Investigation of Feeding Effects and Environmental Impact of Fish-Feed Quality: Evidence from Crucian Carp Feeding Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.3. Measurement of Monitoring Indicators
2.3.1. Measurement of Fish Growth Performance
2.3.2. Measurement of Water Quality Indicators
2.3.3. Detection of Biochemical Indicators in Fish
2.4. Theoretical Basis
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Effects of Different Fish Feeds on Crucian Carp Growth
3.2. The Effects of Different Fish Feeds on Biochemical Indicators in Crucian Carp
3.3. The Environmental Effects of Different Fish Feeds
3.4. Correlations Between Fish Growth and the Physicochemical Parameters of Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, W.W.; Huang, S.L.; Yang, Z.J.; Shi, F.F.; Feng, Y.B. Fish feed quality is a key factor in impacting aquaculture water environment: Evidence from incubator experiments. Sci. Rep. 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Soong, C.J.; Razamin, R.; Rosshairy, A.R. Nutrients requirements and composition in a grouper fish feed formulation. In Proceedings of the ISSC, International Conference on Soft Science, Kedah, Malaysia, 11–13 April 2016; pp. 60–66. [Google Scholar]
- Hernandez, A.J.; Roman, D. Phosphorus and nitrogen utilization efficiency in rainbow trout (Oncorhynchus mykiss) fed diets with lupin (Lupinus albus) or soybean (Glycine max) meals as partial replacements to fish meal. Czech J. Anim. Sci. 2016, 61, 67–74. [Google Scholar] [CrossRef]
- Papatryphon, E.; Petit, J.; Kaushik, S.J.; van der Werf, H.M.G. Environmental impact assessment of salmonid feeds using life cycle assessment (LCA). Ambio 2004, 33, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.L.; Chen, X.; Liu, T.; Wang, K. Effect of dietary Ficus carica polysaccharides on the growth performance, innate immune response and survival of crucian carp against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2021, 120, 434–440. [Google Scholar] [CrossRef]
- Zhou, P.J.; Shen, H.; Lin, J.; Song, L. Kinetic studies on the effects of organophosphorus pesticides on the growth of Microcystis aeruginosa and uptake of the phosphorus forms. Bull. Environ. Contam. Toxicol. 2004, 72, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Huang, S.L.; Kong, W.W.; Yu, H.; Li, F.Y.; Khatoon, Z.; Ashraf, M.N.; Akram, W. Effect of different fish feeds on water quality and growth of crucian carp (Carassius carassius) in the presence and absence of prometryn. Ecotoxicol. Environ. Saf. 2021, 227, 112914. [Google Scholar] [CrossRef]
- Yazici, M.; Zavvar, F.; Hoseinifar, S.H.; Nedaei, S.; Doan, H.V. Administration of red macroalgae (Galaxaura oblongata) in the diet of the rainbow Trout (Oncorhynchus mykiss) improved immunity and hepatic gene expression. Fishes 2024, 9, 48. [Google Scholar] [CrossRef]
- Liu, Z.L.; Zhao, W.; Hu, W.S.; Zhu, B.; Xie, J.J.; Liu, Y.; Tian, L.; Niu, J. Lipid metabolism, growth performance, antioxidant ability and intestinal morphology of rainbow trout (Oncorhynchus mykiss) under cage culture with flowing water were affected by dietary lipid levels. Aquac. Rep. 2021, 19, 100593. [Google Scholar] [CrossRef]
