When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Parrotfish Spatial Distribution at Night
2.3. Sleeping Substrate Selectivity
2.4. Sleeping Site Area and Sleeping Hotspots—Acoustic Telemetry
2.5. Data Analysis
3. Results
3.1. Composition and Spatial Distribution of Parrotfish at Night
3.2. Sleeping Substrate Selectivity
3.3. Sleeping Site Area and Sleeping Hotspots—Acoustic Telemetry
4. Discussion
4.1. Composition and Spatial Distribution of Parrotfish at Night
4.2. Sleeping Substrate Selectivity
4.3. Sleeping Site Area and Sleeping Hotspots
4.4. Management Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonaldo, R.M.; Krajewski, J.P.; Sazima, C.; Sazima, I. Foraging activity and resource use by three parrotfish species at Fernando de Noronha Archipelago, tropical West Atlantic. Mar. Biol. 2006, 149, 423–433. [Google Scholar] [CrossRef]
- Welsh, J.Q.; Bellwood, D.R. Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): An evaluation using acoustic telemetry. Coral Reefs 2012, 31, 55–65. [Google Scholar] [CrossRef]
- Keeley, E.R. An experimental analysis of territory size in juvenile steelhead trout. Anim. Behav. 2000, 59, 477–490. [Google Scholar] [CrossRef]
- Cantor, M.; Longo, G.O.; Fontoura, L.; Quimbayo, J.P.; Floeter, S.R.; Bender, M.G. Interaction Networks in Tropical Reefs. In Ecological Networks in the Tropics; Springer International Publishing: New York, NY, USA, 2018; pp. 141–154. [Google Scholar]
- Mouillot, D.; Villéger, S.; Parravicini, V.; Kulbicki, M.; Arias-González, J.E.; Bender, M.; Chabanet, P.; Floeter, S.R.; Friedlander, A.; Vigliola, L.; et al. Functional over-redundancy and high functional vulnerability in global fish faunas on 683 tropical reefs. Proc. Natl. Acad. Sci. USA 2014, 111, 13757–13762. [Google Scholar] [CrossRef]
- Helfman, G.S. Fish behaviour by day, night and twilight. In The Behaviour of Teleost Fishes; Springer: New York, NY, USA, 1986; pp. 366–387. [Google Scholar]
- Nagelkerken, I.; Dorenbosch, M.; Verberk, W.C.E.P.; Cocheret de la Morinière, E.; van der Velde, G. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar. Ecol. Prog. Ser. 2000, 194, 55–64. [Google Scholar] [CrossRef]
- Brewin, P.E.; Brown, J.; Brickle, P. Diurnal variation of fish and macrobenthic invertebrate community structure in an isolated oceanic island of the South Atlantic. J. Mar. Biol. Assoc. UK 2016, 96, 737–747. [Google Scholar] [CrossRef]
- Hinojosa, I.A.; Zapata-Hernández, G.; Fowles, A.E.; Gaymer, C.F.; Stuart-Smith, R.D. The awakening of invertebrates: The daily dynamics of fishes and mobile invertebrates at Rapa Nui's multiple use marine protected area. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 31, 290–303. [Google Scholar] [CrossRef]
- Simpson, S.D.; Jeffs, A.; Montgomery, J.C.; McCauley, R.D.; Meekan, M.G. Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise. Coral Reefs 2008, 27, 97–104. [Google Scholar] [CrossRef]
- Gaston, K.J. Nighttime ecology: The “nocturnal problem” revisited. Am. Nat. 2019, 193, 481–502. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef]
