbert, W.; Thomas, L.F.; Coyne, L.; Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 2021, 15, 100123. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Q.; Yang, Y.; Olsen, R.E.; Ringø, E.; Bindelle, J.; Zhou, Z. Use of probiotics in aquaculture of China—A review of the past decade. Fish Shellfish Immunol. 2019, 86, 734–755. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Hao, D.; Xiao, P. Research progress of chinese herbal medicine compounds and their bioactivities: Fruitful 2020. Chin. Herb. Med. 2022, 14, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Li, X.; Du, Q.; Cui, H.; Xu, Y. Research progress in the application of chinese herbal medicines in aquaculture: A review. Engineering 2017, 3, 731–737. [Google Scholar] [CrossRef]
- Xiao, P.; Huang, H.; Li, X.; Chen, J.; Duan, J.-A. Characterization, evaluation of nutritional parameters of Radix isatidis protein and its antioxidant activity in D-galactose induced ageing mice. BMC Complement. Altern. Med. 2019, 19, 297. [Google Scholar] [CrossRef]
- Ali, M.F.; Soliman, A.A.; Gewaily, M.S.; Abdel-Kader, T.Y.; Amer, A.A.; Zaineldin, A.I.; Al-Asgah, N.A.; Younis, E.M.; Abdel-Warith, A.-W.A.; Sewilam, H.; et al. Isatis phytogenic relieved atrazine induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia. Saudi J. Biol. Sci. 2022, 29, 190–196. [Google Scholar] [CrossRef]
- Li, P.; Yan, Z.; Shi, P.; Wang, D.; Liu, Z.; Lu, M.; Li, C.; Yin, Y.; Huang, P. The effects of Radix isatidis raw material on egg quality, serum biochemistry, gut morphology and gut flora. Antioxidants 2023, 12, 2084. [Google Scholar] [CrossRef]
- Xiang, K.-L.; Liu, R.-X.; Zhao, L.; Xie, Z.-P.; Zhang, S.-M.; Dai, S.-J. Labdane diterpenoids from Forsythia suspensa with anti-inflammatory and anti-viral activities. Phytochemistry 2020, 173, 112298. [Google Scholar] [CrossRef]
- Long, S.; Wang, Q.; He, T.; Ma, J.; Wang, J.; Liu, S.; Wang, H.; Liu, L.; Piao, X. Maternal dietary Forsythia suspensa extract supplementation induces changes in offspring antioxidant status, inflammatory responses, intestinal development, and microbial community of sows. Front. Vet. Sci. 2022, 9, 926822. [Google Scholar] [CrossRef]
- Lv, W.; Jin, W.; Lin, J.; Wang, Z.; Ma, Y.; Zhang, W.; Zhu, Y.; Hu, Y.; Qu, Q.; Guo, S. Forsythia suspensa polyphenols regulate macrophage M1 polarization to alleviate intestinal inflammation in mice. Phytomedicine 2024, 125, 155336. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Liu, L.; Chen, M.; Jia, J.; Wang, A. Phytochemical and chemotaxonomic studies on the stems and leaves of Schisandra chinensis (Turcz.) Baill. Biochem. Syst. Ecol. 2021, 99, 104328. [Google Scholar] [CrossRef]
- Luan, F.; Zou, J.; Zhang, X.; Zeng, J.; Peng, X.; Li, R.; Shi, Y.; Zeng, N. The extraction, purification, structural features, bioactivities, and applications of Schisandra chinensis polysaccharides: A review. Int. J. Biol. Macromol. 2024, 262, 130030. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Chen, X.; Wang, K.; Wang, J.; Chen, D.; Geng, Y.; Lai, W.; Wei, X. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against aeromonas hydrophila infection in fish. Fish Shellfish Immunol. 2016, 59, 196–202. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Yan, S.; Hao, M.; Fei, C.; Ji, D.; Mao, C.; Tong, H.; Lu, T.; Su, L. Study on the plasma metabolomics of Schisandra chinensis polysaccharide against ulcerative colitis and its correlation with gut microbes metabolism. Chin. J. Anal. Chem. 2023, 51, 100244. [Google Scholar] [CrossRef]
- Zuo, A.; Zhou, Y.; Chen, Y.; Liu, S.; Lu, Y.; Li, Y.; Cao, S.; Liu, Z. Physiological and transcriptome analysis reveal the regulation mechanism underlying the muscle quality effect of dietary Schisandra chinensis in triploid crucian carp (Carassius auratus). Mar. Biotechnol. 2023, 25, 1191–1207. [Google Scholar] [CrossRef]
- Zhao, P.-F. Dietary lipid concentrations influence growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Aquacult Int. 2016, 24, 1353–1364. [Google Scholar] [CrossRef]
- Fisheries Bureau of Ministry of Agriculture (FBMA). China Fishery Statistics Yearbook; China Agriculture Press: Beijing, China, 2023.
