Growth, Productivity and Nutrient Uptake Rates of Ulva lactuca and Devaleraea mollis Co-Cultured with Atractoscion nobilis in a Land-Based Seawater Flow-Through Cascade IMTA System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Cascade IMTA System Design
2.2. Fish and Seaweed Sourcing
2.3. Experimental Design
2.3.1. IMTA Fish Component
2.3.2. IMTA Seaweed Component
2.4. Data Collection
2.4.1. Environmental and Water Quality
2.4.2. Biological and Biochemical Measures
2.4.3. Parameter Calculation
2.5. Data Analysis
3. Results
3.1. Environmental Conditions
3.2. Atractoscion Nobilis Growth and Food Conversion Rate (FCR)
3.3. Growth and Productivity of Devaleraea Mollis and Ulva lactuca
3.4. Nutrient Concentration and Removal Efficiency
3.5. Tissue Chemical Composition and Nutrient Removal Rate
4. Discussion
4.1. Performance of Atractoscion Nobilis
4.2. Growth and Productivity of Ulva lactuca and Devaleraea Mollis
4.3. Water Quality Remediation and Nutrient Uptake Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed nearly 10 Billion People by 2050. Available online: https://www.wri.org/research/creating-sustainable-food-future (accessed on 19 July 2019).
- Micheli, F.; De Leo, G.; Shester, G.G.; Martone, R.G.; Lluch-Cota, S.E.; Butner, C.; Crowder, L.B.; Fujita, R.; Gelcich, S.; Jain, M. A system—Wide approach to supporting improvements in seafood production practices and outcomes. Front. Ecol. Environ. 2014, 12, 297–305. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Sathiadhas, R.; Hassan, F. Product diversification and promotion of value added sea food products. Seaf. Export J. 2002, 33, 27–42. [Google Scholar]
- Das, S.; Mandal, A. Diversification in aquaculture resources and practices for smallholder farmers. In Agriculture, Livestock Production and Aquaculture: Advances for Smallholder Farming Systems Volume 1; Springer: Berlin/Heidelberg, Germany, 2022; pp. 263–286. [Google Scholar]
- Huo, Y.; Stuart, K.; Rotman, F.; Ernst, D.; Drawbridge, M. The culture of fish, mussels, sea cucumbers and macroalgae in a modular integrated multi-tropic recirculating aquaculture system (IMTRAS): Performance and waste removal efficiencies. Aquaculture 2024, 585, 740720. [Google Scholar] [CrossRef]
- Wei, Z.; You, J.; Wu, H.; Yang, F.; Long, L.; Liu, Q.; Huo, Y.; He, P. Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Mar. Pollut. Bull. 2017, 121, 313–319. [Google Scholar] [CrossRef]
- Cutajar, K.; Falconer, L.; Massa-Gallucci, A.; Cox, R.E.; Schenke, L.; Bardócz, T.; Andolina, C.; Signa, G.; Vizzini, S.; Sprague, M. Stable isotope and fatty acid analysis reveal the ability of sea cucumbers to use fish farm waste in integrated multi-trophic aquaculture. J. Environ. Manag. 2022, 318, 115511. [Google Scholar] [CrossRef]
- Huo, Y.; Wu, H.; Chai, Z.; Xu, S.; Han, F.; Dong, L.; He, P. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 2012, 326, 99–105. [Google Scholar] [CrossRef]
- Wei, Z.; Huo, Y.; Liu, Q.; Yang, F.; Long, L.; Bi, H.; Fan, C.; He, P. A field scale evaluation of Gracilaria lemaneiformis co-cultured with Crassostrea gigas as a nutrient bioextraction strategy in Yantian Bay, China. Algal Res. 2019, 38, 101407. [Google Scholar] [CrossRef]