- Lecchini, D. Highlighting ontogenetic shifts in habitat use by nocturnal coral reef fish. C. R. Biol. 2006, 329, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Azzurro, E.; Pais, A.; Consoli, P.; Andaloro, F. Evaluating day–night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Mar. Biol. 2007, 151, 2245–2253. [Google Scholar] [CrossRef]
- Pickholtz, R.; Kiflawi, M.; Buba, Y.; Chaikin, S.; Gavriel, T.; Lapid, G.; Lazarus, M.; Malamud, S.; Marom, N.; Marom, S.; et al. Confronting the nocturnal problem in coral reefs: Sleeping site selection and cocoon formation in parrotfishes. Coral Reefs 2023, 42, 811–825. [Google Scholar] [CrossRef]
- Burkepile, D.E.; Hay, M.E. Feeding complementarity versus redundancy among herbivorous fishes on a Caribbean reef. Coral Reefs 2011, 30, 351–362. [Google Scholar] [CrossRef]
- Jessen, C.; Wild, C. Herbivory effects on benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 2013, 476, 9–21. [Google Scholar] [CrossRef]
- Bonaldo, R.M.; Hoey, A.S.; Bellwood, D.R. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. Annu. Rev. 2014, 52, 81–132. [Google Scholar]
- Floeter, S.R.; Halpern, B.S.; Ferreira, C.E.L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 2006, 128, 391–402. [Google Scholar] [CrossRef]
- Clements, K.D.; German, D.P.; Piché, J.; Tribollet, A.; Choat, J.H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 2017, 120, 729–751. [Google Scholar] [CrossRef]
- Mendes, T.C.; Ferreira, C.E.L.; Clements, K.D. Discordance between diet analysis and dietary macronutrient content in four nominally herbivorous fishes from the Southwestern Atlantic. Mar. Biol. 2018, 165, 1–12. [Google Scholar] [CrossRef]
- Nicholson, G.M.; Clements, K.D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 2020, 39, 1313–1327. [Google Scholar] [CrossRef]
- Mumby, P.J.; Dahlgren, C.P.; Harborne, A.R.; Kappel, C.V.; Micheli, F.; Brumbaugh, D.R.; Holmes, K.E.; Mendes, J.M.; Broad, K.; Sanchirico, J.N.; et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 2006, 311, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.B.; Friedlander, A.M.; Green, A.G.; Hardt, M.J.; Sala, E.; Sweatman, H.P.; Williams, I.D.; Zgliczynski, B.; Sandin, S.A.; Smith, J.E. Global assessment of the status of coral reef herbivorous fishes: Evidence for fishing effects. Proc. R. Soc. B Biol. Sci. 2013, 281, 20131835. [Google Scholar] [CrossRef] [PubMed]
- Bender, M.G.; Machado, G.R.; De Azevedo Silva, P.J.; Floeter, S.R.; Monteiro-Netto, C.; Luiz, O.J.; Ferreira, C.E.L. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 2014, 9, e11033. [Google Scholar] [CrossRef]
- Roos, N.; Taylor, B.; Carvalho, A.; Longo, G. Demography of the largest and most endangered Brazilian parrotfish, Scarus trispinosus, reveals overfishing. Endanger. Species Res. 2020, 41, 319–327. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Hoey, A.S.; Choat, J.H. Limited functional redundancy in high diversity systems: Resilience and ecosystem function on coral reefs. Ecol. Lett. 2003, 6, 281–285. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Hoey, A.S.; Hughes, T.P. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc. R. Soc. B Biol. Sci. 2012, 279, 1621–1629. [Google Scholar] [CrossRef]
- Taylor, B.M.; Lindfield, S.J.; Choat, J.H. Hierarchical and scale-dependent effects of fishing pressure and environment on the structure and size distribution of parrotfish communities. Ecography 2015, 38, 520–530. [Google Scholar] [CrossRef]
