The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada
Abstract
:1. Introduction
2. Thermal Refuges—Physical Environment
3. Detection and Mapping of Thermal Refuges
4. Behavioural Thermoregulation; Elaborating the Concept
5. Behaviour Leading to, during, and after Behavioural Thermoregulation Event
5.1. Finding Refuges
5.2. Behaviour in the Refuges and Post-Aggregation Movements
5.3. Consequences of Behavioural Thermoregulation
6. Management and Conservation Actions in Response to a Warming Climate, Thermally Challenging Conditions and Cold-Water Refuges–Future of Stream Salmonids
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Synthesis Report of the IPCC Sixth Assessment Report (AR6); IPCC: Geneva, Switzerland, 2023; 85p. [Google Scholar]
- Jonsson, B. Thermal Effects on Ecological Traits of Salmonids. Fishes 2023, 8, 337. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. A Review of the Likely Effects of Climate Change on Anadromous Atlantic Salmon Salmo salar and Brown Trout Salmo trutta, with Particular Reference to Water Temperature and Flow. J. Fish Biol. 2009, 75, 2381–2447. [Google Scholar] [CrossRef]
- Linnansaari, T.; Cunjak, R.A. Fish: Freshwater Ecosystems. In Temperature Adaptation in a Changing Climate: Nature at Risk; Storey, K.B., Tanino, K.K., Eds.; CABI: Wallingford, UK, 2012; pp. 80–97. ISBN 978-1-84593-822-2. [Google Scholar]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate Change Effects on Stream and River Temperatures across the Northwest U.S. from 1980–2009 and Implications for Salmonid Fishes. Clim. Chang. 2012, 113, 499–524. [Google Scholar] [CrossRef]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate Change and Freshwater Biodiversity: Detected Patterns, Future Trends and Adaptations in Northern Regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef]
- Caissie, D. The Thermal Regime of Rivers: A Review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Dahms, C.; Killen, S.S. Temperature Change Effects on Marine Fish Range Shifts: A Meta-analysis of Ecological and Methodological Predictors. Glob. Chang. Biol. 2023, 29, 4459–4479. [Google Scholar] [CrossRef]
- Moore, A.; Bendall, B.; Barry, J.; Waring, C.; Crooks, N.; Crooks, L. River Temperature and Adult Anadromous Atlantic Salmon, Salmo salar, and Brown Trout, Salmo trutta. Fish. Manag. Ecol. 2012, 19, 518–526. [Google Scholar] [CrossRef]
- Finstad, A.G.; Ugedal, O.; Forseth, T.; Næsje, T.F. Energy-Related Juvenile Winter Mortality in a Northern Population of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2004, 61, 2358–2368. [Google Scholar] [CrossRef]
- Linnansaari, T.; Alfredsen, K.; Stickler, M.; Arnekleiv, J.V.; Harby, A.; Cunjak, R.A. Does Ice Matter? Site Fidelity and Movements by Atlantic Salmon (Salmo salar L.) Parr during Winter in a Substrate Enhanced River Reach. River Res. Appl. 2009, 25, 773–787. [Google Scholar] [CrossRef]
- Prowse, T.D.; Bonsal, B.R.; Duguay, C.R.; Lacroix, M.P. River-Ice Break-up/Freeze-up: A Review of Climatic Drivers, Historical Trends and Future Predictions. Ann. Glaciol. 2007, 46, 443–451. [Google Scholar] [CrossRef]
- Corey, E.; Linnansaari, T.; Dugdale, S.J.; Bergeron, N.; Gendron, J.; Lapointe, M.; Cunjak, R.A. Comparing the Behavioural Thermoregulation Response to Heat Stress by Atlantic Salmon Parr (Salmo salar) in Two Rivers. Ecol. Freshw. Fish 2020, 29, 50–62. [Google Scholar] [CrossRef]
- Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; et al. Flow Regime, Temperature, and Biotic Interactions Drive Differential Declines of Trout Species under Climate Change. Proc. Natl. Acad. Sci. USA 2011, 108, 14175–14180. [Google Scholar] [CrossRef]
- Isaak, D.J.; Rieman, B.E. Stream Isotherm Shifts from Climate Change and Implications for Distributions of Ectothermic Organisms. Glob. Chang. Biol. 2013, 19, 742–751. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Corey, E.; Cunjak, R.A.; Linnansaari, T.; Curry, R.A. Salmonid Thermal Habitat Contraction in a Hydrogeologically Complex Setting. Ecosphere 2021, 12, e03797. [Google Scholar] [CrossRef]
- Svenning, M.; Falkegård, M.; Dempson, J.B.; Power, M.; Bårdsen, B.; Guðbergsson, G.; Fauchald, P. Temporal Changes in the Relative Abundance of Anadromous Arctic Charr, Brown Trout, and Atlantic Salmon in Northern Europe: Do They Reflect Changing Climates? Freshw. Biol. 2022, 67, 64–77. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Liss, W.J.; Frissell, C.A. Thermal Heterogeneity, Stream Channel Morphology, and Salmonid Abundance in Northeastern Oregon Streams. Can. J. Fish. Aquat. Sci. 2003, 60, 1266–1280. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Liss, W.J.; Frissell, C.A. Cold Water Patches in Warm Streams: Physicochemical Characteristics and the Influence of Shading. J. Am. Water Resour. Assoc. 2003, 39, 355–368. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Ebersole, J.L.; Keenan, D.M. Primer for Identifying Cold-Water Refuges to Protect and Restore Thermal Diversity in Riverine Landscapes; U.S. Environmental Protection Agency: Washington, DC, USA, 2012; p. 91.
