Effects of Climate Change on the Distribution of Scomber japonicus and Konosirus punctatus in China’s Coastal and Adjacent Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Occurrence Data of Fishes
2.3. Environmental Variables
2.4. Model Optimization
2.5. Model Settings
3. Results
3.1. Habitat Model Evaluation
3.2. Importance Analysis of Environmental Variables
3.3. Future Distribution of Suitable Areas under Different Climate Scenarios
3.4. Changes in Future Potential Suitable Habitat
3.5. Core Distributional Shifts in Suitable Habitats under Different Climatic Scenarios
4. Discussion
4.1. MaxEnt Model for Predicting Fish Habitats
4.2. Key Environmental Variables Influencing Fish Habitats
4.3. Climate Induced Shifts in Fish Distribution Patterns
4.4. Fish Migration in the Context of Climate Change
4.5. Mitigating Climate Change Impacts on Fish Habitats
4.6. Future Perspectives in Fish Habitat Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, S.Y.; Kang, B.; Li, J.C.; Sun, P.; Liu, Y.; Ye, Z.J.; Tian, Y.J. Climate risks to fishing species and fisheries in the China Seas. Sci. Total Environ. 2022, 857, 159325. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.; Leroux, S.J.; Fortin, M.J. Modelling the spatial–temporal distributions and associated determining factors of a keystone pelagic fish. ICES J. Mar. Sci. 2020, 77, 2776–2789. [Google Scholar] [CrossRef]
- Dahms, C.; Killen, S.S. Temperature Change Effects on Marine Fish Range Shifts: A Meta-analysis of ecological and methodological predictors. Glob. Chang. Biol. 2023, 29, 4459–4479. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, X.G.; Tang, X.H.; Sun, X.X.; Zhang, J.L.; Yang, D.Z.; Xu, L.J.; Zhang, H.; Yuan, H.M.; Wang, Y.T. The seas around China in a warming climate. Nat. Rev. Earth Environ. 2023, 4, 535–551. [Google Scholar] [CrossRef]
- Dulvy, N.K.; Rogers, S.I.; Jennings, S.; Stelzenmüller, V.; Dye, S.R.; Skjoldal, H.R. Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. J. Appl. Ecol. 2008, 45, 1029–1039. [Google Scholar] [CrossRef]
- Sassa, C.; Tsukamoto, Y. Distribution and growth of Scomber japonicus and S. australasicus larvae in the southern East China Sea in response to oceanographic conditions. Mar. Ecol. Prog. Ser. 2010, 419, 185–199. [Google Scholar] [CrossRef]
- Kang, B.; Pecl, G.T.; Lin, L.; Sun, P.; Zhang, P.; Li, Y.; Zhao, L.; Peng, X.; Yan, Y.; Shen, C.; et al. Climate change impacts on China’s marine ecosystems. Rev. Fish Biol. Fish. 2021, 31, 599–629. [Google Scholar] [CrossRef]
- Maynou, F.; Sabatés, A.; Ramírez-Romero, E.; Catalán, I.A.; Raya, V. Future distribution of early life stages of small pelagic fishes in the northwestern Mediterranean. Clim. Chang. 2020, 162, 989. [Google Scholar] [CrossRef]
- Shi, Y.C.; Zhang, X.M.; He, Y.R.; Fan, W.; Tang, F.H. Stock Assessment Using Length-Based Bayesian Evaluation Method for Three Small Pelagic Species in the Northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 775180. [Google Scholar] [CrossRef]
- Lima, A.R.A.; Baltazar-Soares, M.; Garrido, S.; Riveiro, I.; Carrera, P.; Piecho-Santos, A.M.; Peck, M.A.; Silva, G. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 2022, 804, 150167. [Google Scholar] [CrossRef]
- Schickele, A.; Goberville, E.; Leroy, B.; Beaugrand, G.; Hattab, T.; Francour, P.; Raybaud, V. European small pelagic fish distribution under global change scenarios. Fish Fish. 2021, 22, 212–225. [Google Scholar] [CrossRef]
- Korkmaz, M.; Mangit, F.; Dumlupinar, I.; Colak, M.A.; Akinar, M.B.; Koru, M.; Pacheco, J.P.; Ramirez-Garcia, A.; Yilmaz, G.; Amorim, C.A. Effects of climate change on the habitat suitability and distribution of endemic freshwater fish species in semi-arid central Anatolian ecoregion in Türkiye. Water 2023, 15, 1619. [Google Scholar] [CrossRef]