- Aswani, S.; Hamilton, R.J. Integrating indigenous ecological knowledge and customary sea tenure with marine and social science for conservation of bumphead parrotfish (Bolbometopon muricatum) in the Roviana Lagoon, Solomon Islands. Environ. Conserv. 2004, 31, 69–83. [Google Scholar] [CrossRef]
- Donaldson, T.J.; Dulvy, N.K. Threatened fishes of the world: Bolbometopon muricatum (Valenciennes 1840) (Scaridae). Environ. Biol. Fishes 2004, 70, 373. [Google Scholar] [CrossRef]
- Aswani, S.; Sabetian, A. Implications of Urbanization for Artisanal Parrotfish Fisheries in the Western Solomon Islands. Conserv. Biol. 2010, 24, 520–530. [Google Scholar] [CrossRef]
- Grutter, A.S.; Rumney, J.G.; Sinclair-Taylor, T.; Waldie, P.; Franklin, C.E. Fish mucous cocoons: The “mosquito nets” of the sea. Biol. Lett. 2011, 7, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.M.; Houk, P.; Russ, G.R.; Choat, J.H. Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 2014, 33, 869–878. [Google Scholar] [CrossRef]
- Welsh, J.Q.; Bellwood, D.R. How far do schools of roving herbivores rove? A case study using Scarus rivulatus. Coral Reefs 2012, 31, 991–1003. [Google Scholar] [CrossRef]
- Nanami, A. Nocturnal substrate association of four coral reef fish groups (parrotfishes, surgeonfishes, groupers and butterflyfishes) in relation to substrate architectural characteristics. PeerJ 2024, 12, e17772. [Google Scholar] [CrossRef]
- Ferreira, C.E.L.; Gonçalves, J.E.A.; Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fishes 2001, 61, 353–369. [Google Scholar] [CrossRef]
- Rogers, R.; de Oliveira Correal, G.; de Oliveira, T.C.; de Carvalho, L.L.; Mazurek, P.; Barbosa, J.E.F.; Chequer, L.; Domingos, T.F.S.; de Andrade Jandre, K.; Leão, L.S.D.; et al. Coral health rapid assessment in marginal reef sites. Mar. Biol. Res. 2014, 10, 612–624. [Google Scholar] [CrossRef]
- Cordeiro, C.A.M.M.; Harborne, A.R.; Ferreira, C.E.L. The Biophysical Controls of Macroalgal Growth on Subtropical Reefs. Front. Mar. Sci. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- INMET. Instituto Nacional de Meteorologia—INMET (Brazilian Meteorological Institute). 2020. Available online: http://www.inmet.gov.br (accessed on 1 July 2020).
- Lucena, M.B.; Mendes, T.C.; Barbosa, M.C.; Cordeiro, C.A.M.M.; Eggertsen, L.M.; Ferreira, C.E.L. Does the colors of light matter? Testing different light color in nocturnal underwater visual censuses. Mar. Environ. Res. 2021, 166, 105261. [Google Scholar] [CrossRef]
- Itzkowitz, M.; Ludlow, A.; Haley, M. Territorial boundaries of the male beaugregory damselfish. J. Fish. Biol. 2000, 56, 1138–1144. [Google Scholar] [CrossRef]
- Cordeiro, C.A.M.M.; Mendes, T.C.; Harborne, A.R.; Ferreira, C.E.L. Spatial distribution of nominally herbivorous fishes across environmental gradients on Brazilian rocky reefs. J. Fish. Biol. 2016, 89, 939–958. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Ouellette , M.-H.; Cunha, E.R.; Smith, T.; Stier, A.; et al. Vegan: Community Ecology Package. R Package Version 2.5–4. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 September 2024).
