New Insights into Fish Diversity in the Yellow and Bohai Seas Based on Environmental DNA Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Sites
2.2. Sample Collection and DNA Extraction
2.3. Library Construction and Sequencing
2.4. Bioinformatics Analysis
3. Results
3.1. Sequencing Results and Taxonomic Composition
3.2. Alpha and Beta Diversity of Fish Communities from Various Perspectives
3.3. Functional and Phylogenetic Diversity of Fish Communities from Various Perspectives
3.4. Relationship between Biodiversity and Environmental Factors
4. Discussion
4.1. Composition of Fish Communities
4.2. Fish Diversity in the Yellow and Bohai Seas
4.3. Relationships between Fish Communities and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzo, E. Synthesis of Marine Natural Products and Molecules Inspired by Marine Substances II. Mar. Drugs 2021, 19, 518. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, D.E.; Valesini, F.J.; Hallett, C.S.; Abdo, D.A.; Williams, J. Diel shifts in the structure and function of nearshore estuarine fish communities. J. Fish Biol. 2017, 90, 1214–1243. [Google Scholar] [CrossRef]
- Zhao, K.; Gaines, S.D.; García Molinos, J.; Zhang, M.; Xu, J. Climate change and fishing are pulling the functional diversity of the world’s largest marine fisheries to opposite extremes. Glob. Ecol. Biogeogr. 2022, 31, 1616–1629. [Google Scholar] [CrossRef]
- Djurhuus, A.; Closek, C.J.; Kelly, R.P.; Pitz, K.J.; Michisaki, R.P.; Starks, H.A.; Walz, K.R.; Andruszkiewicz, E.A.; Olesin, E.; Hubbard, K.; et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 2020, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Bowker, M.A.; Rengifo-Faiffer, M.C.; Antoninka, A.J.; Grover, H.S.; Coe, K.K.; Fisher, K.; Mishler, B.D.; Oliver, M.; Stark, L.R. Community composition influences ecosystem resistance and production more than species richness or intraspecific diversity. Oikos 2021, 130, 1399–1410. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Flynn, D.F.; Mirotchnick, N.; Jain, M.; Palmer, M.I.; Naeem, S. Functional and phylogenetic diversity as predictors of biodiversityecosystem-function relationships. Ecology 2011, 92, 1573–1581. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Graham, C.H.; Lavergne, S.; Pellissier, L.; Münkemüller, T.; Thuiller, W. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 2019, 10, 5691. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Borges, P.A.V.; Carvalho, J.C. A new frontier in biodiversity inventory: A proposal for estimators of phylogenetic and functional diversity. Methods Ecol. Evol. 2014, 5, 452–461. [Google Scholar] [CrossRef]
- Mbaru, E.K.; Graham, N.A.J.; McClanahan, T.R.; Cinner, J.E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 2020, 57, 241–252. [Google Scholar] [CrossRef]
- Trindade-Santos, I.; Moyes, F.; Magurran, A.E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B 2020, 287, 20200889. [Google Scholar] [CrossRef] [PubMed]
- Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Wang, Z.; Zhou, Q.; Wang, J.; Shao, Y.; Qiao, Q.; Fan, J.; Yan, Z. Environmental DNA unveiling the fish community structure and diversity features in the Yangtze River basin. Environ. Res. 2023, 239, 117198. [Google Scholar] [CrossRef] [PubMed]
- Guri, G.; Shelton, A.O.; Kelly, R.P.; Yoccoz, N.; Johansen, T.; Præbel, K.; Hanebrekke, T.; Ray, J.L.; Fall, J.; Westgaard, J.I. Predicting trawl catches using environmental DNA. ICES J. Mar. Sci. 2024, 81, 1536–1548. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Z.; Hänfling, B.; Zheng, X.; Wang, P.; Fan, J.; Li, J. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 2021, 755, 142622. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef]