- Li, K.; Jiang, R.; Qiu, J.; Liu, J.; Shao, L.; Zhang, J.; Liu, Q.; Jiang, Z.; Wang, H.; He, W.; et al. How to control pollution from tailwater in large scale aquaculture in China: A review. Aquaculture 2024, 590, 741085. [Google Scholar] [CrossRef]
- Zier, K.I.; Schultze, W.; Sazama, U.; Fröba, M.; Leopold, C.S. Stabilizing and destabilizing effects of drug-excipient interactions in spray-dried, freeze-dried, and granulated Sennae fructus extracts. Dry. Technol. 2019, 38, 1882–1890. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC INTERNATIONAL; Latimer, G.W., Jr., Ed.; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-761013-8. [Google Scholar]
- Xu, T.; Liu, X.; Huang, W.; Li, G.; Zhang, Y.; Xu, D.; Wang, G. Effects of dietary carbohydrate levels on growth, metabolic enzyme activities and oxidative status of hybrid snakehead (Channa maculata ♀ × Channa argus ♂). Aquaculture 2023, 563, 738960. [Google Scholar] [CrossRef]
- Fang, H.; Xie, J.; Liao, S.; Guo, T.; Xie, S.; Liu, Y.; Tian, L.; Niu, J. Effects of Dietary Inclusion of Shrimp Paste on Growth Performance, Digestive Enzymes Activities, Antioxidant and Immunological Status and Intestinal Morphology of Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Front. Physiol. 2019, 10, 1027. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Yu, J.; Li, J.; Wu, Q.; Bao, S.; Jiang, L.; Liu, B. Effects of dietary fermented chinese herbal medicines on growth performance, digestive enzyme activity, liver antioxidant capacity, and intestinal inflammatory gene expression of juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 25, 101269. [Google Scholar] [CrossRef]
- Ashry, A.M.; Habiba, M.M.; Abdel-Warith, A.A.; Younis, E.M.; Davies, S.J.; Elnakeeb, M.A.; Abdelghany, M.F.; El-Zayat, A.M.; El-Sebaey, A.M. Dietary effect of powdered herbal seeds on zootechnical performance, hemato-biochemical indices, immunological status, and intestinal microbiota of European sea bass (Dicentrarchus labrax). Aquac. Rep. 2024, 36, 102074. [Google Scholar] [CrossRef]
- Ran, J.; Gan, Q.; Feng, L. Effects of different levels of Isatis tinctoria ultrafine powder additions on the production performance of Ctenopharyngodon idellus fingerlings. North. Chin. Fish. 2024, 43, 36–38. [Google Scholar]
- Shi, P.; Yan, Z.; Chen, M.; Li, P.; Wang, D.; Zhou, J.; Wang, Z.; Yang, S.; Zhang, Z.; Li, C.; et al. Effects of dietary supplementation with Radix isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res. Vet. Sci. 2024, 166, 105080. [Google Scholar] [CrossRef]
- Zhao, P.; Piao, X.; Zeng, Z.; Li, P.; Xu, X.; Wang, H. Effect of Forsythia suspensa extract and chito-oligosaccharide alone or in combination on performance, intestinal barrier function, antioxidant capacity and immune characteristics of weaned piglets. Anim. Sci. J. 2016, 88, 854–862. [Google Scholar] [CrossRef]
- Ding, Z.; Xiao, J.; Zhang, Y.; Jiang, Y.; Chen, W.; Hu, J.; Guo, Y.; Zhang, B. Pharmacokinetics and liver uptake of three Schisandra lignans in rats after oral administration of liposome encapsulating β-cyclodextrin inclusion compound of Schisandra extract. J. Liposome Res. 2019, 29, 121–132. [Google Scholar] [CrossRef]
