Broadband Characteristics of Target Strength of Pacific Chub Mackerel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Samples for Measurements
2.2. Design of Measurements in Experimental Tanks
2.3. Calibration of Echosounder Systems
2.4. Processing of Acoustic Data
2.5. Target Strength Estimated by Acoustic Backscattering Model
2.6. Target Strength Representation
3. Results
3.1. Calibration Results and Frequency Bands for Analyses
3.2. Target Strength Pattern with Respect to Tilt Angle
3.3. Target Strength Related to Fish Length
3.4. Fish Length-to-Wavelength Ratio Characteristics
4. Discussion
4.1. Target Strength for Estimating Abundance of Mackerel
4.2. Application in Acoustic Discrimination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavery, A.; Wiebe, P.H.; Stanton, T.K.; Lawson, G.L.; Benfield, M.C.; Copley, N. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 2007, 122, 3304–3326. [Google Scholar] [CrossRef]
- Stanton, T.K.; Chu, D.; Jech, J.M.; Irish, J.D. New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. ICES J. Mar. Sci. 2010, 67, 365–378. [Google Scholar] [CrossRef]
- Scoles, D.R.; Collette, B.B.; Graves, J.E. Global phylogeography of mackerels of the genus Scomber. Fish. Bull. 1998, 96, 823–842. [Google Scholar]
- Simmonds, E.J.; MacLennan, D.N. Fisheries Acoustics Theory and Practice, 2nd ed.; Blackwell Science LTD.: Oxford, UK, 2005. [Google Scholar]
- Gutiérrez, M.; Castillo, R.; Segura, M.; Peraltilla, S.; Flores, M. Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966–2009. Lat. Am. J. Aquat. Res. 2012, 40, 633–648. [Google Scholar] [CrossRef]
- Crone, P.R.; Hill, K.T.; Zwolinski, J.P.; Kinney, M.J. Pacific Mackerel (Scomber japonicus) Stock Assessment for U.S. Management in the 2019–20 and 2020–21 Fishing Years; Pacific Fishery Management Council: Portland, OR, USA, 2019. [Google Scholar]
- Doray, M.; Boyra, G.; van der Kooij, J. ICES Survey Protocols Manual for Acoustic Surveys Coordinated Under ICES Working Group on Acoustic and Egg Surveys for Small Pelagic Fish (WGACEGG), 1st ed.; International Council for the Exploration of the Sea Techniques in Marine Environmental Sciences: Copenhagen, Denmark, 2021. [Google Scholar]
- Foote, K.G. Fish target strengths for use in echo integrator surveys. J. Acoust. Soc. Am. 1987, 82, 981–987. [Google Scholar] [CrossRef]
- Zwolinski, J.P.; Stierhoff, K.L.; Demer, D.A. Distribution, Biomass, and Demography of Coastal Pelagic Fishes in the California Current Ecosystem During Summer 2017 Based on Acoustic-Trawl Sampling; U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-610: San Diego, CA, USA, 2019. [Google Scholar]
- Lillo, S.; Cordova, J.; Paillaman, A. Target-strength measurements of hake and jack mackerel. ICES J. Mar. Sci. 1996, 53, 267–271. [Google Scholar] [CrossRef]
- Brange, M.; Hampton, I.; Soule, M. Empirical determination of in situ target strengths of three loosely aggregated pelagic fish species. ICES J. Mar. Sci. 1996, 53, 225–232. [Google Scholar] [CrossRef]
- Peña, H.; Foote, K.G. Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES J. Mar. Sci. 2008, 65, 1751–1761. [Google Scholar] [CrossRef]
- Park, G.; Oh, W.; Oh, S.; Lee, K. Acoustic scattering characteristics of chub mackerel (Scomber japonicus) by KRM model. J. Korean Soc. Fish. Ocean. Technol. 2022, 58, 32–38. [Google Scholar] [CrossRef]
