Mutation of Genes Associated with Body Color, Growth, Intermuscular Bone, and Sex Differentiation in Onychostoma macrolepis Using CRISPR/Cas9
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hormone-Induced Ovulation and Artificial Insemination
2.3. gRNA Design, Synthesis, and Microinjection
2.4. Mutation Detection
2.5. Imaging of Body Color Mutants
2.6. Growth Measurement and Muscle Fiber Analysis
2.7. Alizarin Red S Staining for Intermuscular Bone Detection
2.8. Gonadal Histological Analysis
2.9. Data Analyses
3. Results
3.1. Induced Ovulation and Artificial Insemination of O. macrolepis
3.2. Generation of Tyr, mpv17, csf1ra, Mstnb, mc4r, runx2b, bmp6, and cyp19a1a Mutants by CRISPR/Cas9
3.3. Optimization of the gRNA/Cas9 mRNA Concentration for Injection
3.4. Phenotype Observation in Body Color Gene Mutants
3.5. Improved Growth Performance by Mstnb Mutation
3.6. Reduced Intermuscular Bones in the runx2b and bmp6 Mutants
3.7. Ovary Degeneration in cyp19a1a Mutants
4. Discussion
4.1. Tyr Mutants with Golden Body Color
4.2. mpv17 Mutants with Transparent Body Color
4.3. csf1ra Mutants with Gray Body Color
4.4. Mstnb Mutants with Enhanced Muscle Mass
4.5. bmp6 and runx2b Mutants with Less or No Intermuscular Bones
4.6. cyp19a1a Mutants with Degenerated Ovaries
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S. Study on the biological characteristics of wild Onychostoma macrolepis in Renhe River, Ziyang, Shaanxi. Shaanxi J. Agric. Sci. 2019, 65, 63–66. (In Chinese) [Google Scholar]
- Chen, S.; Chen, Y.; Qu, G. Analysis and evaluation of nutritional composition of Onychostoma macrolepis in Qinling-Bashan Mountain area. Biot. Resour. 2019, 41, 112–118. (In Chinese) [Google Scholar]
- Yang, Z.; Yu, Y.; Tay, Y.X.; Yue, G.H. Genome editing and its applications in genetic improvement in aquaculture. Rev. Aquac. 2022, 14, 178–191. [Google Scholar] [CrossRef]
- Kim, J.; Cho, J.Y.; Kim, J.W.; Kim, H.C.; Noh, J.K.; Kim, Y.O.; Hwang, H.K.; Kim, W.J.; Yeo, S.Y.; An, C.M.; et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 2019, 512, 734336. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, G.D.; Nissa, M.; Chen, J.; Zou, S.M. Disruption of mstna and mstnb gene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream (Megalobrama amblycephala). Aquaculture 2020, 528, 735597. [Google Scholar] [CrossRef]
- Tao, B.; Tan, J.; Chen, L.; Xu, Y.; Liao, X.; Li, Y.; Chen, J.; Song, Y.; Hu, W. CRISPR/Cas9 system-based myostatin-targeted disruption promotes somatic growth and adipogenesis in loach, Misgurnus anguillicaudatus. Aquaculture 2021, 544, 737097. [Google Scholar] [CrossRef]
- Coogan, M.; Alston, V.; Su, B.; Khalil, K.; Elaswad, A.; Khan, M.; Simora, R.M.C.; Johnson, A.; Xing, D.; Li, S.; et al. CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture 2022, 557, 738290. [Google Scholar] [CrossRef]
- Yan, M.; Li, B.; Wang, J.; Bai, Y.; Ke, Q.; Zhou, T.; Xu, P. Disruption of mstn gene by CRISPR/Cas9 in large yellow croaker (Larimichthys crocea). Mar. Biotechnol. 2022, 24, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.; Wang, F.; Li, K.; Wu, Y.; Huang, S.; Luo, Q.; Liu, H.; Zhang, X.; Fei, S.; Chen, K.; et al. Generation of myostatin gene-edited blotched snakehead (Channa maculata) using CRISPR/Cas9 system. Aquaculture 2023, 563, 738988. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, T.; Yang, L.; Su, Y.; Zhao, C.; Li, L.; Cai, J.; Dai, X.; Wang, D.; Zhou, L. Generation of fast growth Nile tilapia (Oreochromis niloticus) by myostatin gene mutation. Aquaculture 2023, 562, 738762. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, S.; Jiang, W.; Li, F.; Chi, M.; Cheng, S.; Liu, Y. CRISPR/Cas9-mediated mutation of mstn confers growth performance in Culter alburnus juveniles. Aquac. Fish. 2023, 9, 900–907. [Google Scholar] [CrossRef]
