Taurochenodeoxycholic Acid Improves Growth, Physiology, Intestinal Microbiota, and Muscle Development in Red Swamp Crayfish (Procambarus clarkii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design of TCDCA Feeding
2.3. Sample Collection
2.4. Growth Performance
2.5. Proximate Composition Analysis of Muscle
2.6. Histological Analysis of Muscle
2.7. Transmission Electron Microscopy (TEM) Observation of Muscle
2.8. 16s rRNA Sequencing
2.9. RT-PCR Analysis
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Effects of TCDCA on Muscle Texture and Nutrient Content of P. clarkii
3.3. Effect of TCDCA on Muscle Tissue Morphology of P. clarkii
3.4. Effects of TCDCA on Transcription Levels of Genes Related to Muscle Development in P. clarkii
3.5. Analysis of Differential Intestinal Microbes Between Con and TCDCA Groups
3.6. Effect of TCDCA on Intestinal Microbial Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. 2020, 12, 966–986. [Google Scholar] [CrossRef]
- Farag, M.A.; Mansour, S.T.; Nouh, R.A.; Khattab, A.R. Crustaceans (shrimp, crab, and lobster): A comprehensive review of their potential health hazards and detection methods to assure their biosafety. J. Food Saf. 2023, 43, 10326. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.A. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Qin, L.R.; He, J.H.; Rong, K.; Guo, C.; Liu, J.S.; Zhang, T.L.; Li, W. Changes in secondary sexual characteristics of female red swamp crayfish (Procambarus clarkii) and relationship to ovarian development: Implications for intensive breeding of seedlings. Aquaculture 2024, 592, 741156. [Google Scholar] [CrossRef]
- Ou, J.T.; Wang, X.; Luan, X.Q.; Yu, S.; Chen, H.; Dong, H.Z.; Zhang, B.H.; Xu, Z.Q.; Liu, Y.; Zhao, W.H. Comprehensive analysis of the mRNA and miRNA transcriptome implicated in the immune response of Procambarus clarkii to Spiroplasma eriocheiris. Microb. Pathog. 2024, 196, 106928. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.B.; Li, S.X.; Li, Y.L.; Fang, L.; Zhang, H.; Wang, Q.; Ruan, G.L. Effects of luteolin supplementation on growth, histology, antioxidant capacity, non-specific immunity and intestinal microbiota of the red swamp crayfish (Procambarus clarkii). Anim. Feed Sci. Tech. 2024, 313, 115986. [Google Scholar] [CrossRef]
- Kong, D.H.; Ji, Y.X.; Zhang, B.Y.; Li, K.C.; Liao, Z.Y.; Wang, H.; Zhou, J.X.; Wang, Q.J. Effects of hydroxy methionine zinc on growth performance, immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii). Fish Shellfish Immun. 2024, 144, 109231. [Google Scholar] [CrossRef]
- Yang, D.; Sun, W.B.; Hou, M.D.; Xiao, C.B.; Jin, H.H.; Lin, Y.; Wang, D.P.; Ye, H.; Luo, H. Eucommia ulmoides Oliv. leaf extract: Effects on growth, antioxidant capacity, and lipid metabolism in Red swamp crayfish (Procambarus clarkii). Aquac. Rep. 2024, 39, 102425. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Garruti, G.; Baccetto, R.L.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.H.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef]
- Adam, A.H.; Verdegem, M.; Soliman, A.A.; Zaki, M.; Khalil, R.H.; Nour, A.M.; Khaled, A.A.; Basuini, M.F.E.; Khalil, H.S. Effect of dietary bile acids: Growth performance, immune response, genes expression of fatty acid metabolism, intestinal, and liver morphology of striped catfish (Pangasianodon hypophthalmus). Aquac. Rep. 2023, 29, 101510. [Google Scholar] [CrossRef]