- Gao, G.; Gao, L.; Fu, Q.; Li, X.; Xu, J. Coculture of the Pacific white shrimp Litopenaeus vannamei and the macroalga Ulva linza enhances their growth rates and functional properties. J. Clean. Prod. 2022, 349, 131407. [Google Scholar] [CrossRef]
- Lohroff, T.J.; Gillette, P.R.; Close, H.G.; Benetti, D.D.; Stieglitz, J.D. Evaluating the potential bioextractive capacity of South Florida native macroalgae Agardhiella subulata for use in integrated multi-trophic aquaculture (IMTA). Aquaculture 2021, 544, 737091. [Google Scholar] [CrossRef]
- Hamilton, S.L.; Elliott, M.S.; deVries, M.S.; Adelaars, J.; Rintoul, M.D.; Graham, M.H. Integrated multi-trophic aquaculture mitigates the effects of ocean acidification: Seaweeds raise system pH and improve growth of juvenile abalone. Aquaculture 2022, 560, 738571. [Google Scholar] [CrossRef]
- Chang, Z.Q.; Neori, A.; He, Y.Y.; Li, J.T.; Qiao, L.; Preston, S.I.; Liu, P.; Li, J. Development and current state of seawater shrimp farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China–a review. Rev. Aquac. 2020, 12, 2544–2558. [Google Scholar] [CrossRef]
- de Oliveira Costa, L.C.; da Silva Poersch, L.H.; Abreu, P.C. Biofloc removal by the oyster Crassostrea gasar as a candidate species to an Integrated Multi-Trophic Aquaculture (IMTA) system with the marine shrimp Litopenaeus vannamei. Aquaculture 2021, 540, 736731. [Google Scholar] [CrossRef]
- Samocha, T.; Fricker, J.; Ali, A.; Shpigel, M.; Neori, A. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture 2015, 446, 263–271. [Google Scholar] [CrossRef]
- Grosso, L.; Rakaj, A.; Fianchini, A.; Morroni, L.; Cataudella, S.; Scardi, M. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 2021, 534, 736268. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ashkenazi, N.; Ben-Ezra, D. Ulva lactuca biofilter from a land-based integrated multi trophic aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis. Aquaculture 2018, 496, 221–231. [Google Scholar] [CrossRef]
- Drawbridge, M.; Shane, M.; Silbernagel, C. The status of white seabass, Atractoscion nobilis as a commercially ready species for marine US aquaculture. J. World Aquac. Soc. 2021, 52, 647–661. [Google Scholar] [CrossRef]
- Drawbridge, M.; Huo, Y.; Fanning, E.; Polizzi, T.; Booher, L. Growth, productivity and nutrient removal rates of sea lettuce (Ulva lactuca) in a land-based IMTA system with white seabass (Atractoscion nobilis) in Southern California. Aquaculture 2024, 587, 740836. [Google Scholar] [CrossRef]
- Gao, G.; Clare, A.S.; Chatzidimitriou, E.; Rose, C.; Caldwell, G. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem. 2018, 258, 71–78. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Ben-Ezra, D.; Yu, J.; Chen, S. Is Ulva sp. able to be an efficient biofilter for mariculture effluents? J. Appl. Phycol. 2019, 31, 2449–2459. [Google Scholar] [CrossRef]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Burgess, J.G.; Wu, M.; Wang, S.; Gao, K. Using macroalgae as biofuel: Current opportunities and challenges. Bot. Mar. 2020, 63, 355–370. [Google Scholar] [CrossRef]
- Evans, S.; Langdon, C.J.; Rorrer, G.L. Aeration rate and power requirements for CO2-replete cultivation of the red seaweed Devaleraea mollis (Pacific dulse) in a tumble tank. Aquaculture 2024, 584, 740638. [Google Scholar] [CrossRef]