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Linnansaari, T.; Cunjak, R.A.; Curry, R.A. Preserving, Augmenting, and Creating Cold-water Thermal Refugia in Rivers: Concepts Derived from Research on the Miramichi River, New Brunswick (Canada). Ecohydrology 2015, 8, 1095–1108. [Google Scholar] [CrossRef]
- Mejia, F.H.; Torgersen, C.E.; Berntsen, E.K.; Maroney, J.R.; Connor, J.M.; Fullerton, A.H.; Ebersole, J.L.; Lorang, M.S. Longitudinal, Lateral, Vertical, and Temporal Thermal Heterogeneity in a Large Impounded River: Implications for Cold-Water Refuges. Remote Sens. 2020, 12, 1386. [Google Scholar] [CrossRef]
- Breau, C.; Cunjak, R.A.; Bremset, G. Age-Specific Aggregation of Wild Juvenile Atlantic Salmon Salmo salar at Cool Water Sources during High Temperature Events. J. Fish Biol. 2007, 71, 1179–1191. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Franssen, J.; Corey, E.; Bergeron, N.; Lapointe, M.; Cunjak, R.A. Main Stem Movement of Atlantic Salmon Parr in Response to High Temperatures. Ecol. Freshw. Fish 2016, 25, 429–445. [Google Scholar] [CrossRef]
- Wilbur, N.M.; O’Sullivan, A.M.; MacQuarrie, K.T.B.; Linnansaari, T.; Curry, R.A. Characterizing Physical Habitat Preferences and Thermal Refuge Occupancy of Brook Trout (Salvelinus fontinalis) and Atlantic Salmon (Salmo salar) at High River Temperatures. River Res. Appl. 2020, 36, 769–783. [Google Scholar] [CrossRef]
- Sullivan, C.J.; Vokoun, J.C.; Helton, A.M.; Briggs, M.A.; Kurylyk, B.L. An Ecohydrological Typology for Thermal Refuges in Streams and Rivers. Ecohydrology 2021, 14, e2295. [Google Scholar] [CrossRef]
- Isaak, D.J.; Young, M.K. Cold-Water Habitats, Climate Refugia, and Their Utility for Conserving Salmonid Fishes. Can. J. Fish. Aquat. Sci. 2023, 80, 1187–1206. [Google Scholar] [CrossRef]
- Mejia, F.H.; Ouellet, V.; Briggs, M.A.; Carlson, S.M.; Casas-Mulet, R.; Chapman, M.; Collins, M.J.; Dugdale, S.J.; Ebersole, J.L.; Frechette, D.M.; et al. Closing the Gap between Science and Management of Cold-water Refuges in Rivers and Streams. Glob. Chang. Biol. 2023, 29, 5482–5508. [Google Scholar] [CrossRef]
- Cunjak, R.A. Winter Habitat of Selected Stream Fishes and Potential Impacts from Land-Use Activity. Can. J. Fish. Aquat. Sci. 1996, 53 (Suppl. S1), 267–282. [Google Scholar] [CrossRef]
- Cunjak, R.A.; Prowse, T.D.; Parrish, D.L. Atlantic Salmon (Salmo salar) in Winter: “The Season of Parr Discontent”. Can. J. Fish. Aquat. Sci. 1998, 55 (Suppl. S1), 161–180. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Price, D.M.; Li, H.W.; Mcintosh, B.A. Multiscale Thermal Refugia and Stream Habitat Associations of Chinook Salmon in Northeastern Oregon. Ecol. Appl. 1999, 9, 301–319. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.; St-Hilaire, A. Temporal Variability of Thermal Refuges and Water Temperature Patterns in an Atlantic Salmon River. Remote Sens. Environ. 2013, 136, 358–373. [Google Scholar] [CrossRef]
- Sutton, R.J.; Deas, M.L.; Tanaka, S.K.; Soto, T.; Corum, R.A. Salmonid Observations at a Klamath River Thermal Refuge under Various Hydrological and Meteorological Conditions. River Res. Appl. 2007, 23, 775–785. [Google Scholar] [CrossRef]
- Gendron, J. Physical Controls on Summer Thermal Refuges for Salmonids in Two Gravel-Cobble Salmon Rivers with Contrasting Thermal Regimes: The Ouelle and Ste-Marguerite Rivers. Master’s Thesis, McGill University, Montreal, QC, Canada, 2013. [Google Scholar]
- Wondzell, S.M.; Gooseff, M. 9.13 Geomorphic Controls on Hyporheic Exchange across Scales: Watersheds to Particles. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 9, pp. 203–218. ISBN 978-0-08-088522-3. [Google Scholar]
- Huntsman, A.G. Death of Salmon and Trout with High Temperature. J. Fish. Res. Board Can. 1942, 5, 485–501. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Liss, W.J.; Frissell, C.A. Relationship between Stream Temperature, Thermal Refugia and Rainbow Trout Oncorhynchus mykiss Abundance in Arid-Land Streams in the Northwestern United States. Ecol. Freshw. Fish 2001, 10, 1–10. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Lisle, T.E.; Ozaki, V. Thermally Stratified Pools and Their Use by Steelhead in Northern California Streams. Trans. Am. Fish. Soc. 1994, 123, 613–626. [Google Scholar] [CrossRef]
- Wondzell, S.M.; Ward, A.S. The Channel-Source Hypothesis: Empirical Evidence for in-Channel Sourcing of Dissolved Organic Carbon to Explain Hysteresis in a Headwater Mountain Stream. Hydrol. Process. 2022, 36, e14570. [Google Scholar] [CrossRef]
- Enders, E.C.; Boisclair, D.; Roy, A.G. The Effect of Turbulence on the Cost of Swimming for Juvenile Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [Google Scholar] [CrossRef]
- Babin, A.B.; Peake, S.; Linnansaari, T.; Curry, R.A.; Ndong, M.; Haralampides, K.; Jones, R. Atlantic Salmon Upstream Migration Delay in a Large Hydropower Reservoir. N. Am. J. Fish. Manag. 2021, 41, 158–175. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating Thermal Regimes into Environmental Flows Assessments: Modifying Dam Operations to Restore Freshwater Ecosystem Integrity: Incorporating Thermal Regimes in Environmental Flows Assessments. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Krause, C.W.; Newcomb, T.J.; Orth, D.J. Thermal Habitat Assessment of Alternative Flow Scenarios in a Tailwater Fishery. River Res. Appl. 2005, 21, 581–593. [Google Scholar] [CrossRef]
- Hill, C.R.; Harrison, P.; University of New Brunswick, Fredericton, NB, Canada. Personal Communication, 2023.