- Copple, B.L.; Li, T.G. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol. Res. 2016, 104, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Distrutti, E.; Carino, A.; Zampella, A.; Biagioli, M. Bile acids and their receptors in metabolic disorders. Prog. Lipid Res. 2021, 82, 101094. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sagada, G.; Wang, C.Y.; Liu, R.C.; Li, Q.; Zhang, C.; Yan, Y.Z. Exogenous bile acids regulate energy metabolism and improve the health condition of farmed fish. Aquaculture 2023, 562, 738852. [Google Scholar] [CrossRef]
- Li, L.; Liu, T.Y.; Li, J.R.; Yang, Y.C.; Liu, H.Y.; Zhang, P.Y. Effectiveness of bile acids as a feed supplement to improve growth performance, feed utilization, lipid metabolism, digestive enzymes, and hepatic antioxidant status in aquaculture animals: A meta-analysis. Aquac. Rep. 2024, 36, 102121. [Google Scholar] [CrossRef]
- Li, J.B.; Wang, Z.; Cao, X.F.; Wang, J.M.; Gong, Y.; Wang, X.E.; Lai, W.C.; Bu, X.Y.; Zheng, J.C.; Mai, K.S.; et al. Effects of supplemental mixed bile acids on growth performance, body composition, digestive enzyme activities, skin color, and flesh quality of juvenile large yellow croaker (Larimichthys crocea) in soybean oil based diet. Front. Mar. Sci. 2023, 10, 1149887. [Google Scholar] [CrossRef]
- Peng, X.R.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Zhou, X.Q. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid. Fish Shellfish Immun. 2019, 92, 552–569. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Romano, N.; Allen, K.M.; Bowman, B.A.; Thompson, K.R.; Tidwell, J.H. Metabolism and Nutritive Role of Cholesterol in the Growth, Gonadal Development, and Reproduction of Crustaceans. Rev. Fish. Sci. Aquac. 2018, 26, 254–273. [Google Scholar] [CrossRef]
- Liu, Y.C.; Niu, K.M.; Wang, R.X.; Liang, X.X.; Lin, C.; Wu, X.; Zhai, Z.Y. Taurochenodeoxycholic acid inhibits intestinal epithelial cell proliferation and induces apoptosis independent of the farnesoid X receptor. Food Funct. 2023, 14, 5277–5289. [Google Scholar] [CrossRef]
- Bao, L.G.; Hao, D.C.; Wang, X.; He, X.L.; Mao, W.; Li, P.F. Transcriptome investigation of anti-inflammation and immuno-regulation mechanism of taurochenodeoxycholic acid. BMC Pharmacol. Toxicol. 2021, 22, 23. [Google Scholar] [CrossRef]
- Zhu, F.Y.; Xu, W.H.; Wang, W.J.; Liao, J.M.; Huang, Y.H.; Huang, X.H.; Qin, Q.W. Taurochenodeoxycholic acid exerts anti-viral activities upon SGIV infection via anti-inflammatory response. Aquaculture 2024, 578, 740124. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.Y.; He, X.L.; Mao, W.; Zhou, L.; Li, P.F. Taurochenodeoxycholic acid induces NR8383 cells apoptosis via PKC/JNK-dependent pathway. Eur. J. Pharmacol. 2016, 786, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Y.; Wen, H.B.; Liu, G.X.; Ma, X.Y.; Lv, G.H.; Wu, N.Y.; Chen, J.X.; Xue, M.M.; Li, H.X.; Xu, P. Gut Microbes Reveal Pseudomonas Medicates Ingestion Preference Protein Utilization and Cellular Homeostasis Under Feed Domestication in Freshwater Drum, Aplodinotus grunniens. Front. Microbiol. 2022, 13, 861705, Corrigendum in Front. Microbiol. 2023, 14, 1259988. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, I.; Liu, Y.Y.; Wiegertjes, G.F.; Raaijmakers, J.M. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol. Ecol. 2018, 94, 161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Shen, D.Q.; Fang, Z.W.; Jie, Z.Y.; Qiu, X.M.; Zhang, C.F.; Chen, Y.L.; Ji, L.N. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised crossover trial. Gut 2019, 68, 1430–1438. [Google Scholar] [CrossRef]