- Fraija-Fernández, N.; Bouquieaux, M.C.; Rey, A.; Mendibil, I.; Cotano, U.; Irigoien, X.; Santos, M.; Rodríguez-Ezpeleta, N. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecol. Evol. 2020, 10, 7560–7584. [Google Scholar] [CrossRef]
- Zhou, S.; Fan, C.; Xia, H.; Zhang, J.; Yang, W.; Ji, D.; Wang, L.; Chen, L.; Liu, N. Combined use of eDNA metabarcoding and bottom trawling for the assessment of fish biodiversity in the Zhoushan Sea. Front. Mar. Sci. 2022, 8, 809703. [Google Scholar] [CrossRef]
- Marques, V.; Castagné, P.; Polanco, A.; Borrero-Pérez, G.H.; Hocdé, R.; Guérin, P.É.; Juhel, J.B.; Velez, L.; Loiseau, N.; Letessier, T.B.; et al. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conserv. Biol. 2021, 35, 1944–1956. [Google Scholar] [CrossRef]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.S.; Hernandez, C.; Laporte, M.; Cté, G.; Bernatchez, L. Fine: Cale environmental heterogeneity shapes fluvial fish communities as revealed by eDNA metabarcoding. Environ. DNA 2020, 2, 647–666. [Google Scholar] [CrossRef]
- Shen, A.; Ishizaka, J.; Yang, M.; Ouyang, L.; Yin, Y.; Ma, Z. Changes in community structure and photosynthetic activities of total phytoplankton species during the growth, maintenance, and dissipation phases of a Prorocentrum donghaiense bloom. Harmful Algae 2019, 82, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, C.; Liu, F.; Li, J. Biodiversity conservation in China: A review of recent studies and practices. Environ. Sci. Ecotechnology 2020, 2, 100025. [Google Scholar] [CrossRef]
- Adom, D.; Umachandran, K.; Ziarati, P.; Sekyere, P. The Concept of Biodiversity and its Relevance to Mankind: A Short Review. J. Agric. Sustain. 2019, 12, 219–231. [Google Scholar]
- Wen, L. Ecological thought of sustainable development. J. Sichuan Teach. Coll. 2000, 21, 215–220. [Google Scholar]
- Shan, X.; Sun, P.; Jin, X.; Dai, F. Seasonal variations of fishery resource structure in the sections of the southern Yellow Sea. J. Fish. China 2013, 37, 425–435. (In Chinese) [Google Scholar] [CrossRef]
- Dai, S.; Bai, M.; Jia, H.; Xian, W.; Zhang, H. An assessment of seasonal differences in fish populations in Laizhou Bay using environmental DNA and conventional resource survey techniques. Fishes 2022, 7, 250. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Shao, F.; Song, H.; Song, N.; Zhang, X.; Zhao, L. Exploring seasonal variations in fish communities: A study of the Yellow River Estuary and Its adjacent waters using eDNA and trawl surveys. Fishes 2024, 9, 192. [Google Scholar] [CrossRef]
- Jin, X.; Deng, J. Variations in community structure of fishery resources and biodiversity in the Laizhou Bay, Shandong, Chinese. Biodivers. Sci. 2000, 8, 65–72. (In Chinese) [Google Scholar] [CrossRef]
- Ryder, R.A.; Kerr, S.R.; Taylor, W.W.; Larkin, P.A. Community consequence of fish stock diversity. Can. J. Fish. Aquat. Sci. 1981, 38, 1856–1866. [Google Scholar] [CrossRef]
- Díaz, J.; Vanina, V.; Felipe, D.P.; Florencia, B.; Alexis, G.; Silvia, E.A. First DNA barcode reference library for the identification of South American freshwater fish from the lower Paraná River. PLoS ONE 2016, 11, e0157419. [Google Scholar] [CrossRef]
- Jaureguizar, A.J.; Solari, A.; Cortés, F.; Milessi, A.C.; Militelli, M.I.; Camiolo, M.D.; García, M. Fish diversity in the Río de la Plata and adjacent waters: An overview of environmental influences on its spatial and temporal structure. J. Fish Biol. 2016, 89, 569–600. [Google Scholar] [CrossRef]