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Manly, B.F.J.; Thomas, D.L.; Mcdonald, T.L. Resource Selection by Animals: Statistical Design an Analisys for Field Studies, 2nd ed.; Springer: New York, NY, USA, 2002; 240p. [Google Scholar]
- Worton, B.J. A review of models of home range for animal movement. Ecol. Modell. 1987, 38, 277–298. [Google Scholar] [CrossRef]
- Calenge, C. Home Range Estimation in R: The adehabitatHR Package; Office National de la Classeet de la Faunesauvage: Auffargis, France, 2019. [Google Scholar]
- Harborne, A.R.; Mumby, P.J.; Micheli, F.; Perry, C.T.; Dahlgren, C.P.; Holmes, K.E.; Brumbaugh, D.R. The Functional Value of Caribbean Coral Reef, Seagrass and Mangrove Habitats to Ecosystem Processes. Adv. Mar. Biol. 2006, 50, 57–189. [Google Scholar] [PubMed]
- Cardozo-Ferreira, G.C.; Ferreira, C.E.L.; Choat, J.H.; Mendes, T.C.; Macieira, R.M.; Rezende, C.E.; Joyeux, J.C.; Clements, K.D. Seasonal variation in diet and isotopic niche of nominally herbivorous fishes in subtropical rocky reefs. Mar. Ecol. Prog. Ser. 2023, 722, 125–143. [Google Scholar] [CrossRef]
- Guidetti, P.; Boero, F. Spatio-temporal variability in abundance of the parrotfish, Sparisoma cretense, in SE Apulia (SE Italy, Mediterranean Sea). Ital. J. Zool. 2002, 69, 229–232. [Google Scholar] [CrossRef]
- Feitosa, J.L.L.; Ferreira, B.P. Distribution and feeding patterns of juvenile parrotfish on algal-dominated coral reefs. Mar. Ecol. 2014, 36, 462–474. [Google Scholar] [CrossRef]
- Hernández-Landa, R.C.; Acosta-González, G.; Núñez-Lara, E.; Arias-González, J.E. Spatial distribution of surgeonfish and parrotfish in the north sector of the Mesoamerican Barrier Reef System. Mar. Ecol. 2015, 36, 432–446. [Google Scholar] [CrossRef]
- Carlson, P.M.; Davis, K.; Warner, R.R.; Caselle, J.E. Fine-scale spatial patterns of parrotfish herbivory are shaped by resource availability. Mar. Ecol. Prog. Ser. 2017, 577, 165–176. [Google Scholar] [CrossRef]
- Roos, N.C.; Pennino, M.G.; Carvalho, A.R.; Longo, G.O. Drivers of abundance and biomass of Brazilian parrotfishes. Mar. Ecol. Prog. Ser. 2019, 623, 117–130. [Google Scholar] [CrossRef]
- Harborne, A.R.; Mumby, P.J. FAQs about Caribbean Parrotfish Management and their Role in Reef Resilience. In Biology of Parrotfishes; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Chen, L.S. Post-settlement diet shift of Chlorurus sordidus and Scarus schlegeli (Pisces: Scaridae). Zool. Stud. 2002, 41, 47–58. [Google Scholar]
- Smith, K.M.; Quirk-Royal, B.E.; Drake-Lavelle, K.; Childress, M.J. Influences of ontogenetic phase and resource availability on parrotfish foraging preferences in the Florida Keys, FL (USA). Mar. Ecol. Prog. Ser. 2018, 603, 175–187. [Google Scholar] [CrossRef]
- Luiz, O.J.; Mendes, T.C.; Barneche, D.R.; Ferreira, C.G.W.; Noguchi, R.; Villaça, R.C.; Rangel, C.A.; Gasparini, J.L.; Ferreira, C.E.L. Community structure of reef fishes on a remote oceanic island (St Peter and St Paul’s Archipelago, equatorial Atlantic): The relative influence of abiotic and biotic variables. Mar. Freshw. Res. 2015, 66, 739–749. [Google Scholar] [CrossRef]
- Fulton, C.J.; Bellwood, D.R. Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol. Oceanogr. 2005, 50, 255–264. [Google Scholar] [CrossRef]