- Tong, J.; Xue, M.; Zhu, Z.; Wang, W.; Tian, S. Impacts of morphological characteristics on target strength of chub mackerel (Scomber japonicus) in the northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 856483. [Google Scholar] [CrossRef]
- Zhu, Z.; Tong, J.; Xue, M.; Qiu, C.; Lyu, S.; Liu, B. Investigations on target strength estimation methods: A case study of chub mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Fishes 2024, 9, 307. [Google Scholar] [CrossRef]
- Zhu, Y.; Ito, K.; Mizutani, K.; Minami, K.; Shirakawa, H.; Kawauchi, Y.; Iwahara, Y.; Nahata, K.; Sato, N.; Seki, K.; et al. Practical target strength of free-swimming chub mackerel Scomber japonicus. Fish. Sci. 2024, 90, 15–27. [Google Scholar] [CrossRef]
- Haslett, R.W.G. Acoustic backscattering cross sections of fish at three frequencies and their representation on a universal graph. Br. J. Appl. Phys. 1965, 16, 1143–1150. [Google Scholar] [CrossRef]
- Love, R.H. Dorsal-aspect target strength of an individual fish. J. Acoust. Soc. Am. 1971, 49, 816–823. [Google Scholar] [CrossRef]
- Foote, K.G. On representing the length dependence of acoustic target strengths of fish. J. Fish. Res. Board Can. 1979, 36, 1490–1496. [Google Scholar] [CrossRef]
- Miyanohana, Y.; Ishii, K.; Furusawa, M. Measurements and analyses of dorsal-aspect target strength of six species of fish at four frequencies. Rapp. P.-v. Réum. Cons. Int. Explor. Mer. 1990, 189, 317–324. [Google Scholar]
- McClatchie, S.; Alsop, J.; Coombs, R.F. A re-evaluation of relationships between fish size, acoustic frequency, and target strength. ICES J. Mar. Sci. 1996, 53, 780–791. [Google Scholar] [CrossRef]
- McClatchie, S.; Macaulay, G.J.; Coombs, R.F. A requiem for the use of 20 log10 length for acoustic target strength with special reference to deep-sea fishes. ICES J. Mar. Sci. 2003, 60, 419–428. [Google Scholar] [CrossRef]
- Yan, N.; Mukai, T.; Hasegawa, K.; Yamamoto, J.; Fukuda, Y. Broadband target strength of arabesque greeling, Pacific sand lance, and pointhead flounder. ICES J. Mar. Sci. 2024, 81, 195–203. [Google Scholar] [CrossRef]
- Lavery, A.; Bassett, C.; Lawson, G.L.; Jech, J.M. Exploiting signal processing approaches for broadband echosounders. ICES J. Mar. Sci. 2017, 74, 2262–2275. [Google Scholar] [CrossRef]
- Bassett, C.; De Robertis, A.; Wilson, C.D. Broadband echosounder measurements of the frequency response of fishes and euphausiids in the Gulf of Alaska. ICES J. Mar. Sci. 2018, 75, 1131–1142. [Google Scholar] [CrossRef]
- Yasuda, T.; Nagano, N.; Kitano, H. Diel vertical migration of chub mackerel: Preliminary evidence from a biologging study. Mar. Ecol. Prog. Ser. 2018, 598, 147–151. [Google Scholar] [CrossRef]
- Furusawa, M.; Amakasu, K. Proposal to use fish-length-to-wavelength ratio characteristics of backscattering from fish for species identification. J. Mar. Acoust. Soc. Jpn. 2018, 45, 183–196. [Google Scholar] [CrossRef]
- Korneliussen, R.J.; Ona, E. An operational system for processing and visualizing multi-frequency acoustic data. ICES J. Mar. Sci. 2002, 59, 293–313. [Google Scholar] [CrossRef]
- Horne, J.K. Acoustic approaches to remote species identification: A review. Fish. Oceanogr. 2000, 9, 356–371. [Google Scholar] [CrossRef]