- Alfredsen, K.; Harby, A.; Linnansaari, T.; Ugedal, O. Development of an Inflow-Controlled Environmental Flow Regime for a Norwegian River: Inflow-Controlled Environmental Flow Regime. River Res. Appl. 2012, 28, 731–739. [Google Scholar] [CrossRef]
- Cunjak, R.A.; Caissie, D.; El-Jabi, N.; Hardie, P.; Conlon, J.H.; Pollock, T.L.; Giberson, D.J.; Komadina-Douthwright, S.M. The Catamaran Brook (New Brunswick) Habitat Research Project: Biological, Physical and Chemical Conditions (1990–1992). Can. Tech. Rep. Fish. Aquat. Sci. 1993, 1914, 81. [Google Scholar]
- Isaak, D.J.; Young, M.K.; Nagel, D.E.; Horan, D.L.; Groce, M.C. The Cold-Water Climate Shield: Delineating Refugia for Preserving Salmonid Fishes through the 21st Century. Glob. Chang. Biol. 2015, 21, 2540–2553. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Wegscheider, B.; Helminen, J.; Cormier, J.G.; Linnansaari, T.; Wilson, D.A.; Curry, R.A. Catchment-Scale, High-Resolution, Hydraulic Models and Habitat Maps–a Salmonid’s Perspective. J. Ecohydraulics 2021, 6, 53–68. [Google Scholar] [CrossRef]
- Boyer, C.; St-Hilaire, A.; Bergeron, N.; Daigle, A.; Curry, R.A.; Caissie, D.; Gillis, C.-A. RivTemp: A Water Temperature Network for Atlantic Salmon Rivers in Eastern Canada. Water News 2016, 35, 10–15. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Nagel, D.E.; Luce, C.H.; Hostetler, S.W.; Dunham, J.B.; Roper, B.B.; Wollrab, S.P.; et al. The NorWeST Summer Stream Temperature Model and Scenarios for the Western U.S.: A Crowd-Sourced Database and New Geospatial Tools Foster a User Community and Predict Broad Climate Warming of Rivers and Streams. Water Resour. Res. 2017, 53, 9181–9205. [Google Scholar] [CrossRef]
- Isaak, D.J.; Peterson, E.E.; Ver Hoef, J.M.; Wenger, S.J.; Falke, J.A.; Torgersen, C.E.; Sowder, C.; Steel, E.A.; Fortin, M.-J.; Jordan, C.E.; et al. Applications of Spatial Statistical Network Models to Stream Data: Spatial Statistical Network Models for Stream Data. Wiley Interdiscip. Rev. Water 2014, 1, 277–294. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Devito, K.J.; Ogilvie, J.; Linnansaari, T.; Pronk, T.; Allard, S.; Curry, R.A. Effects of Topographic Resolution and Geologic Setting on Spatial Statistical River Temperature Models. Water Resour. Res. 2020, 56, e2020WR028122. [Google Scholar] [CrossRef]
- Wang, T.; Kelson, S.J.; Greer, G.; Thompson, S.E.; Carlson, S.M. Tributary Confluences Are Dynamic Thermal Refuges for a Juvenile Salmonid in a Warming River Network. River Res. Appl. 2020, 36, 1076–1086. [Google Scholar] [CrossRef]
- Ritter, T.D.; Zale, A.V.; Grisak, G.; Lance, M.J. Groundwater Upwelling Regulates Thermal Hydrodynamics and Salmonid Movements during High-temperature Events at a Montane Tributary Confluence. Trans. Am. Fish. Soc. 2020, 149, 600–619. [Google Scholar] [CrossRef]
- Handcock, R.N.; Torgersen, C.E.; Cherkauer, K.A.; Gillespie, A.R.; Tockner, K.; Faux, R.N.; Tan, J. Thermal Infrared Remote Sensing of Water Temperature in Riverine Landscapes. In Fluvial Remote Sensing for Science and Management; Carbonneau, P.E., Piegay, H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 85–113. ISBN 978-0-470-71427-0. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Atwell, B.H.; MacDonald, R.B.; Bartolucci, L.A. Thermal Mapping of Streams from Airborne Radiometric Scanning. J. Am. Water Resour. Assoc. 1971, 7, 228–243. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A. Spatial Distribution of Thermal Refuges Analysed in Relation to Riverscape Hydromorphology Using Airborne Thermal Infrared Imagery. Remote Sens. Environ. 2015, 160, 43–55. [Google Scholar] [CrossRef]
- Monk, W.A.; Wilbur, N.M.; Curry, R.A.; Gagnon, R.; Faux, R.N. Linking Landscape Variables to Cold Water Refugia in Rivers. J. Environ. Manag. 2013, 118, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Faux, R.N.; Steel, E.A.; Beechie, T.J.; Ebersole, J.L.; Leibowitz, S.G. Rethinking the Longitudinal Stream Temperature Paradigm: Region-Wide Comparison of Thermal Infrared Imagery Reveals Unexpected Complexity of River Temperatures. Hydrol. Process. 2015, 29, 4719–4737. [Google Scholar] [CrossRef]
- Fuller, M.R.; Ebersole, J.L.; Detenbeck, N.E.; Labiosa, R.; Leinenbach, P.; Torgersen, C.E. Integrating Thermal Infrared Stream Temperature Imagery and Spatial Stream Network Models to Understand Natural Spatial Thermal Variability in Streams. J. Therm. Biol. 2021, 100, 103028. [Google Scholar] [CrossRef] [PubMed]
- Corey, E.M.; Linnansaari, T.; O’Sullivan, A.M.; Curry, R.A.; Cunjak, R.A. Quantifying Movement Patterns of Wild Juvenile Atlantic Salmon (Salmo salar) in Relation to High Water Temperature and Proximity to Thermal Refuges. Ph.D. Thesis, University of New Brunswick, Fredericton, Canada, 2023. [Google Scholar]
