Biology and Ecology of Coral Reef Fishes

A special issue of Fishes (ISSN 2410-3888). This special issue belongs to the section "Biology and Ecology".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 3564

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK
Interests: fish ecology; essential fish habitat; coral reef fishes; fisheries management; marine protected areas; environmental impact assessment

Special Issue Information

Dear Colleagues,

Coral reefs are among the most diverse and productive ecosystems on Earth, and the fishes that inhabit them play a critical role in maintaining their health and resilience, in addition to providing protein for hundreds of millions of people living in tropical coastal areas. Despite a large body of research from developed countries, major knowledge gaps remain that undermine the conservation of coral reef fishes and the management of reef fisheries, especially in developing tropical nations. For many species, there is a lack of basic biological information such as growth rates, size at maturity, habitat preferences, reproductive ecology, etc. The aim of this Special Issue is to deepen our understanding of the complex ecological processes that govern the dynamics of coral reef fish populations and assemblages.

Topics of interest include, but are not limited to: the effects of fishing and environmental factors on coral reef fish populations, the roles of abiotic and biotic interactions in shaping fish population and assemblage structures, and the implications of global change for the future of coral reef fishes. Studies involving modern sampling techniques, such as telemetry or eDNA, are particularly welcome, as are submissions from scientists in developing nations.

Dr. Mark H. Tupper
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fishes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coral reefs
  • fish assemblages
  • fisheries management
  • biodiversity conservation
  • natural and anthropogenic impacts
  • essential fish habitat
  • marine protected areas
  • early life history
  • mark–recapture
  • telemetry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 3102 KiB  
Article
Fishes Associated with a Vulnerable Marine Ecosystem Network in the Central Mediterranean Sea
by Angela Carluccio, Francesca Capezzuto, Porzia Maiorano, Letizia Sion and Gianfranco D’Onghia
Fishes 2024, 9(11), 433; https://doi.org/10.3390/fishes9110433 - 26 Oct 2024
Viewed by 476
Abstract
In order to collect information on ichthyofauna of a deep-sea vulnerable marine ecosystem (VME) network along the Apulian margin (central Mediterranean Sea), two low-impact sampling tools were used in three VMEs characterized by cold-water corals (CWC), namely Bari Canyon (BC), off Monopoli (Mn), [...] Read more.
In order to collect information on ichthyofauna of a deep-sea vulnerable marine ecosystem (VME) network along the Apulian margin (central Mediterranean Sea), two low-impact sampling tools were used in three VMEs characterized by cold-water corals (CWC), namely Bari Canyon (BC), off Monopoli (Mn), and off Santa Maria di Leuca (SML). Using an experimental longline, 53 deployments were carried out between a 314 and 650 m depth for a total of 217 fishing hours, whereas when using the baited lander MEMO (Marine Environment MOnitoring system), 31 deployments were carried out between 427 and 792 m, for a total of 223 h of video recordings. A total of 37 taxa were recorded, comprising 13 Chondrichthyes and 24 Osteichthyes. The similarities in species observed among the VMEs confirm the presence of a network of CWC-VMEs along the Apulian margin, whereas some differences detected are due to the different abundance of some species, such as Galeus melastomus, Helicolenus dactylopterus, and Phycis blennoides. The presence of commercial species, vulnerable/endangered cartilaginous fishes, and large and sexually mature individuals of G. melastomus, H. dactylopterus, and Pagellus bogaraveo in all the VMEs confirms that the network of CWC-VMEs along the Apulian margin can act as a network of refuge areas and an essential fish habitat (EFH) for species threatened by fishing activities. Full article
(This article belongs to the Special Issue Biology and Ecology of Coral Reef Fishes)
Show Figures

