Simulation Analysis and Experimental Verification of Freezing Time of Tuna under Freezing Conditions
Abstract
:1. Introduction
- ω—tuna water content
- λ—interface thermal conductivity
- λl—interface liquid-phase thermal conductivity
- λs—interface solid-phase thermal conductivity
- ρ—tuna density
- CFD—computational fluid dynamics
- Cp—tuna specific heat capacity
- Cpl—specific heat capacity before freezing
- Cps—specific heat capacity after freezing
- h—specific enthalpy
- hs—heat transfer coefficient of the tuna surface
- k—thermal conductivity of tuna
- n—outer normal line direction
- T—temperature
- T0—initial temperature
- Td—bottom surface temperature
- Text—air temperature
- Tl—phase interface liquid-phase temperature
- Tp—phase interface phase transition temperature
- Ts—phase interface solid-phase temperature
- TSo—solidus temperature
- Tw—surface temperature
- Tfp—phase transition temperature
- t—freezing time
- Q—phase transition enthalpy
2. Materials and Methods
2.1. Sample Preparation
2.2. Water Content
2.3. Temperature Curve
3. Models and Assumptions
3.1. Physical Models
3.2. Mathematical Models
3.3. Assumptions
4. Boundary Conditions and Calculation Methods
4.1. Inlet and Outlet
4.2. Boundary Conditions
4.2.1. Internal Heat Conduction Equation
4.2.2. Bottom Equation
Surface Convection Equation
Phase-Surface Equation
4.3. Calculation Method
5. Results and Discussion
5.1. Accuracy of Numerical Simulations
5.2. Analysis of Velocity and Temperature Field
5.3. Analysis of Temperature Curve and Nusselt Number
5.4. Effect of Air Velocity on Freezing of Tuna of Different Sizes
5.5. Effect of Temperature on Freezing of Tuna of Different Sizes
5.6. Effect of Fish Size on Freezing of Tuna
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meneghetti, A.; Magro, F.D.; Romagnoli, A. Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units. Energy 2021, 232, 120994. [Google Scholar] [CrossRef]
- Nakazawa, N.; Okazaki, E. Recent research on factors influencing the quality of frozen seafood. Fish. Sci. 2020, 86, 231–244. [Google Scholar] [CrossRef]
- Moureh, J.; Derens, E. Numerical modelling of the temperature increase in frozen food packaged in pallets in the distribution chain. Int. J. Refrig. 2000, 23, 540–552. [Google Scholar] [CrossRef]
- Gandotra, R.; Sharma, S.; Koul, M.; Gupta, S. Effect of chilling and freezing on fish muscle. J. Pharm. Biol. Sci. 2012, 2, 05–09. [Google Scholar] [CrossRef]
- Ghoneim, G.A.; Youssef, F.Y.; Ahmed, M.B.; Elkhamisy, B.S.; Anees, F.R. Effects of Frozen Storage on Quality Characteristics of Some fishery Products Processed from Bluefin Tuna and Common Carp. Egypt. J. Food Sci. 2022, 50, 203–221. [Google Scholar] [CrossRef]
- Yun, Y.-C.; Kim, H.; Ramachandraiah, K.; Hong, G.-P. Evaluation of the Relationship between Freezing Rate and Quality Characteristics to Establish a New Standard for the Rapid Freezing of Pork. Food Sci. Anim. Resour. 2021, 41, 1012–1021. [Google Scholar] [CrossRef]
- Shi, Z.; Zhong, S.; Yan, W.; Liu, M.; Yang, Z.; Qiao, X. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella). LWT 2019, 111, 301–308. [Google Scholar] [CrossRef]
- Tan, M.; Mei, J.; Xie, J. The formation and control of ice crystal and its impact on the quality of frozen aquatic products: A review. Crystals 2021, 11, 68. [Google Scholar] [CrossRef]