- Coogan, M.; Alston, V.; Su, B.; Khalil, K.; Elaswad, A.; Khan, M.; Johnson, A.; Xing, D.; Li, S.; Wang, J.; et al. Improved growth and high inheritance of melanocortin-4 receptor (mc4r) mutation in CRISPR/Cas-9 gene-edited channel catfish, Ictalurus punctatus. Mar. Biotechnol. 2022, 24, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Khalil, K.; Elaswad, A.; Abdelrahman, H.; Michel, M.; Chen, W.; Liu, S.; Odin, R.; Ye, Z.; Drescher, D.; Vo, K.; et al. Editing the melanocortin-4 receptor gene in channel catfish using the CRISPR-Cas9 system. Fishes 2023, 8, 116. [Google Scholar] [CrossRef]
- Kuang, Y.; Zheng, X.; Cao, D.; Sun, Z.; Tong, G.; Xu, H.; Yan, T.; Tang, S.; Chen, Z.; Zhang, T.; et al. Generate a new crucian carp (Carassius auratus) strain without intermuscular bones by knocking out bmp6. Aquaculture 2023, 569, 739407. [Google Scholar] [CrossRef]
- Dong, Q.; Nie, C.H.; Wu, Y.M.; Zhang, D.Y.; Wang, X.D.; Tu, T.; Jin, J.; Tian, Z.Y.; Liu, J.Q.; Xiao, Z.Y.; et al. Generation of blunt snout bream without intermuscular bones by runx2b gene mutation. Aquaculture 2023, 567, 739263. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.; Zhao, J.; Fang, L.; Shi, H.; Li, M.; Sun, Y.; Zhang, X.; Jiang, D.; Zhou, L.; et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 2014, 197, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yang, H.; Li, M.; Shi, H.; Zhang, X.; Wang, D. gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Mol. Reprod. Devel. 2016, 83, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, Y.; Wang, W.; Wang, Q.; Zhang, N.; Lin, F.; Wang, N.; Shao, C.; Dong, Z.; Li, Y.; et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci. Rep. 2017, 7, 42213. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering 2022, 8, 181–189. [Google Scholar] [CrossRef]
- Wang, C.; Lu, B.; Li, T.; Liang, G.; Xu, M.; Liu, X.; Tao, W.; Zhou, L.; Kocher, T.D.; Wang, D. Nile tilapia: A model for studying teleost color patterns. J. Hered. 2021, 112, 469–484. [Google Scholar] [CrossRef]
- Xu, J.; Li, P.; Xu, M.; Wang, C.; Kocher, T.D.; Wang, D. Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia. J. Hered. 2024, esae034. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wang, C.; Liang, G.; Xu, M.; Kocher, T.D.; Sun, L.; Wang, D. Generation of ornamental Nile tilapia with distinct gray and black body color pattern by csf1ra mutation. Aquac. Rep. 2022, 23, 101077. [Google Scholar] [CrossRef]
- Sun, L.; Gao, T.; Wang, F.; Qin, Z.; Yan, L.; Tao, W.; Li, M.; Jin, C.; Ma, L.; Kocher, T.D.; et al. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, bionano and Hi-C technology. Mol. Ecol. Resour. 2020, 20, 1361–1371. [Google Scholar] [CrossRef]
- Sakata-Haga, H.; Uchishiba, M.; Shimada, H.; Tsukada, T.; Mitani, M.; Arikawa, T.; Shoji, H.; Hatta, T. A rapid and nondestructive protocol for whole-mount bone staining of small fish and Xenopus. Sci. Rep. 2018, 8, 7453. [Google Scholar] [CrossRef] [PubMed]
- Anistoroaei, R.; Fredholm, M.; Christensen, K.; Leeb, T. Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation. Anim. Genet. 2008, 39, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Camand, O.; Marchant, D.; Boutboul, S.; Péquignot, M.; Odent, S.; Dollfus, H.; Sutherland, J.; Levin, A.; Menasche, M.; Marsac, C.; et al. Mutation analysis of the tyrosinase gene in oculocutaneous albinism: Mutations in Brief. Hum. Mutat. 2001, 17, 352. [Google Scholar] [CrossRef] [PubMed]
- Galante Rocha de Vasconcelos, F.T.; Hauzman, E.; Dutra Henriques, L.; Kilpp Goulart, P.R.; De Faria Galvão, O.; Sano, R.Y.; Da Silva Souza, G.; Lynch Alfaro, J.; De Lima Silveira, L.C.; Fix Ventura, D.; et al. A novel nonsense mutation in the tyrosinase gene is related to the albinism in a capuchin monkey (Sapajus apella). BMC Genet. 2017, 18, 39. [Google Scholar] [CrossRef]