- Mendez, R.L.; Kwon, J.Y. Precipitation and characterization of Pacific dulse (Devaleraea mollis) proteins. J. Appl. Phycol. 2023, 35, 301–315. [Google Scholar] [CrossRef]
- Gadberry, B.A.; Colt, J.; Maynard, D.; Boratyn, D.C.; Webb, K.; Johnson, R.B.; Saunders, G.W.; Boyer, R.H.; Gadberry, B.A.; Colt, J. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: An evaluation of seasonal growth, yield, nutritional composition, and contaminant levels. Algae 2018, 33, 109–125. [Google Scholar] [CrossRef]
- Demetropoulos, C.L.; Langdon, C.J. Pacific dulse (Palmaria mollis) as a food and biofilter in recirculated, land-based abalone culture systems. Aquac. Eng. 2004, 32, 57–75. [Google Scholar] [CrossRef]
- Chambel, J.; Pinho, R.; Sousa, R.; Ferreira, T.; Baptista, T.; Severiano, V.; Mendes, S.; Pedrosa, R. The efficacy of MS-222 as anaesthetic agent in four freshwater aquarium fish species. Aquac. Res. 2015, 46, 1582–1589. [Google Scholar] [CrossRef]
- Demetropoulos, C.L.; Langdon, C.J. Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: Nitrogen, phosphorus, and trace metal nutrition. Aquaculture 2004, 235, 433–455. [Google Scholar] [CrossRef]
- Demetropoulos, C.L.; Langdon, C.J. Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: Effects of stocking density, light, salinity, and temperature. Aquaculture 2004, 235, 471–488. [Google Scholar] [CrossRef]
- Laramore, S.E.; Wills, P.S.; Hanisak, M.D. Seasonal variation in the nutritional profile of Ulva lactuca produced in a land-based IMTA system. Aquac. Int. 2022, 30, 3067–3079. [Google Scholar] [CrossRef]
- Swaney, J.S. The Effects of Temperature and Ration Level on Digestion, Growth and Lactate Dehydrogenase Activity of White Seabass. Ph.D. Thesis, University of San Diego, San Diego, CA, USA, 2002. [Google Scholar]
- Orellana, J.; Waller, U.; Wecker, B. Culture of yellowtail kingfish (Seriola lalandi) in a marine recirculating aquaculture system (RAS) with artificial seawater. Aquac. Eng. 2014, 58, 20–28. [Google Scholar] [CrossRef]
- Kır, M.; Sunar, M.C.; Gök, M.G. Acute ammonia toxicity and the interactive effects of ammonia and salinity on the standard metabolism of European sea bass (Dicentrarchus labrax). Aquaculture 2019, 511, 734273. [Google Scholar] [CrossRef]
- Vera, L.; Aguilar Galarza, B.; Reinoso, S.; Bohórquez-Cruz, M.; Sonnenholzner, S.; Argüello-Guevara, W. Determination of acute toxicity of unionized ammonia in juvenile longfin yellowtail (Seriola rivoliana). J. World Aquac. Soc. 2023, 54, 1110–1120. [Google Scholar] [CrossRef]
- Costa, L.D.F.; Miranda-Filho, K.C.; Severo, M.P.; Sampaio, L.A. Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture 2008, 285, 270–272. [Google Scholar] [CrossRef]
- Kir, M.; Topuz, H.; Sunar, M.C.; Topuz, M. Effect of temperature on acute toxicity of nitrite to meagre, Argyrosomus regius (Asso, 1801). J. World Aquac. Soc. 2015, 46, 564–568. [Google Scholar] [CrossRef]
- Miranda, D.H.d.S.; Maltez, L.C.; Campello, M.E.S.; Córdova, J.F.L.; Rodrigues, R.V.; Sampaio, L.A.; Okamoto, M.H. Acute toxicity and sublethal effects of nitrite on oxidative stress in early juvenile Brazilian flounder, Paralichthys orbignyanus. Aquac. Res. 2022, 53, 1939–1946. [Google Scholar] [CrossRef]