- Jonsson, C.M.; Arana, S.; Ferracini, V.L.; Queiroz, S.C.N.; Clemente, Z.; Vallim, J.H.; de Holan-Da, N.M.A.; de Moura, M.A.M. Herbicide mixtures from usual practice in sugarcane crop: Evaluation of oxidative stress and histopathological effects in the tropical fish Oreochromis niloticus. Water Air Soil Pollut. 2017, 228, 332. [Google Scholar] [CrossRef]
- Qin, H.; Long, Z.; Huang, Z.; Ma, J.; Kong, L.; Lin, Y.Y.; Lin, H.; Zhou, S.; Li, Z. A comparison of the physiological responses to heat stress of two sizes of juvenile spotted seabass (Lateolabrax maculatus). Fishes 2023, 8, 340. [Google Scholar] [CrossRef]
- Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z. Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, 557–562. [Google Scholar] [CrossRef]
- Yang, L.; Yi, C.; Mo, Y.; He, Z.; Xu, Z.; He, Y.; Ouyang, Y.; Mao, Z.; Qu, F.; Tang, J.; et al. Effects of different protein sources on growth performance, muscle flavor substances and quality structure in triploid crucian carp. Fishes 2024, 9, 23. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhao, D.Q.; Gu, J.X.; Wu, R.; Liu, B.Z.; Yu, G.Q.; Dong, P.S.; Huang, X.C.; Li, M.; Li, G.X. Investigation of biotoxicity and environmental impact of prometryn on fish and algae coexistent system. Water 2024, 16, 2531. [Google Scholar] [CrossRef]
- Huang, S.; Kong, W.; Yang, Z.; Yu, H.; Li, F. Combination of Logistic and modified Monod functions to study Microcystis aeruginosa growth stimulated by fish feed. Ecotoxicol. Environ. Saf. 2019, 167, 146–160. [Google Scholar] [CrossRef]
- Ghamkhar, R.; Hicks, A. Comparative environmental impact assessment of aquafeed production: Sustainability implications of forage fish meal and oil free diets. Resour. Conserv. Recycl. 2020, 161, 104849. [Google Scholar] [CrossRef]
- Cailliet, G.M.; Smith, W.D.; Mollet, H.F.; Goldman, K.J. Age and growth studies of chondrichthyan fishes: The need for consistency in terminology, verification, validation, and growth function fitting. Environ. Biol. Fishes 2006, 77, 211–228. [Google Scholar] [CrossRef]
- Fasakin, E.A.; Serwata, R.D.; Davies, S.J. Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) diets. Aquaculture 2005, 249, 329–338. [Google Scholar] [CrossRef]
- Topal, A.; Atamanalp, M.; Ucar, A.; Oruc, E.; Kocaman, E.M.; Sulukan, E.; Akdemir, F.; Bey-demir, S.; Kilinc, N.; Erdogan, O.; et al. Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): Transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. Ecotoxicol. Environ. Saf. 2015, 111, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fan, S.; Pang, C.; Wei, H.; Yu, S. Genetic analysis of the antioxidant enzymes, methane dicarboxylic aldehyde (MDA) and chlorophyll content in leaves of the short season cotton (Gossypium hirsutum L.). Euphytica 2014, 198, 153–162. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Lataillade, E.; Surget, A.; Larroquet, L.; Cluzeaud, M.; Kaushik, S. Antioxidant defense system is altered by dietary oxidized lipid in first-feeding rainbow trout (Oncorhynchus mykiss). Aquaculture 2014, 424–425, 220–227. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Robaina, L.; Pirhonen, J.; Mente, E.; Dominguez, D.; Parisi, G. Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces—A review. Water 2017, 9, 13. [Google Scholar] [CrossRef]