- Dugdale, S.J.; Kelleher, C.A.; Malcolm, I.A.; Caldwell, S.; Hannah, D.M. Assessing the Potential of Drone-based Thermal Infrared Imagery for Quantifying River Temperature Heterogeneity. Hydrol. Process. 2019, 33, 1152–1163. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Pander, J.; Ryu, D.; Stewardson, M.J.; Geist, J. Unmanned Aerial Vehicle (UAV)-Based Thermal Infra-Red (TIR) and Optical Imagery Reveals Multi-Spatial Scale Controls of Cold-Water Areas over a Groundwater-Dominated Riverscape. Front. Environ. Sci. 2020, 8, 64. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Linnansaari, T.; Leavitt, J.; Samways, K.M.; Kurylyk, B.L.; Curry, R.A. The Salmon-peloton: Hydraulic Habitat Shifts of Adult Atlantic Salmon (Salmo salar) Due to Behavioural Thermoregulation. River Res. Appl. 2022, 38, 107–118. [Google Scholar] [CrossRef]
- Morgan, A.M.; O’Sullivan, A.M. Cooler, Bigger; Warmer, Smaller: Fine-Scale Thermal Heterogeneity Maps Age Class and Species Distribution in Behaviourally Thermoregulating Salmonids. River Res. Appl. 2023, 39, 163–176. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Kurylyk, B.L. Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy. Remote Sens. 2022, 14, 6356. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Linnansaari, T.; Curry, R.A. Ice Cover Exists: A Quick Method to Delineate Groundwater Inputs in Running Waters for Cold and Temperate Regions. Hydrol. Process. 2019, 33, 3297–3309. [Google Scholar] [CrossRef]
- Breau, C.; Cunjak, R.A.; Peake, S.J. Behaviour during Elevated Water Temperatures: Can Physiology Explain Movement of Juvenile Atlantic Salmon to Cool Water?: Temperature and Physiology of Juvenile Salmon. J. Anim. Ecol. 2011, 80, 844–853. [Google Scholar] [CrossRef]
- Elliott, J.M.; Elliott, J.A. Temperature Requirements of Atlantic Salmon Salmo salar, Brown Trout Salmo trutta and Arctic Charr Salvelinus alpinus: Predicting the Effects of Climate Change. J. Fish Biol. 2010, 77, 1793–1817. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.W.A.; Kramer, D.L. Territory Size as a Predictor of the Upper Limit to Population Density of Juvenile Salmonids in Streams. Can. J. Fish. Aquat. Sci. 1990, 47, 1724–1737. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Corey, E.M.; Collet, E.N.; Helminen, J.; Curry, R.A.; MacIntyre, C.; Linnansaari, T. Timing and Frequency of High Temperature Events Bend the Onset of Behavioural Thermoregulation in Atlantic Salmon (Salmo salar). Conserv. Physiol. 2023, 11, coac079. [Google Scholar] [CrossRef]
- Økland, F.; Erkinaro, J.; Moen, K.; Niemela, E.; Fiske, P.; McKinley, R.S.; Thorstad, E.B. Return Migration of Atlantic Salmon in the River Tana: Phases of Migratory Behaviour. J. Fish Biol. 2001, 59, 862–874. [Google Scholar] [CrossRef]
- Carrow, R.M. Freshwater Migration and Behaviour of Wild Adult Atlantic Salmon (Salmo salar) in the Miramichi River, New Brunswick, Canada. Master’s Thesis, University of New Brunswick, Department of Biology, Fredericton, NB, Canada, 2021. [Google Scholar]
- Farrell, A.P.; Eliason, E.J.; Sandblom, E.; Clark, T.D. Fish Cardiorespiratory Physiology in an Era of Climate Change. Can. J. Zool. 2009, 87, 835–851. [Google Scholar] [CrossRef]
- Eliason, E.J.; Clark, T.D.; Hinch, S.G.; Farrell, A.P. Cardiorespiratory Collapse at High Temperature in Swimming Adult Sockeye Salmon. Conserv. Physiol. 2013, 1, cot008. [Google Scholar] [CrossRef]
- Ern, R.; Andreassen, A.H.; Jutfelt, F. Physiological Mechanisms of Acute Upper Thermal Tolerance in Fish. Physiology 2023, 38, 141–158. [Google Scholar] [CrossRef]
- Allen, J.A. The Influence of Physical Conditions in the Genesis of Species. Radic. Rev. 1877, 1, 108–140. [Google Scholar]
- Angilletta, M.J. Thermal Adaptation: A Theoretical and Empirical Synthesis; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Eliason, E.J.; Clark, T.D.; Hague, M.J.; Hanson, L.M.; Gallagher, Z.S.; Jeffries, K.M.; Gale, M.K.; Patterson, D.A.; Hinch, S.G.; Farrell, A.P. Differences in Thermal Tolerance among Sockeye Salmon Populations. Science 2011, 332, 109–112. [Google Scholar] [CrossRef]
- Anlauf-Dunn, K.; Kraskura, K.; Eliason, E.J. Intraspecific Variability in Thermal Tolerance: A Case Study with Coastal Cutthroat Trout. Conserv. Physiol. 2022, 10, coac029. [Google Scholar] [CrossRef]
- Breau, C. Knowledge of Fish Physiology Used to Set Water Temperature Thresholds for In-Season Closures of Atlantic Salmon (Salmo salar) Recreational Fisheries; Canadian Science Advisory Secretariat Research Document; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2013; p. 24.
- Collet, E.; O’Sullivan, A.M.; University of New Brunswick, Fredericton, NB, Canada. Personal Communication, 2023.