- Jin, X.; Tang, Q. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fish. Res. 1996, 26, 337–498. [Google Scholar] [CrossRef]
- Wan, R.; Jiang, Y. Studies on the ecology of eggs and large of Osteichthyes in the Yellow Sea. Prog. Fish. Sci. 1998, 19, 60–73. [Google Scholar]
- Jin, X.; Tang, Q. The structure distribution and variationof the fishery resources in the Bohai Sea. J. Fish. Sci. China 1998, 5, 19–25. [Google Scholar]
- Shan, X.; Chen, Y.; Dai, F.; Jin, X.; Yang, D. Variations in fish community structure and diversity in the sections of the central and southern Yellow Sea. Acta Ecol. Sin. 2014, 34, 377–389. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, W. Functional diversity and its research method. Acta Ecol. Sin. 2010, 30, 2766–2773. [Google Scholar]
- Diaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Sasaki, T.; Okubo, S.; Okayasu, T.; Jamsran, U.; Ohkuro, T.; Takeuchi, K. Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology 2009, 90, 2598–2608. [Google Scholar] [CrossRef] [PubMed]
- Bœuf, G.; Payan, P. How should salinity influence fish growth? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Hickox, R.; Belkin, I.; Cornillon, P.; Shan, Z. Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data. Geophys. Res. Lett. 2000, 27, 2945–2948. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, F.; Shi, X.; Cao, L.; Zeng, C. Fronts affect fish community structure in the Yangtze River estuary and its adjacent area. J. Sea Res. 2024, 199, 102507. [Google Scholar] [CrossRef]
- Cheng, J. The structure and diversity of demersal fish communities in winter in the East China Sea and the Yellow Sea. Mar. Fish. Res. 2000, 21, 1–8. [Google Scholar]
- Liu, Y.; Li, S.; Chen, X.; Chen, J. The structure and diversity of demersal fish communities in winter 2000 in the East China Sea and the Yellow Sea. Mar. Sci. 2007, 31, 19–24. [Google Scholar] [CrossRef]
- Castillo-Rivera, M.; Zavala-Hurtado, J.A.; Zarate, R. Exploration of spatial and temporal patterns of fish diversity and composition in a tropical estuarine system of Mexico. Rev. Fish Biol. Fish. 2002, 12, 167–177. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Z.; Feng, J.; Zhao, C.; Kang, D.; Zhu, W.; Zhao, T.; Su, S. Unraveling the importance of functionally extreme tadpole types to functional diversity: A case study in temperate montane streams. Front. Zool. 2023, 20, 7. [Google Scholar] [CrossRef]
- Sagouis, A.; Jabot, F.; Argillier, C. Taxonomic versus functional diversity metrics: How do fish communities respond to anthropogenic stressors in reservoirs? Ecol. Freshw. Fish 2017, 26, 621–635. [Google Scholar] [CrossRef]
- Yan, K. Spatial-temporal patterns of fish community and itsfunctional diversities of the Leizhou Bay waters, northern South China Sea. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2020. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, Q.; Liu, C.; Xian, W. Seasonal and Spatial Variations in Fish Assemblage in the Yangtze Estuary and Adjacent Waters and Their Relationship with Environmental Factors. J. Mar. Sci. Eng. 2022, 10, 1679. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Dai, X.; Tian, S.; Liu, J.; Chen, J.; Wang, X. An analysis of spatial co-occurrence pattern of fish species of Yangtze Estuary based on probabilistic model. South China Fish. Sci. 2019, 15, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, X.; Shan, X.; Jin, X.; Wang, H. Community structure and suitable habitat for the early life stages of marine fish in the Yantai-Weihai offshore waters. Prog. Fish. Sci. 2022, 43, 148–167. [Google Scholar] [CrossRef]