- Sharma, P. Value of liver function tests in cirrhosis. J. Clin. Exp. Hepatol. 2022, 12, 948–964. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Cai, J.; Wang, J.; Wang, G.; Zhu, Z.; Cao, F. Effects of dietary fish meal replacement by fermented moringa (Moringa oleifera Lam.) leaves on growth performance, nonspecific immunity and disease resistance against aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio Var. CAS III). Fish Shellfish Immunol. 2020, 102, 430–439. [Google Scholar] [CrossRef]
- Angela, C.; Wang, W.; Lyu, H.; Zhou, Y.; Huang, X. The effect of dietary supplementation of astragalus membranaceus and bupleurum chinense on the growth performance, immune-related enzyme activities and genes expression in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 107, 379–384. [Google Scholar] [CrossRef]
- Li, B.; Xiao, Q.; Zhang, J.; Wang, Y.; Liu, J.; Zhang, B.; Liu, H. Exploring the active compounds and potential mechanism of the anti-nonalcoholic fatty liver disease activity of the fraction from Schisandra chinensis fruit extract based on multi-technology integrated network pharmacology. J. Ethnopharmacol. 2023, 301, 115769. [Google Scholar] [CrossRef]
- Peng, D.; Peng, B.; Li, J.; Zhang, Y.; Luo, H.; Xiao, Q.; Tang, S.; Liang, X.-F. Effects of three feed attractants on the growth, biochemical indicators, lipid metabolism and appetite of chinese perch (Siniperca chuatsi). Aquac. Rep. 2022, 23, 101075. [Google Scholar] [CrossRef]
- Yang, X.; Cao, D.; Ji, H.; Xu, H.; Feng, Y.; Liu, A. Physicochemical characterization, rheological properties, and hypolipidemic and antioxidant activities of compound polysaccharides in chinese herbal medicines by fractional precipitation. Int. J. Biol. Macromol. 2023, 242, 124838. [Google Scholar] [CrossRef] [PubMed]
- Spisni, E.; Tugnoli, M.; Ponticelli, A.; Mordenti, T.; Tomasi, V. Hepatic steatosis in artificially fed marine teleosts. J. Fish Dis. 1998, 21, 177–184. [Google Scholar] [CrossRef]
- Nakayama, T.; Suzuki, S.; Kudo, H.; Sassa, S.; Nomura, M.; Sakamoto, S. Effects of three chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet. J. Ethnopharmacol. 2007, 109, 236–240. [Google Scholar] [CrossRef]
- He, Q.; Xiao, S.; Zhang, C.; Zhang, Y.; Shi, H.; Zhang, H.; Lin, F.; Liu, X.; Yang, H.; Wang, Q.; et al. Modulation of the growth performance, biochemical parameters, and non-specific immune responses of the hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂) by two kinds of chinese herb. Aquac. Rep. 2021, 19, 100604. [Google Scholar] [CrossRef]