- Mendes, T.C.; Quimbayo, J.P.; Bouth, H.F.; Silva, L.P.S.; Ferreira, C.E.L. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish. Biol. 2019, 95, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Gomi, K.; Nakamura, Y.; Kanda, M.; Honda, K.; Nakaoka, M.; Honma, C.; Adachi, M. Diel vertical movements and feeding behaviour of blue humphead parrotfsh Scarus ovifrons in a temperate reef of Japan. J. Fish. Biol. 2021, 99, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.B. Patterns in the distribution of fish communities across the Central Great Barrier Reef. Coral Reefs 1982, 1, 35–43. [Google Scholar] [CrossRef]
- Russ, G. Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar. Ecol. Prog. Ser. 1984, 20, 23–34. [Google Scholar] [CrossRef]
- Eggertsen, L.; Ferreira, C.E.L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf Sci. 2017, 196, 97–108. [Google Scholar] [CrossRef]
- Almany, G.R. Priority Effects in Coral Reef Fish Communities. Ecology 2004, 84, 1920–1935. [Google Scholar] [CrossRef]
- Hines, D.E.; Pawlik, J.R. Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): Is the sting the only thing? Mar. Biol. 2012, 159, 389–398. [Google Scholar] [CrossRef]
- Kramer, M.J.; Bellwood, D.R.; Bellwood, O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 2012, 31, 1007–1015. [Google Scholar] [CrossRef]
- Santos, T.R.N.; Sikkel, P.C. Habitat associations of fish-parasitic gnathiid isopods in a shallow reef system in the central Philippines. Mar. Biodivers. 2017, 49, 83–96. [Google Scholar] [CrossRef]
- Modica, M.V.; Lombardo, F.; Franchini, P.; Oliverio, M. The venomous cocktail of the vampire snail Colubraria reticulata (Mollusca, Gastropoda). BMC Genom. 2015, 16, 441. [Google Scholar] [CrossRef]
- Oliverio, M.; Modica, M.V. Relationships of the haematophagous marine snail Colubraria (Rachiglossa: Colubrariidae), within the neogastropod phylogenetic framework. Zool. J. Linn. Soc. 2010, 158, 779–800. [Google Scholar] [CrossRef]
- Bouchet, P. A marginellid gastropod parasitizes sleeping fishes. Bull. Mar. Sci. 1989, 45, 76–84. [Google Scholar]
- Bouchet, P.; Perrine, D. More gastropods feeding at night on parrotfishes. Bull. Mar. Sci. 1996, 59, 224–228. [Google Scholar]
- Aued, A.; Smith, F.; Quimbayo, J.P.; Candido, D.V.; Longo, G.O.; Ferreira, C.E.L.; Witman, J.D.; Floeter, S.R.; Segal, B. Large-scale patterns of benthic marine communities in the Brazilian Province Anaide. PLoS ONE 2018, 13, e0198452. [Google Scholar] [CrossRef]
- Dubin, R.; Baker, J. Two types of cover-seeking behavior at sunset by the princess parrotfish, scarus taeniopterus, at barbados, west indies. Bull. Mar. Sci. 1982, 32, 572–583. [Google Scholar]
- Hamilton, W.J. Baboon sleeping site preferences and relationships to primate grouping patterns. Am. J. Primatol. 1982, 3, 41–53. [Google Scholar] [CrossRef]
- Hoey, A.S.; Bellwood, D.R. Suppression of herbivory by macro algal density: A critical feedback on coral reefs? Ecol. Lett. 2011, 14, 267–273. [Google Scholar] [CrossRef]
- Kerry, J.T.; Bellwood, D.R. The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 2011, 31, 415–424. [Google Scholar] [CrossRef]
- Sazima, I.; Ferreira, C.E.L. A cocoon-producing parrotfish in the Southwestern Atlantic. Coral Reefs 2006, 25, 212. [Google Scholar] [CrossRef]
- Hay, M.E. Herbivory, Algal Distribution, and the Maintenance of Between-Habitat Diversity on a Tropical Fringing Reef. Am. Nat. 1981, 118, 520–540. [Google Scholar] [CrossRef]
- Fox, R.J.; Bellwood, D.R. Quantifying herbivory across a coral reef depth gradient. Mar. Ecol. Prog. Ser. 2007, 339, 49–59. [Google Scholar] [CrossRef]