- Huang, S.L.; Wu, M.; Zang, C.J.; Zang, C.J.; Du, S.L.; Domagalski, J.; Gajewska, M.; Gao, F.; Lin, C.; Guo, Y.; et al. Dynamics of algae growth and nutrients in experimental enclosures culturing bighead carp and common carp: Phosphorus dynamics. Int. J. Sediment Res. 2016, 31, 173–180. [Google Scholar] [CrossRef]
- Albrektsen, S.; Mundheim, H.; Aksnes, A. Growth, feed efficiency, digestibility and nutrient distribution in Atlantic cod (Gadus morhua) fed two different fishmeal qualities at three dietary levels of vegetable protein sources. Aquaculture 2006, 261, 626–640. [Google Scholar] [CrossRef]
- Burford, M.A.; Williams, K.C. The fate of nitrogenous waste from shrimp feeding. Aquaculture 2001, 198, 79–93. [Google Scholar] [CrossRef]
- Poursaeid, M.; Mastouri, R.; Shabanlou, S.; Najarchi, M. Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines. Environ. Earth Sci. 2020, 79, 453. [Google Scholar] [CrossRef]
- Shannon, L.J.; Coll, M.; Yemane, D.; Jouffre, D.; Neira, S.; Bertrand, A.; Diaz, E.; Shin, Y.J. Comparing data-based indicators across upwelling and comparable systems for communicating ecosystem states and trends. ICES J. Mar. Sci. 2010, 67, 807–832. [Google Scholar] [CrossRef]
- Zhang, C.X.; Rahimnejad, S.; Wang, Y.R.; Lu, K.L.; Song, K.; Wang, L.; Mai, K.S. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture 2018, 483, 173–182. [Google Scholar] [CrossRef]
- Kong, W.; Huang, S.; Shi, F.; Yang, Z.; Feng, Y.; Xiao, Y. Study on release kinetics of nitrogen and phosphorus from fish feed. Aquac. Res. 2020, 51, 3216–3229. [Google Scholar] [CrossRef]
- Bengtsson, B.E. Effect of zinc on growth of the minnow Phoxinus phoxinus. Oikos 1974, 25, 370–373. [Google Scholar] [CrossRef]
- Barman, U.K.; Jana, S.N.; Garg, S.K.; Bhatnagar, A.; Arasu, A.R.T. Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): Field and laboratory studies. Aquac. Int. 2005, 13, 241–256. [Google Scholar] [CrossRef]
- Dickerson, B.R.; Vinyard, G.L. Effects of high levels of total dissolved solids in Walker lake, Nevada, on survival and growth of Lahontan cutthroat trout. Trans. Am. Fish. Soc. 1999, 128, 507–515. [Google Scholar] [CrossRef]
Fish Feed | Crude Protein (%) | Crude Fat≥ (%) | Crude Ash≤ (%) | Crude Fiber≤ (%) | TP (%) | Moisture≤ (%) | Lysine≥ (%) |
---|---|---|---|---|---|---|---|
TW | 30.0 | 3.0 | 15.0 | 12.0 | 0.7 | 12.5 | 1.3 |
LD | 35.1 | 3.5 | 13.0 | 13.5 | 0.7 | 10.0 | 1.4 |
HD | 32.9 | 3.0 | 12.0 | 12.0 | 0.7 | 12.0 | 1.7 |
Parameters | TW | LD | HD |
---|---|---|---|
Parameters that are related to the growth of crucian carp | |||