- Li, D.; Zhao, H.; Muhammad, A.I.; Song, L.; Guo, M.; Liu, D. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chem. 2020, 320, 126614. [Google Scholar] [CrossRef]
- Jia, H.; Roy, K.; Pan, J.; Mraz, J. Icy affairs: Understanding recent advancements in the freezing and frozen storage of fish. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1383–1408. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Cui, F.; Wang, J.; Yi, S.; Mi, H.; Lv, Y.; Li, X.; Li, J. Effects of four multi-compound freezing medium on the quality of red drum (Sciaenops ocellatus) during frozen storage. Int. J. Food Sci. Technol. 2022, 57, 4400–4410. [Google Scholar] [CrossRef]
- Bian, C.; Yu, H.; Yang, K.; Mei, J.; Xie, J. Effects of single-, dual-, and multi-frequency ultrasound-assisted freezing on the muscle quality and myofibrillar protein structure in large yellow croaker (Larimichthys crocea). Food Chem. X 2022, 15, 100362. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Du, Y.; Nakazawa, N.; Hu, Y.; Shi, W.; Wang, X.; Osako, K.; Okazaki, E. Effects of frozen storage temperature on the quality and oxidative stability of bigeye tuna flesh after light salting. Int. J. Food Sci. Technol. 2022, 57, 3069–3077. [Google Scholar] [CrossRef]
- Zhao, Y.; Ji, W.; Chen, L.; Guo, J.; Wang, J. Effect of cryogenic freezing combined with precooling on freezing rates and the quality of golden pomfret (Trachinotus ovatus). J. Food Process. Eng. 2019, 42, e13296. [Google Scholar] [CrossRef]
- Zhao, Y.; Ji, W.; Guo, J.; Chen, L.; Tian, C.; Wang, Y.; Wang, J. Numerical and experimental study on the quick freezing process of the bayberry. Food Bioprod. Process. 2020, 119, 98–107. [Google Scholar] [CrossRef]
- Wan, T.; Xie, J.; Wang, J.; Zhou, J. Calculation of thermal properties and numerical simulation of freezing time of shrimp. Food Mach. 2018, 34, 106–110. (In Chinese) [Google Scholar]
- Wang, J.; Zhang, H.; Xie, J.; Yu, W.; Sun, Y. Effects of Frozen Storage Temperature on Water-Holding Capacity and Physicochemical Properties of Muscles in Different Parts of Bluefin Tuna. Foods 2022, 11, 2315. [Google Scholar] [CrossRef]
- Nakazawa, N.; Wada, R.; Fukushima, H.; Tanaka, R.; Kono, S.; Okazaki, E. Effect of long-term storage, ultra-low temperature, and freshness on the quality characteristics of frozen tuna meat. Int. J. Refrig. 2020, 112, 270–280. [Google Scholar] [CrossRef]
- Shi, G.; Gao, T.; Qian, X.; Xiong, G.; Shi, L.; Wu, W.; Xin, L.; Yu, Q.; Ding, A.; Li, L.; et al. Effects of different quick-freezing treatments on the quality changes of largemouth bass meat during frozen storage. Meat Res./Roulei Yanjiu 2020, 34, 68–74. [Google Scholar]
- Rahman, M.S.; Kasapis, S.; Guizani, N.; Al-Amri, O.S. State diagram of tuna meat: Freezing curve and glass transition. J. Food Eng. 2003, 57, 321–326. [Google Scholar] [CrossRef]
- Marra, F.; Zell, M.; Lyng, J.; Morgan, D.; Cronin, D. Analysis of heat transfer during ohmic processing of a solid food. J. Food Eng. 2009, 91, 56–63. [Google Scholar] [CrossRef]
- Gong, H.; Tao, R.; Yang, Z.; Liu, M.; Shi, Z.; Wang, S. Thermophysical properties of muscle tissue in different varieties of tuna. Meat Res. 2017, 31, 1–5. (In Chinese) [Google Scholar]