- Pont, D.; Logez, M.; Carrel, G.; Rogers, C.; Haidvogl, G. Historical change in fish species distribution: Shifting reference conditions and global warming effects. Aquat. Sci. 2015, 77, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Shan, X.J.; Gorfine, H.; Dai, F.Q.; Wu, Q.; Yang, T.; Shi, Y.Q.; Jin, X.S. Ensemble Projections of Fish Distribution in Response to Climate Changes in the Yellow and Bohai Seas, China. Ecol. Indic. 2023, 146, 109759. [Google Scholar] [CrossRef]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J.; et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Montiel, S.A.H.; Coronado-Franco, K.V.; Selvaraj, J.J. Predicted changes in the potential distribution of seerfish (Scomberomorus sierra) under multiple climate change scenarios in the Colombian Pacific Ocean. Ecol. Inform. 2019, 53, 100985. [Google Scholar] [CrossRef]
- Acosta-Pachón, T.A.; Martínez-Rincón, R.O.; Hinton, M.G. Habitat preferences of striped marlin (Kajikia audax) in the eastern Pacific Ocean. Fish Oceanogr. 2017, 26, 615–624. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Mason, J.G.; Woods, P.J.; Thorlacius, M.; Gudnason, K.; Saba, V.S.; Sullivan, P.J.; Kleisner, K.M. Projecting climate-driven shifts in demersal fish thermal habitat in Iceland’s waters. ICES J. Mar. Sci. 2021, 78, 3793–3804. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Hari, C.; Pellissier, L.; Karger, D.N. Global climate-related predictors at kilometer resolution for the past and future. Earth Syst. Sci. Data 2022, 14, 5573–5603. [Google Scholar] [CrossRef]
- Sharifian, S.; Mortazavi, M.S.; Nozar, S.L.M. The ecological response of commercial fishes and shrimps to climate change: Predicting global distributional shifts under future scenarios. Reg. Environ. Chang. 2023, 23, 2. [Google Scholar] [CrossRef]
- Tyberghein, L.; Verbruggen, H.; Pauly, K.; Troupin, C.; Mineur, F.; De Clerck, O. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 272–281. [Google Scholar] [CrossRef]
- Assis, J.; Tyberghein, L.; Bosch, S.; Verbruggen, H.; Serrao, E.A.; De Clerck, O. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 2018, 27, 277–284. [Google Scholar] [CrossRef]
- Nhat, N.H.; Saito, M.; Hamada, M.; Onodera, S.I. Evaluation of the Effects of Environmental Factors on Seasonal Variations in Fish Diversity on a Coastal Island in Western Japan. Environments 2024, 11, 60. [Google Scholar] [CrossRef]
- Wang, J.; Tabeta, S. MaxEnt modeling to show patterns of coastal habitats of reef-associated fish in the South and East China Seas. Front Ecol. Evol. 2023, 11, 1027614. [Google Scholar] [CrossRef]
- Xiong, P.L.; Xu, Y.W.; Sun, M.S.; Zhou, X.X.; Jiang, P.W.; Chen, Z.Z.; Fan, J.T. The current and future seasonal geographic distribution of largehead hairtail Trichiurus japonicus in the Beibu Gulf, South China Sea. Front. Mar. Sci. 2023, 9, 1079590. [Google Scholar] [CrossRef]
- Liu, S.H.; Liu, Y.; Teschke, K.; Hindell, M.A.; Downey, R.; Woods, B.; Kang, B.; Ma, S.Y.; Zhang, C.; Li, J.C. Incorporating mesopelagic fish into the evaluation of marine protected areas under climate change scenarios. Mar. Life Sci. Technol. 2024, 6, 68–83. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papes, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and MaxEnt. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Zhao, K.; Gaines, S.D.; Molinos, J.G.; Zhang, M.; Xu, J. Climate change and fishing are pulling the functional diversity of the world’s largest marine fisheries to opposite extremes. Glob. Ecol. Biogeogr. 2022, 31, 1616–1629. [Google Scholar] [CrossRef]
- Wu, D.Q.; Zhu, Z.W.; Yang, Z.Y. Mapping the potential spatial distribution for offshore finfish aquaculture in China under climate change. Aquaculture 2024, 586, 740815. [Google Scholar] [CrossRef]
- Sharifian, S.; Mortazavi, M.S.; Nozar, S.L.M. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Environ. Sci. Pollut. Res. 2023, 30, 75300–75313. [Google Scholar] [CrossRef]