- De Robertis, A.; McKelvey, D.R.; Ressler, P.H. Development and application of an empirical multifrequency method for backscatter classification. Can. J. Fish. Aquat. Sci. 2010, 67, 1459–1474. [Google Scholar] [CrossRef]
- Amakasu, K.; Mishima, Y.; Sasakura, T.; Mukai, T.; Sawada, K. Application of multilayer piezoelectric actuators to broadband backscattering measurements of aquatic animals. J. Marine Acoust. Soc. Jpn. 2013, 40, 126–137. [Google Scholar] [CrossRef]
- Demer, D.A.; Andersen, L.N.; Bassett, C.; Berger, L.; Chu, D.; Condiotty, J.; Cutter, G.R.; Hutton, B.; Korneliussen, R.; Bouffant, N.L.; et al. Evaluation of a Wideband Echosounder for Fisheries and Marine Ecosystem Science; International Council for the Exploration of the Sea Cooperative Research Report 336; ICES: Copenhagen, Denmark, 2017. [Google Scholar]
- Clay, C.S.; Medwin, H. Acoustical Oceanography: Principles and Applications; Wiley-Interscience: New York, NY, USA, 1977. [Google Scholar]
- Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J. Calibration of Acoustic Instruments for Fish Density Estimation: A Practical Guide; International Council for the Exploration of the Sea Cooperative Research Report 144; ICES: Copenhagen, Denmark, 1987. [Google Scholar]
- Chu, D.; Stanton, T.K. Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton. J. Acoust. Soc. Am. 1998, 104, 39–55. [Google Scholar] [CrossRef]
- Ehrenberg, J.E.; Torkelson, T.C. FM slide (chirp) signals: A technique for significantly improving the signal-to-noise performance in hydroacoustic assessment systems. Fish. Res. 2000, 47, 193–199. [Google Scholar] [CrossRef]
- Stanton, T.K.; Chu, D. Calibration of broadband active systems using a single standard spherical target. J. Acoust. Soc. Am. 2008, 124, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Clay, C.S.; Horne, J.K. Acoustic models of fish: The Atlantic cod (Gadus morhua). J. Acoust. Soc. Am. 1994, 96, 1661–1668. [Google Scholar] [CrossRef]
- Gauthier, S.; Horne, J.K. Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Can. J. Fish. Aquat. Sci. 2004, 61, 1839–1850. [Google Scholar] [CrossRef]
- Medwin, H. Speed of sound in water: A simple equation for realistic parameters. J. Acoust. Soc. Am. 1975, 58, 1318–1319. [Google Scholar] [CrossRef]
- Mackenzie, K.V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 1981, 70, 807–812. [Google Scholar] [CrossRef]
- Foote, K.G. Averaging of fish target strength functions. J. Acoust. Soc. Am. 1980, 67, 504–515. [Google Scholar] [CrossRef]
- Gutiérrez, M.; MacLennan, D.N. Resultados preliminares de las mediciones de fuerza de blanco in situ de las principales especies pelágicas. Crucero bic Humboldt 9803–05 de Tumbes a tacna. Inf. Inst. Mar. Perú. 1998, 135, 16–19. [Google Scholar]
- Lee, D.J.; Shin, H.-I. Construction of a data bank for acoustic target strength with fish species, length and acoustic frequency for measuring fish size distribution. J. Korean Fish. Soc. 2005, 38, 265–275. [Google Scholar]
- Foote, K.G. Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J. Acoust. Soc. Am. 1980, 67, 2084–2089. [Google Scholar] [CrossRef]