- Pörtner, H.O.; Bennett, A.F.; Bozinovic, F.; Clarke, A.; Lardies, M.A.; Lucassen, M.; Pelster, B.; Schiemer, F.; Stillman, J.H. Trade-Offs in Thermal Adaptation: The Need for a Molecular to Ecological Integration. Physiol. Biochem. Zool. 2006, 79, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Anttila, K.; Couturier, C.S.; Øverli, Ø.; Johnsen, A.; Marthinsen, G.; Nilsson, G.E.; Farrell, A.P. Atlantic Salmon Show Capability for Cardiac Acclimation to Warm Temperatures. Nat. Commun. 2014, 5, 4252. [Google Scholar] [CrossRef] [PubMed]
- Anttila, K.; Dhillon, R.S.; Boulding, E.G.; Farrell, A.P.; Glebe, B.D.; Elliott, J.A.K.; Wolters, W.R.; Schulte, P.M. Variation in Temperature Tolerance among Families of Atlantic Salmon (Salmo salar) Is Associated with Hypoxia Tolerance, Ventricle Size and Myoglobin Level. J. Exp. Biol. 2013, 216, 1183–1190. [Google Scholar] [CrossRef]
- Crossin, G.T.; Hinch, S.G.; Cooke, S.J.; Welch, D.W.; Patterson, D.A.; Jones, S.R.M.; Lotto, A.G.; Leggatt, R.A.; Mathes, M.T.; Shrimpton, J.M.; et al. Exposure to High Temperature Influences the Behaviour, Physiology, and Survival of Sockeye Salmon during Spawning Migration. Can. J. Zool. 2008, 86, 127–140. [Google Scholar] [CrossRef]
- Hinch, S.G.; Bett, N.N.; Eliason, E.J.; Farrell, A.P.; Cooke, S.J.; Patterson, D.A. Exceptionally High Mortality of Adult Female Salmon: A Large-Scale Pattern and a Conservation Concern. Can. J. Fish. Aquat. Sci. 2021, 78, 639–654. [Google Scholar] [CrossRef]
- Gibson, R.J. Some Factors Influencing the Distributions of Brook Trout and Young Atlantic Salmon. J. Fish. Res. Board Can. 1966, 23, 1977–1980. [Google Scholar] [CrossRef]
- Frechette, D.M.; Dugdale, S.J.; Dodson, J.J.; Bergeron, N.E. Understanding Summertime Thermal Refuge Use by Adult Atlantic Salmon Using Remote Sensing, River Temperature Monitoring, and Acoustic Telemetry. Can. J. Fish. Aquat. Sci. 2018, 75, 1999–2010. [Google Scholar] [CrossRef]
- Wehrly, K.E.; Wang, L.; Mitro, M. Field-Based Estimates of Thermal Tolerance Limits for Trout: Incorporating Exposure Time and Temperature Fluctuation. Trans. Am. Fish. Soc. 2007, 136, 365–374. [Google Scholar] [CrossRef]
- Hitt, N.P.; Snook, E.L.; Massie, D.L. Brook Trout Use of Thermal Refugia and Foraging Habitat Influenced by Brown Trout. Can. J. Fish. Aquat. Sci. 2017, 74, 406–418. [Google Scholar] [CrossRef]
- Kaya, C.M.; Kaeding, L.R.; Burkhalter, D.E. Use of a Cold-Water Refuge by Rainbow and Brown Trout in a Geothermally Heated Stream. Progress. Fish-Cult. 1977, 39, 37–39. [Google Scholar] [CrossRef]
- Dobos, M.E.; Corsi, M.P.; Schill, D.J.; DuPont, J.M.; Quist, M.C. Influences of Summer Water Temperatures on the Movement, Distribution, and Resource Use of Fluvial Westslope Cutthroat Trout in the South Fork Clearwater River Basin. N. Am. J. Fish. Manag. 2016, 36, 549–567. [Google Scholar] [CrossRef]
- Barrett, H.S.; Armstrong, J.B. Move, Migrate, or Tolerate: Quantifying Three Tactics for Coldwater Fish Coping with Warm Summers in a Large River. Ecosphere 2022, 13, e4095. [Google Scholar] [CrossRef]
- Hillyard, R.W.; Keeley, E.R. Temperature-Related Changes in Habitat Quality and Use by Bonneville Cutthroat Trout in Regulated and Unregulated River Segments. Trans. Am. Fish. Soc. 2012, 141, 1649–1663. [Google Scholar] [CrossRef]
- McCarrick, D.K.; Dillon, J.C.; High, B.; Quist, M.C. Spatial and Temporal Distribution and Habitat Selection of Native Yellowstone Cutthroat Trout and Nonnative Utah Chub. N. Am. J. Fish. Manag. 2022, 42, 939–951. [Google Scholar] [CrossRef]
- Keefer, M.L.; Peery, C.A.; High, B. Behavioral Thermoregulation and Associated Mortality Trade-Offs in Migrating Adult Steelhead (Oncorhynchus mykiss): Variability among Sympatric Populations. Can. J. Fish. Aquat. Sci. 2009, 66, 1734–1747. [Google Scholar] [CrossRef]
- Keefer, M.L.; Clabough, T.S.; Jepson, M.A.; Johnson, E.L.; Peery, C.A.; Caudill, C.C. Thermal Exposure of Adult Chinook Salmon and Steelhead: Diverse Behavioral Strategies in a Large and Warming River System. PLoS ONE 2018, 13, e0204274. [Google Scholar] [CrossRef]
- Brewitt, K.S.; Danner, E.M. Spatio-Temporal Temperature Variation Influences Juvenile Steelhead (Oncorhynchus mykiss) Use of Thermal Refuges. Ecosphere 2014, 5, art92. [Google Scholar] [CrossRef]
- Keefer, M.L.; Clabough, T.S.; Jepson, M.A.; Naughton, G.P.; Blubaugh, T.J.; Joosten, D.C.; Caudill, C.C. Thermal Exposure of Adult Chinook Salmon in the Willamette River Basin. J. Therm. Biol. 2015, 48, 11–20. [Google Scholar] [CrossRef]
- Goniea, T.M.; Keefer, M.L.; Bjornn, T.C.; Peery, C.A.; Bennett, D.H.; Stuehrenberg, L.C. Behavioral Thermoregulation and Slowed Migration by Adult Fall Chinook Salmon in Response to High Columbia River Water Temperatures. Trans. Am. Fish. Soc. 2006, 135, 408–419. [Google Scholar] [CrossRef]
- Armstrong, J.B.; Ward, E.J.; Schindler, D.E.; Lisi, P.J. Adaptive Capacity at the Northern Front: Sockeye Salmon Behaviourally Thermoregulate during Novel Exposure to Warm Temperatures. Conserv. Physiol. 2016, 4, cow039. [Google Scholar] [CrossRef]