- Polanowski, A.M.; Robinson-Laverick, S.M.; Paton, D.; Jarman, S.N. Variation in the tyrosinase gene associated with a white humpback whale (Megaptera novaeangliae). J. Hered. 2012, 103, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, S.; Berryere, T.; Ciobanu, D.; Mileham, A.; Schmidtz, B.; Fredholm, M. A form of albinism in cattle is caused by a tyrosinase frameshift mutation. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2004, 15, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Chen, T.; Pan, Q.; Wang, Q. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J. Exp. Zool. Part B Mol. Dev. Evol. 2018, 330, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Boonanuntanasarn, S.; Yoshizaki, G.; Iwai, K.; Takeuchi, T. Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout. Pigment. Cell Res. 2004, 17, 413–421. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Gao, J. Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res. 2019, 28, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.T.; Wei, K.J.; Chen, Y.Y.; Shi, Z.C.; Liu, L.K.; Li, J.; Zhang, G.R.; Ji, W. Molecular cloning and expression analysis of tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco. J. Fish Biol. 2018, 92, 979–998. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, Y.; Liang, Q.; Song, J.; Liu, J.; Li, W.; Shu, Y.; Tao, M.; Zhang, C.; Qin, Q.; et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. China Life Sci. 2019, 62, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Zhang, R.; Liu, L.; Zhu, H. Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9. Aquaculture 2024, 583, 740594. [Google Scholar] [CrossRef]
- Löllgen, S.; Weiher, H. The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): Lessons from homologs in different species. Biol. Chem. 2015, 396, 13–25. [Google Scholar] [CrossRef]
- Bian, W.P.; Pu, S.Y.; Xie, S.L.; Wang, C.; Deng, S.; Strauss, P.R.; Pei, D.S. Loss of mpv17 affected early embryonic development via mitochondria dysfunction in zebrafish. Cell Death Discov. 2021, 7, 250. [Google Scholar] [CrossRef]
- D’Agati, G.; Beltre, R.; Sessa, A.; Burger, A.; Zhou, Y.; Mosimann, C.; White, R.M. A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Dev. Biol. 2017, 430, 11–17. [Google Scholar] [CrossRef]
- Krauss, J.; Astrinides, P.; Frohnhöfer, H.G.; Walderich, B.; Nüsslein-Volhard, C. Transparent, a gene affecting stripe formation in zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol. Open 2013, 2, 703–710. [Google Scholar] [CrossRef]
- Stanley, E.R.; Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 2014, 6, a021857. [Google Scholar] [CrossRef]
- Parichy, D.M.; Mellgren, E.M.; Rawls, J.F.; Lopes, S.S.; Kelsh, R.N.; Johnson, S.L. Mutational analysis of endothelin receptor B1 (Rose) during neural crest and pigment pattern development in the zebrafish Danio rerio. Dev. Biol. 2000, 227, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Parichy, D.M.; Ransom, D.G.; Paw, B.; Zon, L.I.; Johnson, S.L. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 2000, 127, 3031–3044. [Google Scholar] [CrossRef] [PubMed]
- Parichy, D.M.; Turner, J.M. Temporal and cellular requirements for fms signaling during zebrafish adult pigment pattern development. Development 2003, 130, 817–833. [Google Scholar] [CrossRef]