- Senguttuvan, S.; Rhee, Y.; Lee, J.; Kim, J.; Kim, S.-M. Enhanced heat transfer in a refrigerated container using an airflow optimized refrigeration unit. Int. J. Refrig. 2021, 131, 723–736. [Google Scholar] [CrossRef]
- Agnelli, M.E.; Mascheroni, R.H. Cryomechanical freezing. A model for the heat transfer process. J. Food Eng. 2001, 47, 263–270. [Google Scholar] [CrossRef]
- Narsaiah, K.; Bedi, V.; Ghodki, B.M.; Goswami, T.K. Heat transfer modeling of shrimp in tunnel type individual quick freezing system. J. Food Process. Eng. 2021, 44, e13838. [Google Scholar] [CrossRef]
- Vabishchevich, P. Numerical solution of the heat conduction problem with memory. Comput. Math. Appl. 2022, 118, 230–236. [Google Scholar] [CrossRef]
- Wang, L.R.; Jin, Y.; Wang, J.J. A simple and low-cost experimental method to determine the thermal diffusivity of various types of foods. Am. J. Phys. 2022, 90, 568–572. [Google Scholar] [CrossRef]
- Deng, S.; Hu, D.; She, S.; Hong, Z.; Hu, X.; Zhou, F. Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model. Buildings 2022, 12, 1373. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time–temperature management along the food cold chain: A review of recent developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- Kono, S.; Kon, M.; Araki, T.; Sagara, Y. Effects of relationships among freezing rate, ice crystal size and color on surface color of frozen salmon fillet. J. Food Eng. 2017, 214, 158–165. [Google Scholar] [CrossRef]
- Rodríguez-Jara, E.; Sánchez-De-La-Flor, F.J.; Expósito-Carrillo, J.A.; Salmerón-Lissén, J.M. Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150. Appl. Therm. Eng. 2022, 200, 117598. [Google Scholar] [CrossRef]
- Muthukumarappan, K.; Tiwari, B.; Swamy, G.J. Refrigeration and freezing preservation of vegetables. In Handbook of Vegetables and Vegetable Processing; Wiley: Hoboken, NJ, USA, 2018; pp. 341–363. [Google Scholar]
- Lv, Y.; Chu, Y.; Zhou, P.; Mei, J.; Xie, J. Effects of different freezing methods on water distribution, microstructure and protein properties of cuttlefish during the frozen storage. Appl. Sci. 2021, 11, 6866. [Google Scholar] [CrossRef]
- Leng, D.; Zhang, H.; Tian, C.; Xu, H.; Li, P. The effect of magnetic field on the quality of channel catfish under two different freezing temperatures. Int. J. Refrig. 2022, 140, 49–56. [Google Scholar] [CrossRef]
- Cuesta, F.; Sánchez-Alonso, I.; Navas, A.; Careche, M. Calculation of full process freezing time in minced fish muscle. MethodsX 2021, 8, 101292. [Google Scholar] [CrossRef]
- Diao, Y.; Cheng, X.; Wang, L.; Xia, W. Effects of immersion freezing methods on water holding capacity, ice crystals and water migration in grass carp during frozen storage. Int. J. Refrig. 2021, 131, 581–591. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, X.; Li, Y.; Wu, H.; Chen, Y.; Gao, R.; Xiao, F.; Bai, F.; Wang, J.; Liu, Z.; et al. Effects of protein oxidation, cathepsins, and various freezing temperatures on the quality of superchilled sturgeon fillets. Mar. Life Sci. Technol. 2022, 4, 117–126. [Google Scholar] [CrossRef]
- Cartagena, L.; Puértolas, E.; de Marañón, I.M. Impact of different air blast freezing conditions on the physicochemical quality of albacore (Thunnus alalunga) pretreated by high pressure processing. LWT 2021, 145, 111538. [Google Scholar] [CrossRef]