BW | 0.02 | 0.03 | 0.03 |
KW | 0.09 | 0.08 | 0.09 |
Wmax | 19.18 | 20.07 | 20.14 |
R2 | 0.959 | 0.968 | 0.948 |
BL | 0.008 | 0.007 | 0.007 |
KL | 0.08 | 0.10 | 0.09 |
Lmax | 93.94 | 94.04 | 94.31 |
R2 | 0.995 | 0.963 | 0.942 |
WGR (%) | 3.65 ± 0.12 c | 6.62 ± 0.13 b | 9.74 ± 0.15 a |
FCR | 13.61 ± 0.39 a | 6.98 ± 0.06 b | 5.22 ± 0.07 c |
SGR (%/d) | 0.07 ± 0.01 c | 0.13 ± 0.01 b | 0.19 ± 0.01 a |
FCE (%) | 7.35 ± 0.21 c | 14.33 ± 0.12 b | 19.18 ± 0.26 a |
Body composition of fish in different groups | |||
TN (%) | 10.89 ± 0.02 b | 10.88 ± 0.11 b | 11.68 ± 0.05 a |
TP (%) | 2.43 ± 0.00 b | 3.04 ± 0.02 a | 2.03 ± 0.08 c |
Antioxidant indexes of fish in different groups | |||
CAT (U/mg prot) | 0.75 ± 0.35 c | 1.65 ± 0.39 b | 3.08 ± 0.73 a |
SOD (U/mg prot) | 0.93 ± 0.10 b | 0.96 ± 0.01 b | 1.56 ± 0.05 a |
MDA (nmol/mg prot) | 0.19 ± 0.01 | 0.17 ± 0.09 | 0.17 ± 0.03 |
Parameters | TW | LD | HD |
---|---|---|---|
Parameters of TDN in water | |||
aC | 2.72 | 2.69 | 3.06 |
rC | 0.09 | 0.10 | 0.11 |
Cmax | 31.25 | 22.14 | 25.45 |
R2 | 0.986 | 0.985 | 0.974 |
Cave | 12.98 | 10.33 | 11.50 |
Parameters of TDP in water | |||
aC | 2.87 | 2.49 | 2.59 |
rC | 0.07 | 0.09 | 0.10 |
Cmax | 7.98 | 3.92 | 3.87 |
R2 | 0.967 | 0.931 | 0.945 |
Cave | 2.30 | 1.71 | 1.83 |
Parameters of TDS and EC in water | |||
aS | −0.37 | −0.53 | −0.56 |
rS/d−1 | 0.22 | 0.18 | 0.21 |
Smax | 340.81 | 332.12 | 323.30 |
Save | 321.50 | 311.36 | 307.93 |
R2 | 0.978 | 0.957 | 0.984 |
aE | −0.37 | −0.53 | −0.56 |
rE/d−1 | 0.21 | 0.18 | 0.20 |
Emax | 682.36 | 664.88 | 647.42 |
Eave | 642.21 | 622.07 | 614.79 |
R2 | 0.978 | 0.954 | 0.986 |
Parameters of aquatic sediment | |||
TN (%) | 4.03 ± 0.02 a | 3.57 ± 0.05 b | 3.57 ± 0.07 b |
TP (%) | 2.72 ± 0.04 a | 2.37 ± 0.06 b | 2.29 ± 0.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wu, R.; Wang, J.; Guo, J.; Zhang, Y.; Shi, N.; Gu, J.; Han, Y.; Guo, X.; Yu, Z.; et al. Investigation of Feeding Effects and Environmental Impact of Fish-Feed Quality: Evidence from Crucian Carp Feeding Experiments. Fishes 2025, 10, 50. https://doi.org/10.3390/fishes10020050
Wang J, Wu R, Wang J, Guo J, Zhang Y, Shi N, Gu J, Han Y, Guo X, Yu Z, et al. Investigation of Feeding Effects and Environmental Impact of Fish-Feed Quality: Evidence from Crucian Carp Feeding Experiments. Fishes. 2025; 10(2):50. https://doi.org/10.3390/fishes10020050
Chicago/Turabian StyleWang, Jiayin, Ran Wu, Jianhua Wang, Jiangtao Guo, Ya Zhang, Nanbing Shi, Jinxing Gu, Yibing Han, Xinyi Guo, Zhe Yu, and et al. 2025. "Investigation of Feeding Effects and Environmental Impact of Fish-Feed Quality: Evidence from Crucian Carp Feeding Experiments" Fishes 10, no. 2: 50. https://doi.org/10.3390/fishes10020050
APA StyleWang, J., Wu, R., Wang, J., Guo, J., Zhang, Y., Shi, N., Gu, J., Han, Y., Guo, X., Yu, Z., Li, G., & Yang, Z. (2025). Investigation of Feeding Effects and Environmental Impact of Fish-Feed Quality: Evidence from Crucian Carp Feeding Experiments. Fishes, 10(2), 50. https://doi.org/10.3390/fishes10020050