- La Manna, G.; Ronchetti, F.; Sarà, G.; Ruiu, A.; Ceccherelli, G. Common bottlenose dolphin protection and sustainable boating: Species distribution modeling for effective coastal planning. Front. Mar. Sci. 2020, 7, 542648. [Google Scholar] [CrossRef]
- Whitfield, A.K. Ichthyofaunal assemblages in estuaries: A South African case study. Rev. Fish Biol. Fish. 1999, 91, 51–86. [Google Scholar] [CrossRef]
- Říha, M.; Rabaneda-Bueno, R.; Jarić, I.; Souza, A.T.; Vejřík, L.; Draštík, V.; Blabolil, P.; Holubová, M.; Juza, T.; Gjelland, K.O.; et al. Seasonal habitat use of three predatory fishes in a freshwater ecosystem. Hydrobiologia 2022, 849, 3351–3371. [Google Scholar] [CrossRef]
- Li, M.; Ji, Y.; Xu, b.; Xue, Y.; Ren, Y. Spatio-temporal distribution of small-sized fish species in Clupeidae and Engraulidae and its relationships with environmental factors in Huanghe River Estuary and its adjacent waters. Acta Oceanol. Sin. 2016, 38, 52–61. [Google Scholar] [CrossRef]
- Han, F.; Wu, R.; Miao, B.; Niu, S.; Wang, Q.; Liang, Z. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals 2024, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Soyano, K.; Mushirobira, Y. The mechanism of low-temperature tolerance in fish. Adv. Exp. Med. Biol. 2018, 1081, 149–164. [Google Scholar] [CrossRef]
- Wang, H.; Yu, J. Effect of water temperature on fish. Heilongjiang Fish. 2011, 42, 30–31. [Google Scholar]
- Guo, C.; Konar, B.H.; Gorman, K.B.; Walker, C.M. Environmental factors important to high-latitude nearshore estuarine fish community structure. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 201, 105109. [Google Scholar] [CrossRef]
Dominant Species | Order | Frequency of Occurrence (%) | Y |
---|---|---|---|
Engraulis japonicus | Clupeiformes | 100 | 0.372 |
Ammodytes personatus | Perciformes | 100 | 0.200 |
Pholis fangi | Perciformes | 100 | 0.078 |
Setipinna tenuifilis | Clupeiformes | 100 | 0.066 |
Amblychaeturicht hexanema | Perciformes | 100 | 0.030 |
Scophthalmus maximus | Pleuronectiformes | 95 | 0.029 |
Johnius grypotus | Perciformes | 100 | 0.027 |
Liparis tanakae | Scorpaeniformes | 100 | 0.025 |
Konosirus punctatus | Clupeiformes | 90 | 0.021 |
Dominant Species | Order | Frequency of Occurrence (%) | Y |
---|---|---|---|
Engraulis japonicus | Clupeiformes | 100 | 0.382 |
Hexagrammos | Scorpaeniformes | 67.9 | 0.116 |
Benthosema pterotum | Myctophiformes | 89.3 | 0.030 |
Eupleurogrammus muticus | Perciformes | 71.4 | 0.026 |
Liparis tanakae | Scorpaeniformes | 64.3 | 0.024 |
Konosirus punctatus | Clupeiformes | 67.9 | 0.021 |
Thryssa kammalensis | Clupeiformes | 71.4 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, L.; Wang, A.; Zhao, L. New Insights into Fish Diversity in the Yellow and Bohai Seas Based on Environmental DNA Technology. Fishes 2024, 9, 435. https://doi.org/10.3390/fishes9110435
Wang X, Wang L, Wang A, Zhao L. New Insights into Fish Diversity in the Yellow and Bohai Seas Based on Environmental DNA Technology. Fishes. 2024; 9(11):435. https://doi.org/10.3390/fishes9110435
Chicago/Turabian StyleWang, Xiaolin, Li Wang, Aiyong Wang, and Linlin Zhao. 2024. "New Insights into Fish Diversity in the Yellow and Bohai Seas Based on Environmental DNA Technology" Fishes 9, no. 11: 435. https://doi.org/10.3390/fishes9110435
APA StyleWang, X., Wang, L., Wang, A., & Zhao, L. (2024). New Insights into Fish Diversity in the Yellow and Bohai Seas Based on Environmental DNA Technology. Fishes, 9(11), 435. https://doi.org/10.3390/fishes9110435