- Xie, J.-J.; Chen, X.; Guo, T.-Y.; Xie, S.-W.; Fang, H.-H.; Liu, Z.-L.; Zhang, Y.-M.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Dietary values of Forsythia suspensa extract in Penaeus monodon under normal rearing and vibrio parahaemolyticus 3HP (VP3HP) challenge conditions: Effect on growth, intestinal barrier function, immune response and immune related gene expression. Fish Shellfish Immunol. 2018, 75, 316–326. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Wang, J.; Chen, D. New lignans and phenylethanoid with antioxidant activity from aerial parts of Forsythia suspensa (Thunb.) Vahl. Nat. Prod. Res. 2023, 37, 725–733. [Google Scholar] [CrossRef]
- Zhu, C.B.; Shen, Y.T.; Ren, C.H.; Yang, S.; Fei, H. A novel formula of herbal extracts regulates growth performance, antioxidant capacity, intestinal microbiota and resistance against aeromonas veronii in largemouth bass (Micropterus salmoides). Aquaculture 2024, 583, 740614. [Google Scholar] [CrossRef]
- Zandi, E.; Rothwarf, D.M.; Delhase, M.; Hayakawa, M.; Karin, M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997, 91, 243–252. [Google Scholar] [CrossRef]
- Li, K.; Wei, X.; Yang, J. Cytokine networks that suppress fish cellular immunity. Dev. Comp. Immunol. 2023, 147, 104769. [Google Scholar] [CrossRef]
- He, M.; Wang, K.; Liang, X.; Fang, J.; Geng, Y.; Chen, Z.; Pu, H.; Hu, Y.; Li, X.; Liu, L. Effects of dietary vitamin E on growth performance as well as intestinal structure and function of channel catfish (Ictalurus punctatus, Rafinesque 1818). Exp. Ther. Med. 2017, 14, 5703–5710. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Sun, H.; Liao, R.; Wei, Y.; Zhang, T.; Chen, Y.; Lin, S. Effects of herbal extracts (Foeniculum vulgare and Artemisia annua) on growth, liver antioxidant capacity, intestinal morphology and microorganism of juvenile largemouth bass, Micropterus salmoides. Aquac. Rep. 2022, 23, 101081. [Google Scholar] [CrossRef]
- López Nadal, A.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.F.; Brugman, S. Feed, microbiota, and gut immunity: Using the zebrafish model to understand fish health. Front. Immunol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Diwan, A.D.; Harke, S.N.; Gopalkrishna; Panche, A.N. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J. Anim. Physiol. Anim. Nutr. 2022, 106, 441–469. [Google Scholar] [CrossRef]
- Bereded, N.K.; Abebe, G.B.; Fanta, S.W.; Curto, M.; Waidbacher, H.; Meimberg, H.; Domig, K.J. The impact of sampling season and catching site (wild and aquaculture) on gut microbiota composition and diversity of Nile tilapia (Oreochromis niloticus). Biology 2021, 10, 180. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Feng, H.; Zhao, S.; Ma, X.; Zhang, M.; Liu, Q.; Zeng, Y.; Zhao, J.; Liu, Z.; Liu, H. Dietary supplementation with emodin affects growth and gut health by modulating the gut microbiota of common carp (Cyprinus carpio). Aquac. Rep. 2024, 35, 101962. [Google Scholar] [CrossRef]
- Wang, S.-T.; Meng, X.-Z.; Zhang, J.-H.; Dai, Y.-F.; Shen, Y.; Xu, X.-Y.; Wang, R.-Q.; Li, J.-L. 16S rRNA sequencing analysis of the correlation between the intestinal microbiota and body-mass of grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 35, 100699. [Google Scholar] [CrossRef]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef]