- Wang, L.F.; Kerr, L.A.; Record, N.R.; Bridger, E.; Tupper, B.; Mills, K.E.; Armstrong, E.M.; Pershing, A.J. Modeling marine pelagic fish species spatiotemporal distributions utilizing a maximum entropy approach. Fish. Oceanogr. 2018, 27, 571–586. [Google Scholar] [CrossRef]
- Marin-Enriquez, E.; Ramirez-Perez, J.S.; Cruz-Escalona, V.; Moreno-Sanchez, X.G.; de Oca, G.A.R.M. Ecological niche models reveal the potential zones of invasion of the cobia (Rachycentron canadum) in the Eastern Pacific Ocean. Hydrobiologia 2022, 849, 2413–2433. [Google Scholar] [CrossRef]
- Kong, L.; Kawasaki, M.; Kuroda, K.; Kohno, H.; Fujita, K. Spawning characteristics of the konoshiro gizzard shad in Tokyo and Sagami Bays, central Japan. Fish Sci. 2004, 70, 116–122. [Google Scholar] [CrossRef]
- Ma, S.Y.; Cheng, J.H.; Li, J.C.; Liu, Y.; Wan, R.; Tian, Y.J. Interannual to decadal variability in the catches of small pelagic fishes from China Seas and its responses to climatic regime shifts. Deep-Sea Res. Part II-Top Stud. Oceanogr. 2019, 159, 112–129. [Google Scholar] [CrossRef]
- Farchadi, N.; Hinton, M.G.; Thompson, A.R.; Yin, Z.Y. Modeling the dynamic habitats of mobile pelagic predators (Makaira nigricans and Istiompax indica) in the eastern Pacific Ocean. Mar. Ecol. Prog. Ser. 2019, 622, 157–176. [Google Scholar] [CrossRef]
- Selvaraj, J.J.; Rosero-Henao, L.V.; Cifuentes-Ossa, M.A. Projecting future changes in distributions of small-scale pelagic fisheries of the Southern Colombian Pacific Ocean. Heliyon 2022, 8, e08975. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Paukert, C.; Olden, J.D.; Lynch, A.J.; Breshears, D.D.; Chambers, R.C.; Chu, C.; Daly, M.; Dibble, K.L.; Falke, J.; Issak, D. Climate change effects on north American fish and fisheries to inform adaptation strategies. Fisheries 2021, 46, 449–464. [Google Scholar] [CrossRef]
- Chen, X.J.; Li, G.; Feng, B.; Tian, S.Q. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. J. Oceanogr. 2009, 65, 93–102. [Google Scholar] [CrossRef]
- Long, X.Y.; Wan, R.; Li, Z.G.; Ren, Y.P.; Song, P.B.; Tian, Y.J.; Xu, B.D.; Xue, Y. Spatio-temporal distribution of Konosirus punctatus spawning and nursing ground in the South Yellow Sea. Acta Oceanol. Sin. 2021, 40, 133–144. [Google Scholar] [CrossRef]
- Liu, S.H.; Liu, Y.; Alabia, I.D.; Tian, Y.J.; Ye, Z.J.; Yu, H.Q.; Li, J.C.; Cheng, J.H. Impact of climate change on wintering ground of Japanese anchovy (Engraulis japonicus) using marine geospatial statistics. Front. Mar. Sci. 2020, 7, 604. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.J.; Lei, L.; Guan, W.J. Distribution of hotspots of Chub Mackerel based on remote-sensing data in coastal waters of China. Int. J. Remote Sens. 2014, 35, 4399–4421. [Google Scholar] [CrossRef]
- Silva, C.; Leiva, F.; Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the MaxEnt model in the coastal areas off central-northern Chile. Fish. Oceanogr. 2019, 28, 171–182. [Google Scholar] [CrossRef]
- Hu, W.J.; Du, J.G.; Su, S.K.; Tan, H.J.; Yang, W.; Ding, L.; Dong, P.; Yu, W.W.; Zheng, X.Q.; Chen, B. Effects of climate change in the seas of China: Predicted changes in the distribution of fish species and diversity. Ecol. Indic. 2022, 134, 108489. [Google Scholar] [CrossRef]
- Hastings, R.A.; Rutterford, L.A.; Freer, J.J.; Collins, R.A.; Simpson, S.D.; Genner, M.J. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 2020, 30, 1572–1577. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Yatsu, A.; Chiba, S.; Yamanaka, Y.; Ito, S.-I.; Shimizu, Y.; Kaeriyama, M.; Watanabe, Y. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 2013, 70, 922–933. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, H.; Yang, C.; Fang, Z. Differences in habitat distribution of Sardinops melanostictus and Scomber japonicus in the Northwest Pacific based on a maximum entropy model. J. Shanghai Ocean. Univ. 2023, 32, 806–817. [Google Scholar]