- Biro, P.A. Staying Cool: Behavioral Thermoregulation during Summer by Young-of-Year Brook Trout in a Lake. Trans. Am. Fish. Soc. 1998, 127, 212–222. [Google Scholar] [CrossRef]
- Langeland, A.; L’Abee-Lund, J.H. An Experimental Test of the Genetic Component of the Ontogenetic Habitat Shift in Arctic Charr (Salvelinus alpinus). Ecol. Freshw. Fish 1998, 7, 200–207. [Google Scholar] [CrossRef]
- Sellers, T.J.; Parker, B.R.; Schindler, D.W.; Tonn, W.M. Pelagic Distribution of Lake Trout (Salvelinus namaycush) in Small Canadian Shield Lakes with Respect to Temperature, Dissolved Oxygen, and Light. Can. J. Fish. Aquat. Sci. 1998, 55, 170–179. [Google Scholar] [CrossRef]
- Howell, P.J.; Dunham, J.B.; Sankovich, P.M. Relationships between Water Temperatures and Upstream Migration, Cold Water Refuge Use, and Spawning of Adult Bull Trout from the Lostine River, Oregon, USA. Ecol. Freshw. Fish 2010, 19, 96–106. [Google Scholar] [CrossRef]
- Gutowsky, L.F.G.; Harrison, P.M.; Martins, E.G.; Leake, A.; Patterson, D.A.; Zhu, D.Z.; Power, M.; Cooke, S.J. Daily Temperature Experience and Selection by Adfluvial Bull Trout (Salvelinus confluentus). Environ. Biol. Fishes 2017, 100, 1167–1180. [Google Scholar] [CrossRef]
- Swanberg, T.R. Movements of and Habitat Use by Fluvial Bull Trout in the Blackfoot River, Montana. Trans. Am. Fish. Soc. 1997, 126, 735–746. [Google Scholar] [CrossRef]
- Gallant, M.J.; LeBlanc, S.; MacCormack, T.J.; Currie, S. Physiological Responses to a Short-Term, Environmentally Realistic, Acute Heat Stress in Atlantic Salmon, Salmo salar. Facets 2017, 2, 330–341. [Google Scholar] [CrossRef]
- Thorstad, E.B.; Whoriskey, F.G.; Rikardsen, A.H.; Aarestrup, K. Aquatic Nomads: The Life and Migrations of the Atlantic Salmon. In Atlantic Salmon Ecology; Aas, Ø., Einum, S., Klemetsen, A., Skurdal, J., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 1–32. [Google Scholar]
- Braithwaite, V.A.; Armstrong, J.D.; McAdam, H.M.; Huntingford, F.A. Can Juvenile Atlantic Salmon Use Multiple Cue Systems in Spatial Learning? Anim. Behav. 1996, 51, 1409–1415. [Google Scholar] [CrossRef]
- Breau, C. The Ecophysiology, Behaviour and Movement Patterns of Juvenile Atlantic Salmon (Salmo salar) during Elevated Water Temperatures and the Importance of Cool Water Sites. Ph.D. Thesis, University of New Brunswick, Department of Biology, Fredericton, NB, Canada, 2011. [Google Scholar]
- Elvidge, C.K.; Cooke, E.L.L.; Cunjak, R.A.; Cooke, S.J. Social Cues May Advertise Habitat Quality to Refuge-Seeking Conspecifics. Can. J. Zool. 2017, 95, 1–5. [Google Scholar] [CrossRef]
- Johansen, M.; Erkinaro, J.; Amundsen, P.-A. The When What and Where of Freshwater Feeding. In Atlantic Salmon Ecology; Aas, Ø., Einum, S., Klemetsen, A., Skurdal, J., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 89–114. [Google Scholar]
- Johansen, M. Evidence of Freshwater Feeding by Adult Salmon in the Tana River, Northern Norway. J. Fish Biol. 2001, 59, 1405–1407. [Google Scholar] [CrossRef]
- Brewitt, K.S.; Danner, E.M.; Moore, J.W. Hot Eats and Cool Creeks: Juvenile Pacific Salmonids Use Mainstem Prey While in Thermal Refuges. Can. J. Fish. Aquat. Sci. 2017, 74, 1588–1602. [Google Scholar] [CrossRef]
- Milligan, C.L.; Hooke, G.B.; Johnson, C. Sustained Swimming at Low Velocity Following a Bout of Exhaustive Exercise Enhances Metabolic Recovery in Rainbow Trout. J. Exp. Biol. 2000, 203, 921–926. [Google Scholar] [CrossRef]
- Baird, O.E.; Krueger, C.C. Behavioral Thermoregulation of Brook and Rainbow Trout: Comparison of Summer Habitat Use in an Adirondack River, New York. Trans. Am. Fish. Soc. 2003, 132, 1194–1206. [Google Scholar] [CrossRef]
- Corey, E.; Linnansaari, T.; Cunjak, R.A. High Temperature Events Shape the Broadscale Distribution of Juvenile Atlantic Salmon (Salmo salar). Freshw. Biol. 2023, 68, 534–545. [Google Scholar] [CrossRef]
- Farrell, A.P.; Hinch, S.G.; Cooke, S.J.; Patterson, D.A.; Crossin, G.T.; Lapointe, M.; Mathes, M.T. Pacific Salmon in Hot Water: Applying Aerobic Scope Models and Biotelemetry to Predict the Success of Spawning Migrations. Physiol. Biochem. Zool. 2008, 81, 697–709. [Google Scholar] [CrossRef]
- Corey, E.; Linnansaari, T.; Cunjak, R.A.; Currie, S. Physiological Effects of Environmentally Relevant, Multi-Day Thermal Stress on Wild Juvenile Atlantic Salmon (Salmo salar). Conserv. Physiol. 2017, 5, cox014. [Google Scholar] [CrossRef]
- Bowerman, T.; Roumasset, A.; Keefer, M.L.; Sharpe, C.S.; Caudill, C.C. Prespawn Mortality of Female Chinook Salmon Increases with Water Temperature and Percent Hatchery Origin. Trans. Am. Fish. Soc. 2018, 147, 31–42. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. Temperature Threshold to Define Management Strategies for Atlantic Salmon (Salmo salar) Fisheries under Environmentally Stressful Conditions. Can. Sci. Adv. Sec. Sci. Adv. Rep. 2012, 19, 17. [Google Scholar]