- Lin, H.R.; Xu, F.Z.; Chen, D.Y.; Xie, K.L.; Yang, Y.D.; Hu, W.; Li, B.Y.; Jiang, Z.L.; Liang, Y.H.; Tang, X.Y.; et al. The gut microbiota-bile acid axis mediates the beneficial associations between plasma vitamin D and metabolic syndrome in Chinese adults: A prospective study. Clin. Nutr. 2023, 42, 887–898. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Davenport, E.R.; Beaumont, M.; Jackson, M.A.; Knight, R.; Ober, C.; Spector, T.D.; Bell, J.T.; Clark, A.G.; Ley, R.E. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe 2016, 19, 731–743. [Google Scholar] [CrossRef]
- Dai, H.Y.; Shan, Z.Y.; Shi, L.; Duan, Y.H.; An, Y.C.; He, C.H.; Lyu, Y.; Zhao, Y.G.; Wang, M.L.; Du, Y.H.; et al. Mulberry leaf polysaccharides ameliorate glucose and lipid metabolism disorders via the gut microbiota-bile acids metabolic pathway. Int. J. Biol. Macromol. 2024, 282, 136876. [Google Scholar] [CrossRef]
- Zheng, X.C.; Xu, X.D.; Liu, M.Y.; Yang, J.; Yuan, M.; Sun, C.X.; Zhou, Q.L.; Chen, J.M.; Liu, B. Bile acid and short chain fatty acid metabolism of gut microbiota mediate high-fat diet induced intestinal barrier damage in Macrobrachium rosenbergii. Fish Shellfish Immun. 2024, 146, 109376. [Google Scholar] [CrossRef]
- Mancin, L.; Wu, G.D.; Paoli, A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 2023, 31, 254–269. [Google Scholar] [CrossRef]
- Zhou, J.S.; Chen, H.J.; Ji, H.; Shi, X.C.; Li, X.X.; Chen, L.Q.; Du, Z.Y.; Yu, H.B. Effect of dietary bile acids on growth, body composition, lipid metabolism and microbiota in grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2018, 24, 802–813. [Google Scholar] [CrossRef]
- Cheng, L.; Zhou, J.L.; Cheng, J.P. Bioaccumulation, tissue distribution and joint toxicity of erythromycin and cadmium in Chinese mitten crab (Eriocheir sinensis). Chemosphere 2018, 210, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, C.Y.; Gao, Q.; Liu, B.; Zhou, Q.L.; Sun, C.X.; Zhang, H.M.; Liu, M.; Tadese, D.A. Maternal and environmental microbes dominate offspring microbial colonization in the giant freshwater prawn Macrobrachium rosenbergii. Sci. Total Environ. 2021, 790, 148062. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Ma, S.; Tian, H.Y.; Jiang, W.B.; Jia, X.Y.; Zhang, W.X.; Jiang, G.Z.; Li, X.F.; Chi, C.; He, C.F.; et al. Evaluation of the protein-sparing effects of carbohydrates in the diet of the crayfish, Procambarus clarkii. Aquaculture 2022, 556, 738275. [Google Scholar] [CrossRef]
- Yang, H.J.; Mo, A.J.; Yi, L.Y.; Wang, J.H.; He, X.G.; Yuan, Y.C. Selenium attenuated food borne cadmium-induced intestinal inflammation in red swamp crayfish (Procambarus clarkii) via regulating PI3K/Akt/NF-κBpathway. Chemosphere 2024, 349, 140814. [Google Scholar] [CrossRef]
- Cai, M.L.; Zhang, Y.; Zhu, J.Q.; Li, H.H.; Tian, H.Y.; Chu, W.Y.; Hu, Y.; Liu, B.; Wang, A.M. Intervention of re-feeding on growth performance, fatty acid composition and oxidative stress in the muscle of red swamp crayfish (Procambarus clarkii) subjected to short-term starvation. Aquaculture 2021, 545, 737110. [Google Scholar] [CrossRef]
- Zhu, M.R.; Zhan, M.; Xi, C.J.; Gong, J.; Shen, H.S. Molecular characterization and expression of the autophagy-related gene Atg14 in WSSV-infected Procambarus clarkii. Fish Shellfish. Immunol. 2022, 125, 200–211. [Google Scholar] [CrossRef]