- Stanton, K.; Reeder, D.B.; Jech, J.M. Inferring fish orientation from broadband-acoustic echoes. ICES J. Mar. Sci. 2003, 60, 524–531. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Waluk, C.M. Exploring the promise of broadband fisheries echosounders for species discrimination with quantitative assessment of data processing effects. J. Acoust. Soc. Am. 2020, 147, 411–427. [Google Scholar] [CrossRef]
- Gugele, S.M.; Widmer, M.; Baer, J.; DeWeber, J.T.; Balk, H.; Brinker, A. Differentiation of two swim bladdered fish species using next generation wideband hydroacoustics. Sci. Rep. 2022, 11, 10520. [Google Scholar] [CrossRef] [PubMed]
- Roa, C.; Pedersen, G.; Bollinger, M.; Taylor, C.; Boswell, K.M. Taxonomical classification of reef fish with broadband backscattering models and machine learning approaches. J. Acoust. Soc. Am. 2022, 152, 1020–1034. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, M. Prolate spheroidal models for predicting general trends of fish target strength. J. Acoust. Soc. Jpn. 1988, 9, 13–24. [Google Scholar] [CrossRef]
- Fässler, S.M.M.; Santos, R.; García-Núñez, N.; Fernandes, P.G. Multifrequency backscattering properties of Atlantic herring (Clupea harengus) and Norway pout (Trisopterus esmarkii). Can. J. Fish. Aquat. Sci. 2007, 64, 362–374. [Google Scholar] [CrossRef]
- Pedersen, G.; Korneliussen, R.J. The relative frequency response derived from individually separated targets of northeast Arctic cod (Gadus morhua), saithe (Pollachius virens), and Norway pout (Trisopterus esmarkii). ICES J. Mar. Sci. 2009, 66, 1149–1154. [Google Scholar] [CrossRef]
No. | Fork Length (cm) | Swim Bladder Length (cm) | Swim Bladder Angle (°) | l/λ | Location | Date |
---|---|---|---|---|---|---|
1 | 15.5 | 4.3 | 11 | 2.5–7.2 | HU | 30 August 2021 |
2 | 21.2 | 6.1 | 9 | 3.4–9.8 | 30 August 2021 | |
3 | 19.4 | 5.5 | 6 | 3.1–9.0 | 1 September 2021 | |
4 | 14.8 | 4.0 | 8 | 2.4–6.8 | 1 September 2021 | |
5 | 16.2 | 4.4 | 8 | 2.6–7.5 | 2 September 2021 | |
6 | 23.0 | 7.1 | 6 | 3.7–10.6 | 2 September 2021 | |
7 | 23.4 | 6.5 | 9 | 3.8–10.8 | 3 September 2021 | |
8 | 15.6 | 4.2 | 11 | 2.5–7.2 | 3 September 2021 | |
9 | 22.9 | 6.7 | 10 | 7.0–12.6 | HRCFO | 4 August 2021 |
10 | 23.4 | 5.2 | 9 | 7.2–12.8 | 5 August 2021 | |
11 | 14.9 | 3.8 | 8 | 4.6–8.3 | 23 October 2021 | |
12 | 22.7 | 5.0 | 9 | 7.1–12.6 | 23 October 2021 | |
13 | 18.2 | 4.4 | 7 | 5.7–10.1 | 24 October 2021 | |
14 | 15.9 | 3.8 | 13 | 4.9–8.8 | 24 October 2021 |
Parameter | Value |
---|---|
Compensated TS threshold (dB) | −90 |
Maximum beam compensation (dB) | 6.0 |
Pulse length determination level (dB) | 6.0 |
Minimum normalized pulse length | 0.5 |
Maximum normalized pulse length | 1.5 |
Window size (m) | 0.4 |
Parameter | No. 1–8 | No. 9–10 | No. 11–14 |
---|---|---|---|
Sound speed in water (m s−1) | 1492 | 1530 | 1513 |
Sound speed in fish body (m s−1) | 1570 | 1570 | 1570 |
Sound speed in swim bladder (m s−1) | 345 | 345 | 345 |
Density of water (kg m−3) | 1000 | 1025 | 1025 |
Density of fish body (kg m−3) | 1070 | 1070 | 1070 |
Density of swim bladder (kg m−3) | 1.24 | 1.24 | 1.24 |
System | Frequency (kHz) | (−5, 10) | (−5, 15) | (0, 10) | (0, 15) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | b20 | a | b | b20 | a | b | b20 | a | b | b20 | ||
Custom | 38 | 15.0 | −60.4 | −66.7 | 14.7 | −61.0 | −67.7 | 12.9 | −58.5 | −67.4 | 13.9 | −60.4 | −68.1 |