- Siikavuopio, S.I.; Sæther, B.-S. Effects of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua. Aquaculture 2006, 255, 351–356. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour. Technol. 2011, 102, 2595–2604. [Google Scholar] [CrossRef]
- Msuya, F.E.; Neori, A. Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J. Appl. Phycol. 2008, 20, 1021–1031. [Google Scholar] [CrossRef]
- Neori, A.; Cohen, I.; Gordin, H. Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Bot. Mar. 1991, 34, 483–489. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Ben-Ezra, D. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 2000, 186, 279–291. [Google Scholar] [CrossRef]
- Vandermeulen, H.; Gordin, H. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass culture and treatment of effluent. J. Appl. Phycol. 1990, 2, 363–374. [Google Scholar] [CrossRef]
- Steffensen, D. The effect of nutrient enrichment and temperature on the growth in culture of Ulva lactuca L. Aquat. Bot. 1976, 2, 337–351. [Google Scholar] [CrossRef]
- Fortes, M.; Lüning, K. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgoländer Meeresunters. 1980, 34, 15–29. [Google Scholar] [CrossRef]
- Bigagli, E.; Cinci, L.; Niccolai, A.; Biondi, N.; Rodolfi, L.; D’Ottavio, M.; D’Ambrosio, M.; Lodovici, M.; Tredici, M.R.; Luceri, C. Preliminary data on the dietary safety, tolerability and effects on lipid metabolism of the marine microalga Tisochrysis lutea. Algal Res. 2018, 34, 244–249. [Google Scholar] [CrossRef]
- Raven, J.A.; Giordano, M.; Beardall, J.; Maberly, S.C. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth. Res. 2011, 109, 281–296. [Google Scholar] [CrossRef]
- Ben, D.; Langdon, C.J. Tank cultivation of the red algae Palmaria mollis: Effects of nutrients on growth rate, biochemical quality, and epiphytic growth. Am. Geophys. Union 2016, 2016, ED14A–1614A. [Google Scholar]
- Chatfield, M.W. Development and Evaluation of a Static Land-Based Aquaculture System for Pacific Dulse (Devaleraea mollis): Environmental and Nutrient Requirements. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2023. [Google Scholar]
- Demetropoulos, C.L.; Langdon, C.J. Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: Effects of seawater exchange, pH, and inorganic carbon concentration. Aquaculture 2004, 235, 457–470. [Google Scholar] [CrossRef]
- Demetropoulos, C.L.; Langdon, C.J. Effects of nutrient enrichment and biochemical composition of diets of Palmaria mollis on growth and condition of Japanese abalone, Haliotis discus hannai and red abalone, Haliotis rufescens. J. Exp. Mar. Biol. Ecol. 2004, 308, 185–206. [Google Scholar] [CrossRef]
- Evans, F.; Langdon, C.J. Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture 2000, 185, 137–158. [Google Scholar] [CrossRef]
- Rosen, G.; Langdon, C.J.; Evans, F. The nutritional value of Palmaria mollis cultured under different light intensities and water exchange rates for juvenile red abalone Haliotis rufescens. Aquaculture 2000, 185, 121–136. [Google Scholar] [CrossRef]
- Evans, S.; Rorrer, G.L.; Langdon, C.J. Cultivation of the macrophytic red alga Palmaria mollis (Pacific dulse) on vertical arrays of mesh panels in aerated tanks. J. Appl. Phycol. 2021, 33, 3915–3926. [Google Scholar] [CrossRef]