- Liu, J.; Du, H.; Liu, T.; Chen, C.; Yan, Y.; Liu, T.Q.; Liu, L.; Wang, E.L. Accurate reflection of hepatopancreas antioxidation and detoxification in Procambarus clarkii during virus infection and drug treatment: Reference gene selection, evaluation and expression analysis. Aquaculture 2022, 556, 738283. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xu, Z.F.; Li, M.L.; Shuai, K.; Lei, L.; Li, X.Q.; Leng, X.J. Supplemental bile acids in low fishmeal diet improved the growth, nutrient utilization of Pacific white shrimp. Aquac. Rep. 2023, 28, 101452. [Google Scholar] [CrossRef]
- Du, Y.H.; Wang, G.J.; Yu, E.M.; Xie, J.; Xia, Y.; Li, H.Y.; Zhang, K.; Gong, W.B.; Li, Z.F.; Xie, W.P.; et al. Dietary deoxycholic acid decreases fat accumulation by activating liver farnesoid X receptor in grass crap (Ctenopharyngodon idella). Aquaculture 2024, 578, 740123. [Google Scholar] [CrossRef]
- Weatherley, A.H.; Gill, H.S. The Biology of Fish Growth; Academic Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Jiang, J.Y.; Lu, X.; Dong, L.X.; Tian, J.; Zhang, J.M.; Guo, Z.B.; Luo, Y.J.; Cui, Z.B.; Wen, H.; Jiang, M. Enhancing growth, liver health, and bile acid metabolism of tilapia (Oreochromis niloticus) through combined cholesterol and bile acid in diets. Anim. Nutr. 2024, 17, 335–346. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.J.; Esser, K.A. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr. Opin. Clin. Nutr. 2010, 13, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Nedelsky, N.B.; Todd, P.K.; Taylor, J.P. Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. BBA-Mol. Basis Dis. 2008, 1782, 691–699. [Google Scholar] [CrossRef]
- Eskelinen, E.L. Autophagy: Supporting cellular and organismal homeostasis by self-eating. Int. J. Biochem. Cell B 2019, 111, 1–10. [Google Scholar] [CrossRef]
- Magnani, N.D.; Dada, L.A.; Sznajder, J.I. Ubiquitin-proteasome signaling in lung injury. Transl. Res. 2018, 198, 29–39. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Han, Z.; Zeng, X.A. Texture and Structure Measurements and Analyses for Evaluation of Fish and Fillet Freshness Quality: A Review. Compr. Rev. Food Sci. F 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Roy, B.C.; Bruce, H.L. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: A review. Crit. Rev. Food Sci. 2024, 64, 9280–9310. [Google Scholar] [CrossRef]
- Matarneh, S.K.; Silva, S.L.; Gerrard, D.E. New Insights in Muscle Biology that Alter Meat Quality. Annu. Rev. Anim. Biosci. 2021, 9, 355–377. [Google Scholar] [CrossRef]
- Zhou, M.Z.; Shi, G.P.; Deng, Y.; Wang, C.; Qiao, Y.; Xiong, G.Q.; Wang, L.; Wu, W.J.; Shi, L.; Ding, A.Z. Study on the physicochemical and flavor characteristics of air frying and deep frying shrimp (crayfish) meat. Front. Nutr. 2022, 9, 1022590. [Google Scholar] [CrossRef]
- Li, X.; Qu, K.; Liu, Y.; Dong, X.; Chi, S.; Yang, Q.; Tan, B.; Zhang, S.; Xie, S. Effects of Dietary Bile Acids Supplementation on Growth Performance, Sterol Metabolism, Bile Acids Enterohepatic Circulation, and Apoptosis of Juvenile Pacific White Shrimp (Litopenaeus Vannamei). SSRN 2023. [Google Scholar] [CrossRef]