- Pattanaik, S.; Jenamani, M. Identifying the cooling heterogeneity and quality decay of Indian mangoes during cold chain export by multiphysics modeling. J. Food Process. Eng. 2023, 46, e14250. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, N.; Wang, H.; Yang, Y.; Tu, Z. Effects of pre-freezing methods and storage temperatures on the qualities of crucian carp (Carassius auratus var. pengze) during frozen storage. J. Food Process. Preserv. 2021, 45, e15139. [Google Scholar] [CrossRef]
Parameters | Before Freezing | After Freezing | ||
---|---|---|---|---|
Value | Calculated with | Value | Calculated with | |
Cp (kJ/(kg·K)) | 3.282 | Cpl = 0.837 + 3.349ω | 1.754 | Cps = 0.837 + 1.256ω |
λ (W/(m·K)) | 0.508 | λl = 0.26 + 0.34ω | 1.519 | λs = 2ω + 0.22(1 − ω) |
ω | 0.73 | |||
ρ (kg/m3) | 1050 | |||
Tp (K) | 270.1 | |||
TSo (K) | 264.3 | |||
Q (J/kg) | 176,500 |
Parameters | Whole Fish | Segment A | Segment B | Piece A | Piece B |
---|---|---|---|---|---|
Mesh quality | |||||
Nodes of fish | 3301 | 3990 | 3766 | 3828 | 2496 |
Elements of fish | 14,820 | 18,435 | 17,042 | 10,924 | 1875 |
Nodes of air | 12,540 | 15,180 | 13,949 | 14,473 | 15,676 |
Elements of air | 68,863 | 79,347 | 74,969 | 72,677 | 81,951 |
Independent analyses | |||||
Order of magnitudes | Freezing time at −35 °C and −6 m/s air velocity (s) | ||||
104 | 25,285 | 25,487 | 18,793 | 2954 | 574 |
105 | 26,685 | 27,254 | 20,905 | 3408 | 702 |
106 | 27,454 | 28,057 | 21,526 | 3479 | 731 |
Freezing Condition | Freezing Rate | |||||
---|---|---|---|---|---|---|
Temperature | Air Velocity | Whole Fish | Segment A | Segment B | Piece A | Piece B |
−18 °C | 0 m/s | 0.020 | 0.015 | 0.024 | 0.570 | 5.255 |
1 m/s | 0.138 | 0.136 | 0.185 | 0.998 | 7.901 | |
6 m/s | 0.309 | 0.311 | 0.410 | 2.298 | 10.805 | |
20 m/s | 0.467 | 0.427 | 0.573 | 3.845 | 15.894 | |
−35 °C | 0 m/s | 0.071 | 0.055 | 0.090 | 1.921 | 18.084 |
1 m/s | 0.449 | 0.439 | 0.614 | 3.874 | 25.509 | |
6 m/s | 0.924 | 0.905 | 1.180 | 7.238 | 35.138 | |
20 m/s | 1.333 | 1.201 | 1.581 | 11.484 | 50.137 | |
−60 °C | 0 m/s | 0.129 | 0.102 | 0.162 | 3.464 | 32.372 |
1 m/s | 0.774 | 0.740 | 1.020 | 6.758 | 44.931 | |
6 m/s | 1.513 | 1.455 | 1.854 | 12.211 | 61.361 | |
20 m/s | 2.138 | 1.912 | 2.447 | 19.048 | 87.784 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Yang, D.; Xie, J.; Yang, Z. Simulation Analysis and Experimental Verification of Freezing Time of Tuna under Freezing Conditions. Fishes 2023, 8, 470. https://doi.org/10.3390/fishes8090470
Huo Y, Yang D, Xie J, Yang Z. Simulation Analysis and Experimental Verification of Freezing Time of Tuna under Freezing Conditions. Fishes. 2023; 8(9):470. https://doi.org/10.3390/fishes8090470
Chicago/Turabian StyleHuo, Yilin, Dazhang Yang, Jing Xie, and Zhikang Yang. 2023. "Simulation Analysis and Experimental Verification of Freezing Time of Tuna under Freezing Conditions" Fishes 8, no. 9: 470. https://doi.org/10.3390/fishes8090470
APA StyleHuo, Y., Yang, D., Xie, J., & Yang, Z. (2023). Simulation Analysis and Experimental Verification of Freezing Time of Tuna under Freezing Conditions. Fishes, 8(9), 470. https://doi.org/10.3390/fishes8090470