- Kottler, V.A.; Fadeev, A.; Weigel, D.; Dreyer, C. Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Genetics 2013, 194, 631–646. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, Z.; Shi, C.; Zhai, G.; Jin, X.; He, J.; Lou, Q.; Yin, Z. Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Front. Endocrinol. 2016, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Y.L.; Bian, W.P.; Xie, S.L.; Qi, G.L.; Liu, L.; Strauss, P.R.; Zou, J.X.; Pei, D.S. Deletion of mstna and mstnb impairs the immune system and affects growth performance in zebrafish. Fish Shellfish. Immunol. 2018, 72, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Niu, P.; Wang, M.; Huang, G.; Xu, S.; Sun, Y.; Xu, X.; Hou, Y.; Sun, X.; Yan, Y.; et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 2016, 6, 22953. [Google Scholar] [CrossRef]
- Kanika, N.H.; Ke, J.; Mandal, R.N.; Wang, J.; Wang, C. Comparative transcriptome and metabolome analyses of wild and mutant Oujiang color common carp through editing SCARB1 gene by CRISPR/Cas technology. Aquaculture 2023, 577, 739901. [Google Scholar] [CrossRef]
- Nie, C.H.; Wan, S.M.; Chen, Y.L.; Huysseune, A.; Wu, Y.M.; Zhou, J.J.; Hilsdorf, A.W.S.; Wang, W.M.; Witten, P.E.; Lin, Q.; et al. Single-cell transcriptomes and runx2b−/− mutants reveal the genetic signatures of intermuscular bone formation in zebrafish. Natl. Sci. Rev. 2022, 9, nwac152. [Google Scholar] [CrossRef]
- Xu, H.; Tong, G.; Yan, T.; Dong, L.; Yang, X.; Dou, D.; Sun, Z.; Liu, T.; Zheng, X.; Yang, J.; et al. Transcriptomic analysis provides insights to reveal the bmp6 function related to the development of intermuscular bones in zebrafish. Front. Cell Dev. Biol. 2022, 10, 821471. [Google Scholar] [CrossRef]
- Gan, R.H.; Li, Z.; Wang, Z.W.; Li, X.Y.; Wang, Y.; Zhang, X.J.; Tong, J.F.; Wu, Y.; Xia, L.Y.; Gao, Z.X.; et al. Creation of intermuscular bone-free mutants in amphitriploid gibel carp by editing two duplicated runx2b homeologs. Aquaculture 2023, 567, 739300. [Google Scholar] [CrossRef]
- Lau, E.; Zhang, Z.; Qin, M.; Ge, W. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci. Rep. 2016, 6, 37357. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Tang, H.; Liu, Y.; Chen, Y.; Li, G.; Liu, X.; Lin, H. Targeted disruption of aromatase reveals dual functions of cyp19a1a during sex differentiation in zebrafish. Endocrinology 2017, 158, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, M.; Ma, H.; Liu, X.; Shi, H.; Li, M.; Wang, D. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology 2017, 158, 2634–2647. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Shibata, Y.; Ohno, K.; Usami, T.; Kamei, Y.; Taniguchi, Y.; Todo, T.; Sakamoto, T.; Young, G.; Swanson, P.; et al. Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol. Cell. Endocrinol. 2018, 460, 104–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Wang, F.; Wu, Q.; Gan, L.; Jin, C.; Ma, L.; Wang, D.; Sun, L. Mutation of Genes Associated with Body Color, Growth, Intermuscular Bone, and Sex Differentiation in Onychostoma macrolepis Using CRISPR/Cas9. Fishes 2025, 10, 40. https://doi.org/10.3390/fishes10020040
Gao T, Wang F, Wu Q, Gan L, Jin C, Ma L, Wang D, Sun L. Mutation of Genes Associated with Body Color, Growth, Intermuscular Bone, and Sex Differentiation in Onychostoma macrolepis Using CRISPR/Cas9. Fishes. 2025; 10(2):40. https://doi.org/10.3390/fishes10020040
Chicago/Turabian StyleGao, Tian, Feilong Wang, Qihui Wu, Lingyao Gan, Canbiao Jin, Li Ma, Deshou Wang, and Lina Sun. 2025. "Mutation of Genes Associated with Body Color, Growth, Intermuscular Bone, and Sex Differentiation in Onychostoma macrolepis Using CRISPR/Cas9" Fishes 10, no. 2: 40. https://doi.org/10.3390/fishes10020040
APA StyleGao, T., Wang, F., Wu, Q., Gan, L., Jin, C., Ma, L., Wang, D., & Sun, L. (2025). Mutation of Genes Associated with Body Color, Growth, Intermuscular Bone, and Sex Differentiation in Onychostoma macrolepis Using CRISPR/Cas9. Fishes, 10(2), 40. https://doi.org/10.3390/fishes10020040