- Bouton, P.E.; Harris, P.V.; Shorthose, W.R. Possible relationships between shear, tensile, and adhesion properties of meat and meat structure. J. Texture Stud. 1975, 6, 297–314. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Y.H.; Li, J.B.; Shao, C.M.; Ma, S.; Shen, C.; Zhao, R.Q. Dietary bile acids improve breast muscle growth in chickens through FXR/IGF2 pathway. Poult. Sci. 2024, 103, 103346. [Google Scholar] [CrossRef] [PubMed]
- Nicol, R.L.; Frey, N.; Pearson, G.; Cobb, M.; Richardson, J.; Olson, E.N. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 2001, 20, 2757–2767. [Google Scholar] [CrossRef] [PubMed]
- Johnston, I.A. Muscle development and growth: Potential implications for flesh quality in fish. Aquaculture 1999, 177, 99–115. [Google Scholar] [CrossRef]
- Acosta, J.; Carpio, Y.; Borroto, I.; González, O.; Estrada, M.P. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 2005, 119, 324–331. [Google Scholar] [CrossRef]
- Dumont, N.A.; Rudnicki, M.A. Characterizing satellite cells and myogenic progenitors during skeletal muscle regeneration. Methods Mol. Biol. 2017, 1560, 179–188. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.X.; Jia, W.P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastro Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
- Barut, I.; Kaya, S. The Diagnostic Value of C-Reactive Protein in Bacterial Translocation in Experimental Biliary Obstruction. Adv. Clin. Exp. Med. 2014, 23, 197–203. [Google Scholar] [CrossRef]
- Furt, F.; Lemoi, K.; Tüzel, E.; Vidali, L. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biol. 2012, 12, 70. [Google Scholar] [CrossRef]
- Tarhriz, V.; Eyvazi, S.; Shakeri, E.; Hejazi, M.S.; Dilmaghani, A. Antibacterial and Antifungal Activity of Novel Freshwater Bacterium Tabrizicola aquatica as a Prominent Natural Antibiotic Available in Qurugol Lake. Pharm. Sci. 2020, 26, 88–92. [Google Scholar] [CrossRef]
- Cai, X.; Yu, Y.; Wang, Y.; Zhang, Z.; Liao, M.; Li, B.; Liu, X.; Zhu, H.; Rong, X. Effects of potassium monopersulfate on water environment index and microbial community structure of Litopenaeus vannamei in pond culture system. J. Shanghai Ocean Univ. 2022, 31, 452–461. (In Chinese) [Google Scholar]
- Harwati, T.U.; Kasai, Y.; Kodama, Y.; Susilaningsih, D.; Watanabe, K. Tropicimonas isoalkanivorans gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int. J. Syst. Evol. Micr. 2009, 59, 388–391. [Google Scholar] [CrossRef]
- Xiong, F.; Wu, S.G.; Zhang, J.; Jakovlic, I.; Li, W.X.; Zou, H.; Li, M.; Wang, G.T. Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Front. Microbiol. 2018, 9, 2209. [Google Scholar] [CrossRef]
- Attwood, M.M.; Harder, W. The Oxidation and Assimilation of C2 Compounds by Hyphomicrobium sp. Microbiology 1974, 84, 350–356. [Google Scholar] [CrossRef]
CON | TCDCA | |
---|---|---|
Components (% dry matter) | ||
Fish meal | 5.0 | 5.0 |
Soybean meal | 25.0 | 25.0 |
Rapeseed meal | 18.0 | 18.0 |
Pork powder | 3.0 | 3.0 |
Peanut meal | 5.0 | 5.0 |
Rice bran | 4.0 | 4.0 |
Salt | 0.3 | 0.3 |
Spray-dried blood cell powder | 5.0 | 5.0 |
Squid paste | 3.0 | 3.0 |
Shrimp meal | 3.0 | 3.0 |
Starch | 18.79 | 18.76 |
Soybean oil | 3.0 | 3.0 |
Ecdysone (2%) | 0.01 | 0.01 |
Vitamin premix a | 1.0 | 1.0 |
Mineral premix b | 1.0 | 1.0 |
Choline chloride (50%) | 0.5 | 0.5 |
Calcium dihydrogen phosphate | 2.0 | 2.0 |
Carboxymethyl cellulose | 0.5 | 0.5 |
Bicarbonate | 1.5 | 1.5 |
Microcrystalline methionine | 0.4 | 0.4 |
TCDCA | 0.0 | 0.03 |
Total | 100.0 | 100.0 |
Proximate analysis (%) | ||
Dry matter (DM) | 83.03 | 82.27 |
Crude protein, CP (%) | 32.78 | 33.21 |
