Fish Pathogens: Infection and Biological Control
Author Contributions
Funding
Conflicts of Interest
References
- Tavares-Dias, M.; Martins, M.L. An overall estimation of losses caused by diseases in the Brazilian fish farms. J. Parasit. Dis. 2017, 41, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Haenen, O.L.; Dong, H.T.; Hoai, T.D.; Crumlish, M.; Karunasagar, I.; Barkham, T.; Chen, S.L.; Zadoks, R.; Kiermeier, A.; Wang, B.; et al. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev. Aquac. 2023, 15, 154–185. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.R.; Freire, N.B.; Peixoto, L.J.; Oliveira, S.T.; Souza, R.C.; Gouveia, J.J.; Costa, M.M.; Gouveia, G.V. The presence of plasmids in Aeromonas hydrophila and its relationship with antimicrobial and heavy metal-resistance profiles. Ciência Rural. 2018, 48, e20170813. [Google Scholar] [CrossRef]
- Monir, M.S.; Yusoff, S.M.; Mohamad, A.; Ina-Salwany, M.Y. Vaccination of Tilapia against Motile Aeromonas Septicemia: A Review. J. Aquat. Anim. Health 2020, 32, 65–76. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.R.; de Abreu, D.C.; Chideroli, R.T.; do Espirito, K.M.; Gonçalves, D.D.; Di Santis, G.W.; de Pádua Pereira, U. Interspecies transmission of Edwardsiella ictaluri in Brazilian catfish (Pseudoplatystoma corruscans) from exotic invasive fish species. Dis. Aquat. Organ. 2021, 145, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Jang, M.; Lim, H.J.; Kim, C.Y.; Song, J.Y.; Cho, M.Y. A peptide nucleic acid probe-based multiplex qPCR assay for rapid and accurate detection and quantification of fish-pathogenic Edwardsiella species. Aquaculture 2023, 579, 740157. [Google Scholar] [CrossRef]
- Reichley, S.R.; Ware, C.; Steadman, J.; Gaunt, P.S.; García, J.C.; LaFrentz, B.R.; Thachil, A.; Waldbieser, G.C.; Stine, C.B.; Buján, N.; et al. Comparative Phenotypic and Genotypic Analysis of Edwardsiella Isolates from Different Hosts and Geographic Origins, with Emphasis on Isolates Formerly Classified as E. tarda, and Evaluation of Diagnostic Methods. J. Clin. Microbiol. 2017, 55, 3466–3491. [Google Scholar] [CrossRef]
- Griffin, M.J.; Greenway, T.E.; Byars, T.S.; Ware, C.; Aarattuthodiyil, S.; Kumar, G.; Wise, D.J. Cross-protective potential of a live-attenuated Edwardsiella ictaluri vaccine against Edwardsiella piscicida in channel (Ictalurus punctatus) and channel × blue (Ictalurus furcatus) hybrid catfish. J. World Aquac. Soc. 2020, 51, 740–749. [Google Scholar] [CrossRef]
- Kordon, A.O.; Kalindamar, S.; Majors, K.; Abdelhamed, H.; Tan, W.; Karsi, A.; Pinchuk, L.M. Effects of Live Attenuated Vaccine and Wild Type Strains of Edwardsiella ictaluri on Phagocytosis, Bacterial Killing, and Survival of Catfish B Cells. Front. Immunol. 2019, 10, 2383. [Google Scholar] [CrossRef]
- Tekedar, H.C.; Kumru, S.; Blom, J.; Perkins, A.D.; Griffin, M.J.; Abdelhamed, H.; Karsi, A.; Lawrence, M.L. Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PLoS ONE 2019, 14, e0221018. [Google Scholar] [CrossRef] [PubMed]
- Grazziotin, A.L.; Vidal, N.M.; Hoepers, P.G.; Reis, T.F.; Mesa, D.; Caron, L.F.; Ingberman, M.; Beirão, B.C.; Zuffo, J.P.; Fonseca, B.B. Comparative genomics of a novel clade shed light on the evolution of the genus Erysipelothrix and characterise an emerging species. Sci. Rep. 2021, 11, 3383. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.M.; Yoshida, G.M.; Parra, Á.; Correa, K.; Barría, A.; Bassini, L.N.; Christensen, K.A.; López, M.E.; Carvalheiro, R.; Lhorente, J.P.; et al. Comparative genomic analysis of three salmonid species identifies functional candidate genes involved in resistance to the intracellular bacterium Piscirickettsia salmonis. Front. Genet. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Favero, L.M.; Chideroli, R.T.; Ferrari, N.A.; Azevedo, V.A.; Tiwari, S.; Lopera-Barrero, N.M.; Pereira, U.D. In silico Prediction of New Drug Candidates against the Multidrug-Resistant and Potentially Zoonotic Fish Pathogen Serotype III Streptococcus agalactiae. Front. Genet. 2020, 11, 1024. [Google Scholar] [CrossRef]