Figure 1

17 pages, 2544 KiB  
Article
When the Light Goes Out: Distribution and Sleeping Habitat Use of Parrotfishes at Night
by Marcos Lucena, Thiago Costa Mendes, César Augusto Marcelino Mendes Cordeiro, Moysés Cavichiloli Barbosa, Jora Batista, Linda Eggertsen, Carlos W. Hackradt and Carlos Eduardo Leite Ferreira
Fishes 2024, 9(10), 370; https://doi.org/10.3390/fishes9100370 - 24 Sep 2024
Viewed by 711
Abstract
Understanding the diurnal and nocturnal activity of organisms is a key topic in behavioral ecology, with implications for population structure and management strategies. In reef systems, parrotfishes play crucial roles as nominal herbivores, but overfishing has led to population collapses with detrimental effects [...] Read more.
Understanding the diurnal and nocturnal activity of organisms is a key topic in behavioral ecology, with implications for population structure and management strategies. In reef systems, parrotfishes play crucial roles as nominal herbivores, but overfishing has led to population collapses with detrimental effects on reef functions. Parrotfish are good models to study diel rhythms, as they are often easily observed while sleeping at night. We assessed the distribution, sleeping substrate selectivity and sleeping areas of parrotfishes during the night in a subtropical rocky reef of the Southwestern Atlantic. We performed replicated visual censuses (50 × 2 m) at different depths to estimate parrotfish abundance, while quantifying the structural complexity of sleeping sites. Among the seven recorded parrotfish species, we focused on the four most abundant to determine their sleeping habitat selectivity. Active telemetry was used for the two most abundant species to define their sleeping site areas and sleeping hotspots. All four species exhibited a preference for sediment as a sleeping substrate, while avoiding zoanthids. Species distribution was influenced by depth, with Scarus zelindae predominantly sleeping in high-complexity substrate at intermediate depths and Sparisoma tuiupiranga sleeping in the rock–sand interface at deeper depths. Tagged Sparisoma axillare and Sparisoma frondosum exhibited similar sleeping areas in terms of size and geographical locations; showing high site fidelity, they returned to the same sleeping sites over consecutive nights. These results represent the first assessment of parrotfish distribution and habitat use at night in the Atlantic. This information is crucial for guiding management actions, particularly in the planning of no-take zones for fishing control and population recovery. Full article
(This article belongs to the Special Issue Biology and Ecology of Coral Reef Fishes)
Show Figures

Figure 1

12 pages, 962 KiB  
Article
Assessing the Conservation Value of Artificial and Natural Reefs via Ichthyoplankton Spatio-Temporal Dynamics
by Carlos Adrián Sánchez-Caballero, José Manuel Borges-Souza, Ricardo Javier Saldierna-Martínez and Avigdor Abelson
Fishes 2024, 9(5), 166; https://doi.org/10.3390/fishes9050166 - 4 May 2024
Viewed by 1667
Abstract
The distribution of fish eggs and larvae (ichthyoplankton) reflects spawning and nursery areas as well as dispersal routes. This study’s goal is to demonstrate how the identification of ichthyoplankton species and stages and their spatial distribution among natural reefs (NRs) and artificial reefs [...] Read more.
The distribution of fish eggs and larvae (ichthyoplankton) reflects spawning and nursery areas as well as dispersal routes. This study’s goal is to demonstrate how the identification of ichthyoplankton species and stages and their spatial distribution among natural reefs (NRs) and artificial reefs (ARs) may serve as decision-making tools in conservation and fishery management. Natural reefs exhibited an eight-times higher abundance of eggs, as well as the highest abundance of larvae in the yolk-sac and preflexion phases. In contrast, ARs had the highest abundance of larvae in the flexion and postflexion phases. Natural reefs may serve as breeding grounds for Scaridae, Labridae, and Mugilidae; whereas, ARs may serve as breeding sites for Lutjanidae, Synodontidae, Carangidae, Fistularidae, and Haemulidae. Our study revealed differences between ARs and NRs, which demonstrate the potential of artificial reefs to expand the supply and settlement options of reef fishes and consequently can lead to increased fish production with potential benefits to adjacent fishing areas through connectivity. Thus, ARs as no-take sites can be effective tools for both fishery management and biodiversity conservation. The findings highlight the potential use of ichthyoplankton tools and the importance of considering both types of reefs in marine conservation and management efforts. Full article
(This article belongs to the Special Issue Biology and Ecology of Coral Reef Fishes)
Show Figures

Figure 1

Back to TopTop