Crude lipid (Ether extract), EE (%) | 5.68 | 6.08 |
Gross energy (MJ/kg) | 15.89 | 16.09 |
Gene | Forward (5′-3′) | Reverse (5′-3′) | PL (bp) | Reference |
---|---|---|---|---|
EIF | GGAATAAGGGGACGAAGACC | GCAAACACACGCTGGGAT | 126 | [34] |
TOR | GAAGGCATGCTGCGGTATTG | CGCAGGCTTTGGGTCTCTTA | 122 | [34] |
S6K | ACAGCCGAGAATCGCAAGAA | ATCACCATTATCGGGTCCGC | 153 | [34] |
4E-BP1 | ACCTGCCAGTGATACCAGGA | TGGCTCCTCTGAAATCGTTCC | 80 | [34] |
AKT | CCTTGGGGCGTCTACTCCTA | TCCTCATAATCCTCACTTTCCT | 176 | database |
FOXO | ACGCGCTAACACCATGGAAG | GACTCTCACTCAGCGACGAA | 158 | [35] |
MyHC | AAGCCAACCGTACCCTCAA | AGTAGCACGTTCTCTGCATTCA | 174 | database |
MLC1 | TGAGAAGGTCGGAGGCAAG | TGCCATTCTCAGATTTGTCGT | 155 | [36] |
MEF2A | CATCTTCCAACCATCCTGGG | GTTTGCTCAACGGGGTATCA | 125 | [36] |
MEF2B | ACCAGCACCACCTTCACATT | GAAGATGGACCCAAATGTGAA | 133 | [36] |
MSTN | AGCAACAGCAACAACAAGGA | GCAGGAAGGGACATTTACCG | 136 | [36] |
LC3 | TGAGTAGTCCGTCTCGGTGT | CCATGTAGAGGAACCCGTCG | 169 | [37] |
ATG2 | GTACTTCCCGTGGTCGGATG | CCATCCACGAACCTGAGAGG | 175 | [37] |
ATG3 | GCCAAGACAACCACCATAGC | AGAGCCGAGGTGTCTGGTAG | 201 | database |
ATG9 | TCATACATCCAGGGTTCGCC | GGGCAAAGGAACAAACGTCC | 189 | database |
ATG12 | TGGAGGGGAAGGACTTACGG | AGCTTTCCCTTAGCAGTCTTC | 203 | [37] |
ATG16 | AGATGGATGGCACAGAAGGC | GTTCACTTGCTTGGGCTCAC | 178 | database |
ATG18 | CGTGTTGTAGTGGAGGAGCA | CGTGGCTGCTTTTGAATCGT | 194 | database |
ub | TCCAGCCTCTCCTGCCTT | CCTTCCTTATCCTGAATCTTTGCC | 172 | [38] |
Psma1 | CTTTACCTCATTGACCCATCT | CACAACCATAGTATCCATTACACAT | 149 | database |
psmd1 | ACTCATACAGCAAACAGAATCC | CGTCCACCAGCATCAATAA | 147 | database |
psmd6 | AGCTTTTGCTAAAACCTACG | TCCCAATCTCCTCCCTCT | 159 | database |
Psmc1 | TGTCTCCATTCTCTCCTTTGT | TTGAGGTGCCTTCTCTAGCT | 148 | database |
CON | TCDCA | p Value | |
---|---|---|---|
Initial weight, IW (g) | 4.93 ± 0.012 | 4.94 ± 0.031 | 0.795 |
FW (g) | 33.16 ± 1.033 | 37.09 ± 0.983 | 0.044 |
WGR (%) | 572.24 ± 19.25 | 651.01 ± 22.067 | 0.043 |
SGR (%/day) | 3.67 ± 0.054 | 3.88 ± 0.057 | 0.043 |
FI (g) | 25.69 ± 0.235 | 29.32 ± 3.431 | 0.098 |
FCR | 0.91 ± 0.033 | 0.91 ± 0.076 | 0.985 |
HSI (%) | 5.72 ± 0.216 | 6.24 ± 0.299 | 0.161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zheng, X.; Song, C.; Liu, X.; Zhou, Q.; Sun, C.; Wang, A.; Zhu, A.; Liu, B. Taurochenodeoxycholic Acid Improves Growth, Physiology, Intestinal Microbiota, and Muscle Development in Red Swamp Crayfish (Procambarus clarkii). Fishes 2025, 10, 38. https://doi.org/10.3390/fishes10020038
Xu X, Zheng X, Song C, Liu X, Zhou Q, Sun C, Wang A, Zhu A, Liu B. Taurochenodeoxycholic Acid Improves Growth, Physiology, Intestinal Microbiota, and Muscle Development in Red Swamp Crayfish (Procambarus clarkii). Fishes. 2025; 10(2):38. https://doi.org/10.3390/fishes10020038
Chicago/Turabian StyleXu, Xiaodi, Xiaochuan Zheng, Changyou Song, Xin Liu, Qunlan Zhou, Cunxin Sun, Aimin Wang, Aiming Zhu, and Bo Liu. 2025. "Taurochenodeoxycholic Acid Improves Growth, Physiology, Intestinal Microbiota, and Muscle Development in Red Swamp Crayfish (Procambarus clarkii)" Fishes 10, no. 2: 38. https://doi.org/10.3390/fishes10020038
APA StyleXu, X., Zheng, X., Song, C., Liu, X., Zhou, Q., Sun, C., Wang, A., Zhu, A., & Liu, B. (2025). Taurochenodeoxycholic Acid Improves Growth, Physiology, Intestinal Microbiota, and Muscle Development in Red Swamp Crayfish (Procambarus clarkii). Fishes, 10(2), 38. https://doi.org/10.3390/fishes10020038