- Nishikawa, H.; Yasuda, I.; Itoh, S. Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus). Fish. Oceanogr. 2011, 20, 570–582. [Google Scholar] [CrossRef]
- Makki, T.; Mostafavi, H.; Matkan, A.A.; Aghighi, H.; Valavi, R.; Chee, Y.E.; Teimori, A. Impacts of climate change on the distribution of riverine endemic fish species in Iran, a biodiversity hotspot region. Freshw. Biol. 2023, 68, 1007–1019. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Hughes, A.R.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef]
- Weinert, M.; Mathis, M.; Kröncke, I.; Pohlmann, T.; Reiss, H. Climate change effects on marine protected areas: Projected de-cline of benthic species in the North Sea. Mar. Environ. Res. 2021, 163, 105230. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, Y.; Dong, C.; Li, Z. Spatiotemporal distribution of Decapterus maruadsi in spring and autumn in response to environmental variation in the northern South China Sea. Reg. Stud. Mar. Sci. 2021, 45, 101811. [Google Scholar] [CrossRef]
- Teng, S.Y.; Su, N.J.; Lee, M.A.; Lan, K.W.; Chang, Y.; Weng, J.S.; Wang, Y.C.; Sihombing, R.I.; Vayghan, A.H. Modeling the habitat distribution of acanthopagrus schlegelii in the coastal waters of the eastern Taiwan strait using MAXENT with fishery and remote sensing data. J. Mar. Sci. Eng. 2021, 9, 1442. [Google Scholar] [CrossRef]
Species | FC | RM | AUC |
---|---|---|---|
Scomber japonicus | T | 2.5 | 0.850 |
Konosirus punctatus | QPT | 3 | 0.882 |
Environmental Variable | Scomber japonicus | Konosirus punctatus | ||
---|---|---|---|---|
Percent Contribution (%) | Permutation Importance (%) | Percent Contribution (%) | Permutation Importance (%) | |
SST | 11.7 | 19.8 | 21.2 | 55.1 |
SSS | 13.9 | 26.4 | 23.7 | 5.2 |
pH | 5.9 | 13.7 | 3.4 | 0.5 |
Dissolved oxygen | 3.9 | 5.8 | 12.6 | 0.8 |
Primary productivity | 1.2 | 1.6 | 5.7 | 25.6 |
Chlorophyll | 57.6 | 23.5 | 3.8 | 0.1 |
Current velocity | 4.3 | 8.3 | 0.4 | 1.3 |
nitrate | 1.5 | 0.9 | 29.2 | 11.5 |
Species | Time | Climate Scenario | Low Suitability (×106 km2) | Medium Suitability (×106 km2) | High Suitability (×106 km2) |
---|---|---|---|---|---|
Scomber japonicus | current | 0.295 | 1.055 | 0.216 | |
2050 s | SSP126 | 0.215 | 1.016 | 0.255 | |
SSP370 | 0.174 | 1.059 | 0.258 | ||
SSP585 | 0.223 | 1.022 | 0.234 | ||
2100 s | SSP126 | 0.194 | 1.052 | 0.242 | |
SSP370 | 0.280 | 1.026 | 0.164 | ||
SSP585 | 0.415 | 0.921 | 0.146 | ||
Konosirus punctatus | current | 0.449 | 0.754 | 0.187 | |
2050 s | SSP126 | 0.703 | 0.665 | 0.211 | |
SSP370 | 0.695 | 0.703 | 0.211 | ||
SSP585 | 0.670 | 0.704 | 0.188 | ||
2100 s | SSP126 | 0.708 | 0.680 | 0.192 | |
SSP370 | 0.618 | 0.624 | 0.095 | ||
SSP585 | 0.703 | 0.560 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Jia, H.; Wang, Y.; Zhang, H. Effects of Climate Change on the Distribution of Scomber japonicus and Konosirus punctatus in China’s Coastal and Adjacent Waters. Fishes 2024, 9, 395. https://doi.org/10.3390/fishes9100395
Xia M, Jia H, Wang Y, Zhang H. Effects of Climate Change on the Distribution of Scomber japonicus and Konosirus punctatus in China’s Coastal and Adjacent Waters. Fishes. 2024; 9(10):395. https://doi.org/10.3390/fishes9100395
Chicago/Turabian StyleXia, Mingxia, Hui Jia, Yibang Wang, and Hui Zhang. 2024. "Effects of Climate Change on the Distribution of Scomber japonicus and Konosirus punctatus in China’s Coastal and Adjacent Waters" Fishes 9, no. 10: 395. https://doi.org/10.3390/fishes9100395
APA StyleXia, M., Jia, H., Wang, Y., & Zhang, H. (2024). Effects of Climate Change on the Distribution of Scomber japonicus and Konosirus punctatus in China’s Coastal and Adjacent Waters. Fishes, 9(10), 395. https://doi.org/10.3390/fishes9100395