- Ferreira-Halder, C.V.; de Sousa Faria, A.V.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Gut Microbiome Health Dis. 2017, 31, 643–648. [Google Scholar] [CrossRef]
Ingredients | CG | IRE | FSE | SCE | CHMM |
---|---|---|---|---|---|
Fish meal | 320 | 320 | 320 | 320 | 320 |
Soybean meal | 250 | 250 | 250 | 250 | 250 |
Corn gluten meal | 120 | 120 | 120 | 120 | 120 |
Gluten flour | 110 | 100 | 100 | 100 | 100 |
Cassava starch | 80 | 80 | 80 | 80 | 80 |
Fish oil | 30 | 30 | 30 | 30 | 30 |
Soybean oil | 30 | 30 | 30 | 30 | 30 |
Vitamin premix 1 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 |
Mineral premix 2 | 50 | 50 | 50 | 50 | 50 |
Vitamin C | 5 | 5 | 5 | 5 | 5 |
Choline chloride | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Isatidis radix extract | - | 10 | - | - | - |
Forsythia suspensa extract | - | - | 10 | - | - |
Schisandra chinensis extract | - | - | - | 10 | |
Mixed extract (1:1:1) | - | - | - | - | 10 |
Proximate composition | |||||
Crude protein (%) | 43.20 | 43.12 | 42.88 | 43.25 | 43.41 |
Crude lipids (%) | 7.51 | 7.42 | 7.36 | 7.47 | 7.48 |
Ash (%) | 9.45 | 9.55 | 9.61 | 9.48 | 9.64 |
Moisture (%) | 5.64 | 5.85 | 5.46 | 5.84 | 6.24 |
Carbohydrate (%) | 34.20 | 33.50 | 33.41 | 33.28 | 33.89 |
Gross energy (kJ/g) | 19.05 | 18.59 | 18.89 | 19.15 | 19.35 |
Gene Names | Primer Sequence (5′-3′) | Product Size (bp) | PCR Amplification Efficiency | Melting Temperature, °C | GenBank No. |
---|---|---|---|---|---|
β-actin | F- GCCCTCTTCCAGCCTTCCTT R-AGTGTTGGCATACAGGTCTTTACGG | 146 | 1.985 | 59 | [21] |
ef1a | F-GGAAAGGAAAAGACCCACAT R-TATCCACAGCCTTGATGACA | 124 | 1.950 | 57 | This study |
ikba | F-AAAATGTTACCGTGCCAGGAC R-ATGTATCACCGTCGTCAGTC | 160 | 1.998 | 59 | [22] |
nf-kb p65 | F-CAGCCAAAACCAAGAGGGAT R-TCGGCTTCGTAGTAGCCATG | 233 | 1.958 | 59 | [22] |
il-8 | F-GAGTCTGAGCAGCCTGGGAGT R-CTGTTCGCCGGTTTTCAGTG | 154 | 2.011 | 57 | [21] |
il-10 | F-ATTTCTCCTCCTGTGGGTCCTGG R-TCTGATCTGGGAATAATCCTGTCTC | 152 | 1.955 | 54 | This study |
sod | F-GGCCGAACCATGGTGATACA R-ACTGGGCAATGCCAATGACT | 203 | 2.005 | 56 | [21] |
cat | F-TCGTCTCTTCTCCTACCCCG R-ACACGCACATTGGACCATCA | 125 | 2.010 | 60 | This study |
keap1 | F-GCTGTCATCAACCGACTTCTT R-TGTCTTCCATTCGTCCTTCTC | 102 | 1.977 | 58 | This study |
CG | IRE | FSE | SCE | CHMM | |
---|---|---|---|---|---|
1IBW (g) | 15.83 ± 0.18 | 15.88 ± 0.35 | 15.94 ± 0.17 | 15.84 ± 0.19 | 15.81 ± 0.15 |
2FBW (g) | 47.08 ± 1.8 | 44.37 ± 1.43 | 43.48 ± 1.93 | 29.15 ± 2.13 | 39.75 ± 4.11 |
3WGR (%) | 197.53 ± 12.01 a | 179.27 ± 11.55 a | 172.82 ± 3.10 a | 48.03 ± 8.87 c | 110.67 ± 15.02 b |
4SGR (%/d) | 2.42 ± 0.09 a | 2.28 ± 0.09 a | 2.23 ± 0.03 a | 0.86 ± 0.14 c | 1.64 ± 0.16 b |
5FE (%) | 101.00 ± 6.03 a | 103.49 ± 2.16 a | 80.97 ± 2.32 a | 36.76 ± 5.39 c | 67.84 ± 2.28 b |
6FR(%BW/d) | 1.87 ± 0.10 a | 1.88 ± 0.03 a | 1.73 ± 0.05 ab | 0.93 ± 0.01 b | 1.76 ± 0.01 ab |
7FCR(%) | 0.85 ± 0.56 b | 0.80 ± 0.38 b | 0.92 ± 0.22 b | 2.02 ± 0.25 a | 0.99 ± 0.21 b |
8SR (%) | 85.83 ± 1.67 ab | 93.33 ± 0.83 a | 78.33 ± 1.64 bc | 75.00 ± 2.22 c | 80.00 ± 0.00 ab |