- Crossin, G.T.; Hinch, S.G.; Farrell, A.P.; Higgs, D.A.; Lotto, A.G.; Oakes, J.D.; Healey, M.C. Energetics and Morphology of Sockeye Salmon: Effects of Upriver Migratory Distance and Elevation. J. Fish Biol. 2004, 65, 788–810. [Google Scholar] [CrossRef]
- Fenkes, M.; Shiels, H.A.; Fitzpatrick, J.L.; Nudds, R.L. The Potential Impacts of Migratory Difficulty, Including Warmer Waters and Altered Flow Conditions, on the Reproductive Success of Salmonid Fishes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 193, 11–21. [Google Scholar] [CrossRef]
- Fenkes, M.; Fitzpatrick, J.L.; Ozolina, K.; Shiels, H.A.; Nudds, R.L. Sperm in Hot Water: Direct and Indirect Thermal Challenges Interact to Impact on Brown Trout Sperm Quality. J. Exp. Biol. 2017, 220, 2513–2520. [Google Scholar] [CrossRef]
- Berman, C.H.; Quinn, T.P. Behavioural Thermoregulation and Homing by Spring Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), in the Yakima River. J. Fish Biol. 1991, 39, 301–312. [Google Scholar] [CrossRef]
- Snyder, M.N.; Schumaker, N.H.; Dunham, J.B.; Keefer, M.L.; Leinenbach, P.; Brookes, A.; Palmer, J.; Wu, J.; Keenan, D.; Ebersole, J.L. Assessing Contributions of Cold-Water Refuges to Reproductive Migration Corridor Conditions for Adult Salmon and Steelhead Trout in the Columbia River, USA. J. Ecohydraulics 2022, 7, 111–123. [Google Scholar] [CrossRef]
- Robertson, B.A.; Hutto, R.L. A Framework for Understanding Ecological Traps and an Evaluation of Existing Evidence. Ecology 2006, 87, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.E.; Lehnert, S.J.; Breau, C.; Fitzsimmons, M.; Kelly, N.I.; Dempson, J.B.; Neville, V.M.; Young, M.; Keefe, D.; Bird, T.J.; et al. Considerations for Water Temperature-Related Fishery Closures in Recreational Atlantic Salmon (Salmo salar) Catch and Release Fisheries: A Case Study from Eastern Canada. Rev. Fish. Sci. Aquac. 2023, 31, 598–619. [Google Scholar] [CrossRef]
- Gale, M.K.; Hinch, S.G.; Donaldson, M.R. The Role of Temperature in the Capture and Release of Fish: Temperature Effects on Capture-Release. Fish Fish. 2013, 14, 1–33. [Google Scholar] [CrossRef]
- Lennox, R.J.; Cooke, S.J.; Davis, C.R.; Gargan, P.; Hawkins, L.A.; Havn, T.B.; Johansen, M.R.; Kennedy, R.J.; Richard, A.; Svenning, M.-A.; et al. Pan-Holarctic Assessment of Post-Release Mortality of Angled Atlantic Salmon Salmo salar. Biol. Conserv. 2017, 209, 150–158. [Google Scholar] [CrossRef]
- Keefe, D.; Young, M.; Van Leeuwen, T.E.; Adams, B. Long-term Survival of Atlantic Salmon Following Catch and Release: Considerations for Anglers, Scientists and Resource Managers. Fish. Manag. Ecol. 2022, 29, 286–297. [Google Scholar] [CrossRef]
- Caissie, D.; Breau, C.; Hayward, J.; Cameron, P. Water Temperature Characteristics within the Miramichi and Restigouche Rivers; Canadian Science Advisory Secretariat Research Document; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2013; p. vii + 31.
- O’Sullivan, A.M.; Devito, K.J.; D’Orangeville, L.; Curry, R.A. The Waterscape Continuum Concept: Rethinking Boundaries in Ecosystems. WIREs Water 2022, 9, e1598. [Google Scholar] [CrossRef]
- Lynch, J.A.; Rishel, G.B.; Corbett, E.S. Thermal Alteration of Streams Draining Clearcut Watersheds: Quantification and Biological Implications. Hydrobiologia 1984, 111, 161–169. [Google Scholar] [CrossRef]
- Moore, R.D.; Spittlehouse, D.L.; Story, A. Riparian Microclimate and Stream Temperature Response to Forest Harvesting: A Review. J. Am. Water Resour. Assoc. 2005, 41, 813–834. [Google Scholar] [CrossRef]
- Johnson, S.L.; Jones, J.A. Stream Temperature Responses to Forest Harvest and Debris Flows in Western Cascades, Oregon. Can. J. Fish. Aquat. Sci. 2000, 57, 30–39. [Google Scholar] [CrossRef]
- Hall, J.D.; Cederholm, C.J.; Murphy, M.L.; Koski, K.V. Fish-Forestry Interactions in Oregon, Washington and Alaska, USA. In Fishes and Forestry; Worldwide Watershed Interactions and Management; Northcote, T.G., Hartman, G.F., Eds.; Blackwell Publishing: Oxford, UK, 2004; pp. 363–388. [Google Scholar]
- Cunjak, R.A.; Curry, R.A.; Scruton, D.A.; Clarke, K.D. Fish-Forestry Interactions in Freshwaters of Atlantic Canada. In Fishes and Forestry; Worldwide Watershed Interactions and Management; Northcote, T.G., Hartman, G.F., Eds.; Blackwell Publishing: Oxford, UK, 2004; pp. 439–462. [Google Scholar]
- Alexander, M.D.; MacQuarrie, K.T.B.; Caissie, D.; Butler, K.E. The Thermal Regime of Shallow Groundwater and a Small Atlantic Salmon Stream Bordering a Clearcut with a Forested Streamside Buffer. In Proceedings of the Annual Conference of the Canadian Society for Civil Engineering, Moncton, NB, Canada, 4–7 June 2003; p. 10. [Google Scholar]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water a Single Resource; Diane Publishing: Collingdale, PA, USA, 1998; p. 88. [Google Scholar]