Model | 16.8 | −62.8 | −66.9 | 16.0 | −62.7 | −67.8 | 14.3 | −60.0 | −67.3 | 14.8 | −61.4 | −68.1 | |
Custom | 50 | 18.7 | −66.1 | −67.7 | 18.5 | −66.7 | −68.7 | 17.4 | −65.3 | −68.6 | 18.0 | −66.6 | −69.1 |
EK80 | 19.4 | −66.8 | −67.6 | 20.1 | −68.6 | −68.5 | 17.0 | −64.7 | −68.6 | 19.1 | −67.8 | −69.0 | |
Custom and EK80 | 19.2 | −66.5 | −67.6 | 19.3 | −67.7 | −68.6 | 17.3 | −65.1 | −68.6 | 18.6 | −67.3 | −69.1 | |
Model | 20.3 | −67.9 | −67.5 | 19.1 | −67.3 | −68.5 | 17.9 | −65.6 | −68.3 | 18.3 | −66.8 | −68.9 | |
EK80 | 70 | 25.4 | −74.1 | −67.1 | 24.5 | −74.0 | −68.2 | 24.2 | −73.7 | −68.3 | 24.0 | −73.9 | −68.8 |
Model | 26.8 | −75.9 | −67.3 | 25.0 | −74.8 | −68.4 | 28.4 | −79.0 | −68.3 | 26.0 | −76.6 | −69.0 |
Tilt-Angle Distribution | Equation for TS | Range of l/λ | Residual Sum of Squares |
---|---|---|---|
(−5, 10) | 16.4 log l + 3.6 log λ − 24.1 | 2.4 < l/λ < 12.8 | 4.1 |
11.1 log l + 8.9 log λ − 20.7 | 2.4 < l/λ ≤ 6.2 | 2.5 | |
22.8 log l − 2.8 log λ − 30.0 | 6.2 ≤ l/λ < 12.8 | ||
(−5, 15) | 16.2 log l + 3.8 log λ − 25.0 | 2.4 < l/λ < 12.8 | 3.3 |
11.0 log l + 9.0 log λ − 21.7 | 2.4 < l/λ ≤ 6.1 | 1.8 | |
22.0 log l − 2.0 log λ − 30.3 | 6.1 ≤ l/λ < 12.8 | ||
(0, 10) | 14.7 log l + 5.3 log λ − 23.7 | 2.4 < l/λ < 12.8 | 6.4 |
8.9 log l + 11.1 log λ − 20.0 | 2.4 < l/λ ≤ 6.2 | 4.5 | |
22.0 log l − 2.0 log λ − 30.5 | 6.2 ≤ l/λ < 12.8 | ||
(0, 15) | 15.6 log l + 4.4 log λ − 25.0 | 2.4 < l/λ < 12.8 | 4.1 |
10.2 log l + 9.8 log λ − 21.5 | 2.4 < l/λ ≤ 6.3 | 2.5 | |
21.8 log l − 1.8 log λ − 30.7 | 6.3 ≤ l/λ < 12.8 |
Frequency (kHz) | Method (Angle Distribution) | Slope a | Intercept b | b20 | Fish Length (cm) | Reference |
---|---|---|---|---|---|---|
38 | Model (−5, 15) | 11.4 | −54.4 | −66.0 | 15.4–26.2 | Park et al., 2022 [13] |
Model (−5, 10) | 23.6 | −77.9 | −73.5 | 13.0–22.2 | Tong et al., 2022 [14] | |
Model (3, 4) | 40.4 | −92.4 | −65.8 | 14.8–26.9 | Zhu et al., 2024 [15] | |
Free Swimming (−1.2, 11.5) | 27.4 | −77.9 | −67.9 | 17.4–34.0 | Zhu et al., 2024 [16] | |
In situ | −71.0 | 26–30 | Gutiérrez et al., 1998 [43] | |||
50 | Ex situ (−5, 15) | 27.9 | −79.5 | −67.2 | 26.2–38.3 | Lee and Shin, 2005 [44] |
70 | Model (−5, 15) | 7.2 | −49.2 | −66.5 | 15.4–26.2 | Park et al., 2022 [13] |
Model (−5, 10) | 24.9 | −79.7 | −73.8 | 13.0–22.2 | Tong et al., 2022 [14] | |
Model (3, 4) | 19.4 | −64.5 | −65.3 | 14.8–26.9 | Zhu et al., 2024 [15] | |
75 | Ex situ (−5, 15) | 28.6 | −83.2 | −69.9 | 26.2–38.3 | Lee and Shin, 2005 [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, K.; Yan, N.; Mukai, T.; Fukuda, Y.; Yamamoto, J. Broadband Characteristics of Target Strength of Pacific Chub Mackerel. Fishes 2025, 10, 51. https://doi.org/10.3390/fishes10020051
Hasegawa K, Yan N, Mukai T, Fukuda Y, Yamamoto J. Broadband Characteristics of Target Strength of Pacific Chub Mackerel. Fishes. 2025; 10(2):51. https://doi.org/10.3390/fishes10020051
Chicago/Turabian StyleHasegawa, Kohei, Naizheng Yan, Tohru Mukai, Yoshiaki Fukuda, and Jun Yamamoto. 2025. "Broadband Characteristics of Target Strength of Pacific Chub Mackerel" Fishes 10, no. 2: 51. https://doi.org/10.3390/fishes10020051
APA StyleHasegawa, K., Yan, N., Mukai, T., Fukuda, Y., & Yamamoto, J. (2025). Broadband Characteristics of Target Strength of Pacific Chub Mackerel. Fishes, 10(2), 51. https://doi.org/10.3390/fishes10020051