9CF (g/cm3) | 0.93 ± 0.04 b | 1.29 ± 0.04 a | 1.23 ± 0.01 a | 0.81 ± 0.06 b | 1.22 ± 0.05 a |
10HSI (%) | 1.48 ± 0.11 | 1.69 ± 0.18 | 1.48 ± 0.18 | 1.16 ± 0.23 | 1.27 ± 0.13 |
11VSI (%) | 8.10 ± 0.32 a | 8.22 ± 0.39 a | 7.59 ± 0.54 ab | 6.43 ± 0.67 b | 7.10 ± 0.57 ab |
CG | IRE | FSE | SCE | CHMM | |
---|---|---|---|---|---|
HDL-C (mmol/L) | 1.59 ± 0.17 bc | 4.03 ± 0.55 a | 1.87 ± 0.32 b | 2.06 ± 0.48 b | 0.72 ± 0.13 c |
LDL-C (mmol/L) | 1.15 ± 0.15 bc | 5.11 ± 0.60 a | 2.02 ± 0.27 b | 1.73 ± 0.72 c | 0.58 ± 0.19 c |
TG (mmol/L) | 5.93 ± 0.88 a | 3.77 ± 0.50 b | 4.51 ± 0.42 ab | 1.76 ± 0.19 c | 1.67 ± 0.31 b |
TC (mmol/L) | 6.16 ± 0.31 a | 5.84 ± 0.82 b | 5.33 ± 0.65 b | 5.32 ± 0.40 b | 4.22 ± 0.68 b |
GLU (mmol/L) | 8.60 ± 1.82 ab | 4.63 ± 1.22 b | 11.46 ± 2.04 a | 8.58 ± 2.00 b | 6.99 ± 2.59 b |
BUN (mmol/L) | 6.64 ± 0.36 a | 4.62 ± 0.49 b | 4.50 ± 0.28 b | 4.63 ± 0.29 b | 4.36 ± 0.61 b |
AKP (mmol/L) | 3.97 ± 0.84 a | 3.84 ± 0.51 a | 2.52 ± 0.24 ab | 2.01 ± 0.28 ab | 1.30 ± 0.22 b |
AST (mmol/L) | 32.89 ± 3.11 a | 19.05 ± 4.13 bc | 23.14 ± 1.88 b | 12.45 ± 3.76 c | 20.21 ± 2.05 bc |
ALT (mmol/L) | 9.65 ± 1.06 a | 8.59 ± 1.03 a | 8.93 ± 0.90 a | 5.17 ± 0.30 b | 8.67 ± 1.54 a |
Chao1 | ACE | Simpson | Shannon | Coverage | |
---|---|---|---|---|---|
CG | 1148.52 ± 259.54 ab | 1146.50 ± 259.43 ab | 0.98 ± 0.15 | 8.05 ± 0.52 ab | 0.999 |
IRE | 1219.61 ± 134.93 a | 1216.33 ± 134.97 a | 0.99 ± 0.05 | 8.92 ± 0.53 a | 0.999 |
FSE | 731.07 ± 108.13 b | 728.50 ± 107.94 b | 0.90 ± 0.06 | 7.10 ± 1.03 ab | 0.999 |
SCE | 767.04 ± 74.03 ab | 766.00 ± 74.29 ab | 0.99 ± 0.01 | 8.31 ± 0.23 ab | 0.999 |
CHMM | 695.90 ± 109.95 b | 693.83 ± 110.00 b | 0.93 ± 0.22 | 6.79 ± 0.63 b | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Fei, S.; Zhang, J.; Liu, H.; Luo, Q.; Ou, M.; Cui, L.; Li, T.; Zhao, J. Effects of Chinese Herbal Medicines on Growth Performance, Antioxidant Capacity, and Liver and Intestinal Health of Hybrid Snakehead (Channa maculata ♀ × Channa. argus ♂). Fishes 2025, 10, 33. https://doi.org/10.3390/fishes10010033
Kang J, Fei S, Zhang J, Liu H, Luo Q, Ou M, Cui L, Li T, Zhao J. Effects of Chinese Herbal Medicines on Growth Performance, Antioxidant Capacity, and Liver and Intestinal Health of Hybrid Snakehead (Channa maculata ♀ × Channa. argus ♂). Fishes. 2025; 10(1):33. https://doi.org/10.3390/fishes10010033
Chicago/Turabian StyleKang, Jiamin, Shuzhan Fei, Junhao Zhang, Haiyang Liu, Qing Luo, Mi Ou, Langjun Cui, Tao Li, and Jian Zhao. 2025. "Effects of Chinese Herbal Medicines on Growth Performance, Antioxidant Capacity, and Liver and Intestinal Health of Hybrid Snakehead (Channa maculata ♀ × Channa. argus ♂)" Fishes 10, no. 1: 33. https://doi.org/10.3390/fishes10010033
APA StyleKang, J., Fei, S., Zhang, J., Liu, H., Luo, Q., Ou, M., Cui, L., Li, T., & Zhao, J. (2025). Effects of Chinese Herbal Medicines on Growth Performance, Antioxidant Capacity, and Liver and Intestinal Health of Hybrid Snakehead (Channa maculata ♀ × Channa. argus ♂). Fishes, 10(1), 33. https://doi.org/10.3390/fishes10010033