- Albert, A.; Savini, T.; Huynen, M.C. Sleeping site selection and presleep behavior in wild pigtailed macaques. Am. J. Primatol. 2011, 73, 1222–1230. [Google Scholar] [CrossRef]
- Afonso, P.; Fontes, J.; Holland, K.N.; Santos, R.S. Social status determines behaviour and habitat usage in a temperate parrotfish: Implications for marine reserve design. Mar. Ecol. Prog. Ser. 2008, 359, 215–227. [Google Scholar] [CrossRef]
- Garcia, J.; Mourier, J.; Lenfant, P. Spatial behavior of two coral reef fishes within a Caribbean marine protected area. Mar. Environ. Res. 2015, 109, 41–51. [Google Scholar] [CrossRef]
- Garcia, J.; Saragoni, G.; Tessier, A.; Lenfant, P. Herbivorous Reef Fish Movement Ability Estimation in Marine Protected Areas of Martinique (FWI). In Proceedings of the Gulf and Caribbean Fisheries Institute, San Juan, Puerto Rico, 1–5 November 2010; pp. 254–259. [Google Scholar]
- La Mesa, G.; Consalvo, I.; Annunziatellis, A.; Canese, S. Movement patterns of the parrotfish Sparisoma cretense in a Mediterranean marine protected area. Mar. Environ. Res. 2012, 82, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Howard, K.G.; Claisse, J.T.; Clark, T.B.; Boyle, K.; Parrish, J.D. Home range and movement patterns of the Redlip Parrotfish (Scarus rubroviolaceus) in Hawaii. Mar. Biol. 2013, 160, 1583–1595. [Google Scholar] [CrossRef]
- Davis, K.; Carlson, P.M.; Lowe, C.G.; Warner, R.R.; Caselle, J.E. Parrotfish movement patterns vary with spatiotemporal scale. Mar. Ecol. Prog. Ser. 2017, 577, 149–164. [Google Scholar] [CrossRef]
- Chateau, O.; Wantiez, L. Movement patterns of four coral reef fish species in a fragmented habitat in New Caledonia: Implications for the design of marine protected area networks. ICES J. Mar. Sci. 2009, 66, 50–55. [Google Scholar] [CrossRef]
- Comeros-Raynal, M.T.; Choat, J.H.; Polidoro, B.A.; Clements, K.D.; Abesamis, R.; Craig, M.T.; Lazuardi, M.E.; McIlwain, J.; Muljadi, A.; Myers, R.F.; et al. The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: The parrotfishes and surgeonfishes. PLoS ONE 2012, 7, e39825. [Google Scholar]
- Mccauley, D.J.; Young, H.S.; Guevara, R.; Williams, G.J.; Power, E.A.; Dunbar, R.B.; Bird, D.W.; Durham, W.H.; Micheli, F. Positive and Negative Effects of a Threatened Parrotfish on Reef Ecosystems. Conserv. Biol. 2014, 28, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Vallès, H.; Gill, D.; Oxenford, H.A. Parrotfish size as a useful indicator of fishing effects in a small Caribbean island. Coral Reefs 2015, 34, 789–801. [Google Scholar] [CrossRef]
- Pinheiro, H.T.; Nunes, J.A.C.C.; Coni, E.O.C.; Almeida, E.C.G.; Sampaio, C.L.S.; Ferreira, C.E.L.; Meirelles, P.M.; Hostim-Silva, M.; Pereira, P.H.C.; Giglio, V.J.; et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 2021, 8, 604108. [Google Scholar] [CrossRef]
- Cunha, E.; Aurélio, R.; Carvalho, A.D.; Araújo, E.D. Exportation of reef fish for human consumption: Long-term analysis using data from Rio Grande do Norte, Brazil. Bol. Inst. Pesca 2012, 38, 369–378. [Google Scholar]
- Pereira, P.H.C.; Ternes, M.L.F.; Nunes, J.A.C.C.; Giglio, V.J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 2021, 254, 108940. [Google Scholar] [CrossRef]
- Padovani-Ferreira, B.; Floeter, S.; Rocha, L.A.; Ferreira, C.E.; Francini-Filho, R.; Moura, R.; Gaspar, A.L.; Feitosa, C. Scarus trispinosus. The IUCN Red List of Threatened Species 2012: e.T190748A17786694. 2012. Available online: https://www.iucnredlist.org/species/190748/17786694 (accessed on 17 September 2024).