- Devito, K.J.; Creed, I.F.; Fraser, C.J.D. Controls on Runoff from a Partially Harvested Aspen-Forested Headwater Catchment, Boreal Plain, Canada. Hydrol. Process. 2005, 19, 3–25. [Google Scholar] [CrossRef]
- Devito, K.J.; Hokanson, K.J.; Moore, P.A.; Kettridge, N.; Anderson, A.E.; Chasmer, L.; Hopkinson, C.; Lukenbach, M.C.; Mendoza, C.A.; Morissette, J.; et al. Landscape Controls on Long-Term Runoff in Subhumid Heterogeneous Boreal Plains Catchments. Hydrol. Process. 2017, 31, 2737–2751. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lane, J.W.; Snyder, C.D.; White, E.A.; Johnson, Z.C.; Nelms, D.L.; Hitt, N.P. Shallow Bedrock Limits Groundwater Seepage-Based Headwater Climate Refugia. Limnologica 2018, 68, 142–156. [Google Scholar] [CrossRef]
Species | Life Stage | Setting | Behavioural Thermoregulation | Study Location | Reference |
---|---|---|---|---|---|
Atlantic salmon Salmo salar | Adult | In situ | 22 °C | Miramichi River, NB | [89] |
Adult | In situ | 23 °C | Miramichi River, NB | [23] | |
Adult | In situ | 17–19 °C | Rivière Sainte-Marguerite Nord-Est, QC | [90] | |
Adult | In situ | 19–22 °C | Miramichi River, NB | [74] | |
Parr (1+, 2+) | In situ | >24 °C | Miramichi River, NB | [23] | |
Parr (1+, 2+) | In situ | 27.3 °C | Miramichi River, NB | [13] | |
Parr (1+, 2+) | In situ | 28.3 °C | Ouelle River, QC | [13] | |
Parr (1+, 2+) | In situ | 25 °C, 27 °C | Miramichi River, NB | [25] | |
Juvenile | In situ | 24.2–27.1 °C | Miramichi River, NB | [72] | |
YOY | In situ | 29.8 °C; 30.8 °C | Miramichi River, NB | [62] | |
YOY | In situ | 30.1 °C | Miramichi River, NB | [66] | |
Brown trout Salmo trutta (L., 1758) | Adult | In situ | >22 °C, <26 °C | MI and WI, USA | [91] |
Adult | Lab | 20 °C | Fish from hatchery | [92] | |
Adult | In situ | 24–25 °C | Firehole River, WY, USA | [93] | |
Cutthroat trout Oncorhynchus clarkii (Richardson, 1836) | Adult | In situ | 21.7 °C | South Fork Clearwater River, ID, USA | [94] |
Adult | In situ | >22 °C | Willamette River, OR, USA | [95] | |
Adult | In situ | >22–23 °C | Bear River, ID and WY, USA | [96] | |
Adult | In situ | ~22 °C | Henry’s Lake, ID, USA | [97] | |
Rainbow trout Oncorhynchus mykiss | Adult | In situ | 18–25 °C | Grande Ronde River and Pine Creek, OR, USA | [37] |
(Walbaum, 1792) | Adult | In situ | 24–25 °C | Firehole River, WY, USA | [93] |
Adult | In situ | ~19 °C | Columbia River, WA, USA | [98] | |
Adult | In situ | ≥19 °C | Columbia River, WA, USA | [99] | |
Juvenile | In situ | 50% at 22–23 °C 100% at 25 °C | Klamath River, CA, USA | [100] | |
Juvenile | In situ | >21 °C | South Fork Eel River, CA, USA | [53] | |
Juvenile | In situ | 22–23 °C | Klamath River, CA, USA | [33] | |
Chinook salmon Oncorhynchus tschawytscha (Walbaum, 1792) | Adult | In situ | >18 °C | Willamette River, OR USA | [101] |
Adult | In situ | 20 °C | Columbia River, OR, USA | [102] | |
Adult | In situ | ≥20–21 °C | Columbia River, WA, USA | [99] | |
Adult | In situ | >25 °C | John Day River, OR, USA | [31] | |
Juvenile | In situ | 22–23 °C | Klamath River, CA, USA | [33] | |
Coho salmon Oncorhynchus kisutch (Walbaum, 1792) | Juvenile | In situ | 22–23 °C | Klamath River, CA, USA | [33] |
Sockeye salmon Oncorhynchus nerka (Walbaum, 1792) | Adult | In situ | >15 °C | Wood River, AK, USA | [103] |
Brook trout Salvelinus fontinalis | Adult | In situ | >21 °C | Miramichi River, NB | [25] |
Adult | Lab | 20 °C | Fish from hatchery | [92] | |
Adult | In situ | >22 °C, <26 °C | MI and WI, USA | [91] | |
YOY | In situ | ~20 °C | Charles Lake, ON | [104] | |
Arctic char Salvelinus alpinus (L., 1758) | Juvenile | Exp. lake | >16 °C | Lake Ellingtjern, Norway | [105] |
Lake trout Salvelinus namaycush (Walbaum, 1792) | Adult | In situ | <20 °C | Canadian Shield Lakes, ON | [106] |
Bull trout Salvelinus confluentus (Suckley, 1859) | Adult | In situ | ~21 °C | Lostine River, OR, USA | [107] |
Adult | In situ | >15 °C | Kinbasket Reservoir, BC | [108] | |
Adult | In situ | >20 °C | Blackfoot River, MT, USA | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linnansaari, T.; O’Sullivan, A.M.; Breau, C.; Corey, E.M.; Collet, E.N.; Curry, R.A.; Cunjak, R.A. The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada. Fishes 2023, 8, 471. https://doi.org/10.3390/fishes8090471
Linnansaari T, O’Sullivan AM, Breau C, Corey EM, Collet EN, Curry RA, Cunjak RA. The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada. Fishes. 2023; 8(9):471. https://doi.org/10.3390/fishes8090471
Chicago/Turabian StyleLinnansaari, Tommi, Antóin M. O’Sullivan, Cindy Breau, Emily M. Corey, Elise N. Collet, R. Allen Curry, and Richard A. Cunjak. 2023. "The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada" Fishes 8, no. 9: 471. https://doi.org/10.3390/fishes8090471
APA StyleLinnansaari, T., O’Sullivan, A. M., Breau, C., Corey, E. M., Collet, E. N., Curry, R. A., & Cunjak, R. A. (2023). The Role of Cold-Water Thermal Refuges for Stream Salmonids in a Changing Climate—Experiences from Atlantic Canada. Fishes, 8(9), 471. https://doi.org/10.3390/fishes8090471