- Rizzo, N.R.; Beckert, S.B.; Boles, S.E.; Gross, J.A. Temperature-induced variations in dulse (Devaleraea mollis) nutrition provide indirect benefits on juvenile red abalone (Haliotis rufescens) Growth. Front. Mar. Sci. 2024, 11, 1336793. [Google Scholar] [CrossRef]
- Waaland, R.J. Integrating intensive aquaculture of the red seaweed Chondracanthus exasperatus. Bull. Fish. Res. Agency Jpn. 2004, 1, 91–100. [Google Scholar]
- Ben-Ari, T.; Neori, A.; Ben-Ezra, D.; Shauli, L.; Odintsov, V.; Shpigel, M. Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture 2014, 434, 493–498. [Google Scholar] [CrossRef]
- Traugott, H.; Zollmann, M.; Cohen, H.; Chemodanov, A.; Liberzon, A.; Golberg, A. Aeration and nitrogen modulated growth rate and chemical composition of green macroalgae Ulva sp. cultured in a photobioreactor. Algal Res. 2020, 47, 101808. [Google Scholar] [CrossRef]
- Nelson, S.G.; Glenn, E.P.; Conn, J.; Moore, D.; Walsh, T.; Akutagawa, M. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: A two-phase polyculture system. Aquaculture 2001, 193, 239–248. [Google Scholar] [CrossRef]
- Davison, A.V.; Piedrahita, R.H. Temperature modeling of a land-based aquaculture system for the production of Gracilaria pacifica: Possible system modifications to conserve heat and extend the growing season. Aquac. Eng. 2015, 66, 1–10. [Google Scholar] [CrossRef]
Phase | Period | Initial Number (No.) | Initial Average Weight (G) | Feeding Rate (% Body Weight) | Final Average Weight (G) | SGR (%/Day) | FCR |
---|---|---|---|---|---|---|---|
1 | 23 March–8 May | 175 ± 6 | 120.4 ± 4.4 | 1.07 ± 0.002 | 149.0 ± 3.0 | 0.47 ± 0.05 | 2.05 ± 0.27 |
2 | 8 May–8 June | 142 ± 3 | 149.0 ± 3.0 | 1.42 ± 0.002 | 188.1 ± 3.0 | 0.52 ± 0.05 | 1.64 ± 0.20 |
Species | Ulva lactuca | Devaleraea mollis |
---|---|---|
Productivity (g DW/m2/d) | 24.53 ± 15.34 | 14.40 ± 9.09 |
Nitrogen (N, % DW) | 3.48 ± 0.10 | 4.89 ± 0.058 |
Carbon (C, % DW) | 28.83 ± 0.78 | 30.98 ± 0.29 |
N removal rate (g/m2/d) | 0.88 ± 0.57 | 0.71 ± 0.46 |
C removal rate (g/m2/d) | 7.21 ± 4.54 | 4.46 ± 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Elliott, M.S.; Drawbridge, M. Growth, Productivity and Nutrient Uptake Rates of Ulva lactuca and Devaleraea mollis Co-Cultured with Atractoscion nobilis in a Land-Based Seawater Flow-Through Cascade IMTA System. Fishes 2024, 9, 417. https://doi.org/10.3390/fishes9100417
Huo Y, Elliott MS, Drawbridge M. Growth, Productivity and Nutrient Uptake Rates of Ulva lactuca and Devaleraea mollis Co-Cultured with Atractoscion nobilis in a Land-Based Seawater Flow-Through Cascade IMTA System. Fishes. 2024; 9(10):417. https://doi.org/10.3390/fishes9100417
Chicago/Turabian StyleHuo, Yuanzi, Matthew S. Elliott, and Mark Drawbridge. 2024. "Growth, Productivity and Nutrient Uptake Rates of Ulva lactuca and Devaleraea mollis Co-Cultured with Atractoscion nobilis in a Land-Based Seawater Flow-Through Cascade IMTA System" Fishes 9, no. 10: 417. https://doi.org/10.3390/fishes9100417
APA StyleHuo, Y., Elliott, M. S., & Drawbridge, M. (2024). Growth, Productivity and Nutrient Uptake Rates of Ulva lactuca and Devaleraea mollis Co-Cultured with Atractoscion nobilis in a Land-Based Seawater Flow-Through Cascade IMTA System. Fishes, 9(10), 417. https://doi.org/10.3390/fishes9100417