- Magris, R.A.; Costa, M.D.P.; Ferreira, C.E.L.; Vilar, C.C.; Joyeux, J.C.; Creed, J.C.; Copertino, M.S.; Horta, P.A.; Sumida, P.Y.G.; Francini-Filho, R.B.; et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 2020, 27, 198–215. [Google Scholar] [CrossRef]
- Endo, C.A.K.; Gherardi, D.F.M.; Pezzi, L.P.; Lima, L.N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.C.; Cordeiro, C.A.M.M.; Ferreira, C.E.L. An experimental evaluation of macroalgal consumption and selectivity by nominally herbivorous fishes on subtropical rocky reefs. J. Exp. Mar. Biol. Ecol. 2015, 417, 146–152. [Google Scholar] [CrossRef]
- Feitosa, J.L.L.; Queiroz-Véras, L.V.M.V.; Maida, M.; Ferreira, B.P. Going further on herbivore fishing: The removal of smaller fishes from algal-dominated reefs. Mar. Ecol. Prog. Ser. 2023, 713, 117–132. [Google Scholar] [CrossRef]
- Fogliarini, C.O.; Ferreira, C.E.L.; Bornholdt, J.; Barbosa, M.C.; Giglio, V.J.; Bender, M.G. Telling the same story: Fishers and landing data reveal changes in fisheries on the Southeastern Brazilian Coast. PLoS ONE 2021, 16, e0252391. [Google Scholar] [CrossRef] [PubMed]
- Eggertsen, L.; Luza, A.; Cordeiro, C.A.M.M.; Dambros, C.; Ferreira, C.E.L.; Floeter, S.R.; Francini-Filho, R.B.; Freire, K.M.F.; Gasalla, M.A.; Giarrizzo, T.; et al. Complexities of reef fisheries in Brazil: A retrospective and functional approach. Rev. Fish. Biol. Fish. 2024, 34, 511–538. [Google Scholar] [CrossRef]
- Fogliarini, C.O.; Giglio, V.J.; Bender, M.G.; Ferreira, C.E.L. Multidecadal fishers’ knowledge reveals overexploitation of sharks in southeastern Brazil. Neotrop. Ichthyol. 2024, 22, e230087. [Google Scholar] [CrossRef]
- Pearse, A.R.; Hamilton, R.J.; Choat, J.H.; Pita, J.; Almany, G.; Peterson, N.; Hamilton, G.S.; Peterson, E.E. Giant coral reef fishes display markedly different susceptibility to night spearfishing. Ecol. Evol. 2018, 8, 10247–10256. [Google Scholar] [CrossRef]
- Barbosa, M.C.; Luiz, O.J.; Cordeiro, C.A.; Giglio, V.J.; Ferreira, C.E.L. Fish and spearfsher traits contributing to catch composition. Fish. Res. 2021, 241, 105988. [Google Scholar] [CrossRef]
Fish ID | TL (mm) | 95% KUD (103 m2) | 50% KUD (103 m2) | 50:95 UD Ratio |
---|---|---|---|---|
Sparisoma axillare | 407.65 ± 43.27 | 25.93 ± 10.15 | 5.86 ± 2.56 | 21.14 ± 0.8 |
Sparisoma frondosum | 363.9 ± 42.9 | 8.15 ± 3.79 | 1.45 ± 0.62 | 19.81 ± 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucena, M.; Mendes, T.C.; Cordeiro, C.A.M.M.; Barbosa, M.C.; Batista, J.; Eggertsen, L.; Hackradt, C.W.; Ferreira, C.E.L. When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night. Fishes 2024, 9, 370. https://doi.org/10.3390/fishes9100370
Lucena M, Mendes TC, Cordeiro CAMM, Barbosa MC, Batista J, Eggertsen L, Hackradt CW, Ferreira CEL. When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night. Fishes. 2024; 9(10):370. https://doi.org/10.3390/fishes9100370
Chicago/Turabian StyleLucena, Marcos, Thiago Costa Mendes, César Augusto Marcelino Mendes Cordeiro, Moysés Cavichiloli Barbosa, Jora Batista, Linda Eggertsen, Carlos W. Hackradt, and Carlos Eduardo Leite Ferreira. 2024. "When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night" Fishes 9, no. 10: 370. https://doi.org/10.3390/fishes9100370
APA StyleLucena, M., Mendes, T. C., Cordeiro, C. A. M. M., Barbosa, M. C., Batista, J., Eggertsen, L., Hackradt, C. W., & Ferreira, C. E. L. (2024). When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night. Fishes, 9(10), 370. https://doi.org/10.3390/fishes9100370