- Yu, L.H.; Teh, C.S.J.; Yap, K.P.; Ung, E.H.; Thong, K.L. Comparative genomic provides insight into the virulence and genetic diversity of Vibrio parahaemolyticus associated with shrimp acute hepatopancreatic necrosis disease. Infect. Genet. Evol. 2020, 83, 104347. [Google Scholar] [CrossRef]
- Cardoso, P.H.M.; Balian, S.D.C.; Soares, H.S.; Tancredo, K.R.; Martins, M.L. Neobenedenia melleni (Monogenea: Capsalidae) in ornamental reef fish imported to Brazil. Rev. Bras. Parasitol. Vet. 2019, 28, 157–160. [Google Scholar] [CrossRef]
- Mordecai, G.J.; Miller, K.M.; Di Cicco, E.; Schulze, A.D.; Kaukinen, K.H.; Ming, T.J.; Li, S.; Tabata, A.; Teffer, A.; Patterson, D.A.; et al. Endangered wild salmon infected by newly discovered viruses. Elife 2019, 8, e47615. [Google Scholar] [CrossRef]
- Grotmol, S.; Totland, G.K. Surface disinfection of Atlantic halibut Hippoglossus hippoglossus eggs with ozonated sea-water inactivates nodavirus and increases survival of the larvae. Dis. Aquat. Organ. 2000, 39, 89–96. [Google Scholar] [CrossRef]
- Senthamarai, M.D.; Rajan, M.R.; Bharathi, P.V. Current risks of microbial infections in fish and their prevention methods: A review. Microb. Pathog. 2023, 185, 106400. [Google Scholar] [CrossRef]
- Hamed, S.B.; Tapia-Paniagua, S.T.; Moriñigo, M.Á.; Ranzani-Paiva, M.J.T. Advances in vaccines developed for bacterial fish diseases, performance and limits. Aquac. Res. 2021, 52, 2377–2390. [Google Scholar] [CrossRef]
- Joshi, R.; Skaarud, A.; Alvarez, A.T. Experimental validation of genetic selection for resistance against Streptococcus agalactiae via different challenge models in commercial Nile tilapia breeding program. Under Rev. 2020, 138, 338–348. [Google Scholar]
- Mastrochirico-Filho, V.A.; Ariede, R.B.; Freitas, M.V.; Lira, L.V.; Agudelo, J.F.; Pilarski, F.; Neto, R.V.; Yáñez, J.M.; Hashimoto, D.T. Genetic parameters for resistance to Aeromonas hydrophila in the Neotropical fish pacu (Piaractus mesopotamicus) Vito. Aquaculture 2019, 513, 734442. [Google Scholar] [CrossRef]
- Basu, C. In Silico PCR Primer Designing and Validation. In PCR Primer Design; Methods in Molecular Biology; Clifton, N.J., Ed.; Humana: New York, NY, USA, 2015; Volume 1275, p. 216. [Google Scholar] [CrossRef]
- Suphoronski, S.A.; Chideroli, R.T.; Facimoto, C.T.; Mainardi, R.M.; Souza, F.P.; Lopera-Barrero, N.M.; Jesus, G.F.; Martins, M.L.; Di Santis, G.W.; De Oliveira, A.; et al. Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis. Sci. Rep. 2019, 9, 6045. [Google Scholar] [CrossRef]
- Kavitha, M.; Raja, M.; Perumal, P. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton 1822). Aquac. Rep. 2018, 11, 59–69. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, A.R.; da Costa, M.M.; de Carvalho Azevedo, V.A.; de Padua Pereira, U. Fish Pathogens: Infection and Biological Control. Fishes 2023, 8, 579. https://doi.org/10.3390/fishes8120579
da Costa AR, da Costa MM, de Carvalho Azevedo VA, de Padua Pereira U. Fish Pathogens: Infection and Biological Control. Fishes. 2023; 8(12):579. https://doi.org/10.3390/fishes8120579
Chicago/Turabian Styleda Costa, Arthur Roberto, Mateus Matiuzzi da Costa, Vasco Ariston de Carvalho Azevedo, and Ulisses de Padua Pereira. 2023. "Fish Pathogens: Infection and Biological Control" Fishes 8, no. 12: 579. https://doi.org/10.3390/fishes8120579
APA Styleda Costa, A. R., da Costa, M. M., de Carvalho Azevedo, V. A., & de Padua Pereira, U. (2023). Fish Pathogens: Infection and Biological Control. Fishes, 8(12), 579. https://doi.org/10.3390/fishes8120579