Assessment of Ecosystem Characteristics and Fishery Carbon Sink Potential of Qianxiahu Reservoir Based on Trophic Level and Carbon Content Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ecopath Modeling Method
2.3. Classifying Functional Groups
2.4. Input Parameters
2.5. Data Processing and Model Balancing
2.6. Calculating Fishery Carbon Sink Potential Based on Trophic Level and Carbon Content Methods
2.6.1. Trophic Level Method
2.6.2. Carbon Content Method
3. Results
3.1. Food Web Structure and Trophic Analysis
3.1.1. Trophic Structure
3.1.2. Transfer Efficiencies
3.1.3. Mixed Trophic Impacts
3.1.4. Niche Overlap
3.2. Ecosystem Properties and Indicators
3.3. Calculating Fishery Carbon Sink Potential
4. Discussion
4.1. Analysis of Energy Fluxes and Trophic Structure
4.2. Comparative Analysis of Fishery Carbon Sink Potential
4.3. Management Implications and Future Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution Of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gephart, J.A.; Henriksson, P.J.G.; Parker, R.W.R.; Shepon, A.; Gorospe, K.D.; Bergman, K.; Eshel, G.; Golden, C.D.; Halpern, B.S.; Hornborg, S.; et al. Environmental Performance of Blue Foods. Nature 2021, 597, 360–365. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Ann. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Saba, G.K.; Burd, A.B.; Dunne, J.P.; Hernández-León, S.; Martin, A.H.; Rose, K.A.; Salisbury, J.; Trueman, C.N.; Wilson, R.W.; Wilson, S.E. Toward a Better Understanding of Fish-Based Contribution to Ocean Carbon Flux. Limnol. Oceanogr. 2021, 66, 1639–1664. [Google Scholar] [CrossRef]
- Anderson, T.R.; Martin, A.P.; Lampitt, R.S.; Trueman, C.N.; Henson, S.A.; Mayor, D.J.; Link, J. Quantifying Carbon Fluxes from Primary Production to Mesopelagic Fish Using a Simple Food Web Model. ICES J. Mar. Sci. 2019, 76, 690–701. [Google Scholar] [CrossRef]
- Jia, L.; Wang, M.; Yang, S.; Zhang, F.; Wang, Y.; Li, P.; Ma, W.; Sui, S.; Liu, T.; Wang, M. Analysis of Agricultural Carbon Emissions and Carbon Sinks in the Yellow River Basin Based on LMDI and Tapio Decoupling Models. Sustainability 2024, 16, 468. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L. Spatial Pattern of China’s Agricultural Carbon Emission Performance. Ecol. Indic. 2021, 133, 108345. [Google Scholar] [CrossRef]
- Lee, H.Z.L.; Davies, I.M.; Baxter, J.M.; Diele, K.; Sanderson, W.G. A Blue Carbon Model for the European Flat Oyster (Ostrea Edulis) and its Application in Environmental Restoration. Mar. Freshw. Ecosyst. 2024, 34, e4030. [Google Scholar] [CrossRef]
- Bianchi, D.; Carozza, D.A.; Galbraith, E.D.; Guiet, J.; DeVries, T. Estimating Global Biomass and Biogeochemical Cycling of Marine Fish with and without Fishing. Sci Adv. 2021, 7, eabd7554. [Google Scholar] [CrossRef]
- Cavan, E.L.; Hill, S.L. Commercial Fishery Disturbance of the Global Ocean Biological Carbon Sink. Glob. Chang. Biol. 2022, 28, 1212–1221. [Google Scholar] [CrossRef]
- Le, C.; Feng, J.; Sun, L.; Yuan, W.; Wu, G.; Zhang, S.; Yang, Z. Co-benefits of Carbon Sink and Low Carbon Food Supply via Shellfish and Algae Farming in China from 2003 to 2020. J. Clean. Prod. 2023, 414, 137436. [Google Scholar] [CrossRef]
- Feng, J.; Sun, L.; Yan, J. Carbon Sequestration via Shellfish Farming: A Potential Negative Emissions Technology. Renew. Sustain. Energy Rev. 2023, 171, 113018. [Google Scholar] [CrossRef]
- Nowicki, M.; DeVries, T.; Siegel, D.A. Quantifying the Carbon Export and Sequestration Pathways of the Ocean’S Biological Carbon Pump. Glob. Biogeochem. Cycles 2022, 36, e2021GB007083. [Google Scholar] [CrossRef]
- Chen, Z.X.; Mou, Z.B. Carbon Sink Function of Filter-Feeding Fish in Freshwater Fisheries. Chin. J. Fish. 2011, 24, 65–68. (In Chinese) [Google Scholar]
- Yue, D.D.; Wang, L.M.; Fang, H. Development Strategy of Marine Fisheries in China Based on the Carbon Balance. J. Agric. Sci. Technol. 2016, 18, 1–8. (In Chinese) [Google Scholar]
- Sethi, S.A.; Branch, T.A.; Watson, R. Global Fishery Development Patterns are Driven by Profit but Not Trophic Level. Proc. Natl. Acad. Sci. USA 2010, 107, 1216–12167. [Google Scholar] [CrossRef]
- Jonathan, E.F.; Maria, G.; Andrew, J.P. Optimizing Fisheries for Blue Carbon Management: Why Size Matters. Limnol. Oceanogr. 2022, 67, S171–S179. [Google Scholar]
- Christensen, V. Ecosystem Maturity-Towards Quantification. Ecol. Model. 1995, 77, 3–32. [Google Scholar] [CrossRef]
- Christensen, V.; Pauly, D. Ecopath II—A Software for Balancing Steady-State Ecosystem Models and Calculating Network Characteristics. Ecol. Model. 1992, 61, 169–185. [Google Scholar] [CrossRef]
- Heymans, J.J.; Coll, M.; Link, J.S.; Mackinson, S.; Steenbeek, J.; Walters, C.; Christensen, V. Best Practice in Ecopath with Ecosim Food-Web Models for Ecosystem-Based Management. Ecol. Model. 2016, 331, 173–184. [Google Scholar] [CrossRef]
- Deng, Y.; Zheng, Y.C.; Chang, J.B. Evaluaion of the Elleet of Stocking Silver Carp and Bighead Carp on the Ecosystem of Qiandao Lake Using Ecopath Model. Acta. Ecol. Sin. 2022, 42, 6853–6862. [Google Scholar]
- Shi, Z.Y.; Zhang, J.T.; Huo, S.L. Research on the Application of Ewe Model in Aquatic Ecosystems and a Case Study of Changtan Reservoir. J. Environ. Engn. Technol. 2023, 13, 567–577. [Google Scholar]
- Pauly, D. On the Interrelationships between Natural Mortality, Growth Parameters, and Mean Environmental Temperature in 175 Fish Stocks. ICES J. Mari. Sci. 1980, 39, 175–192. [Google Scholar] [CrossRef]
- Palomares, M.L.D.; Pauly, D. Predicting Food Consumption of Fish Populations as Functions of Mortality, Food Type, Morphometrics, Temperature and Salinity. Mar. Freshw. Res. 1998, 49, 447–453. [Google Scholar] [CrossRef]
- Lorenzen, K.; Cowx, I.G.; Entsua-Mensah, R.; Lester, N.; Koehn, J.; Randall, R.; So, N.; Bonar, S.; Bunnell, D.; Venturelli, P.; et al. Stock Assessment in Inland Fisheries: A Foundation for Sustainable Use and Conservation. Rev. Fish Biol. Fish. 2016, 26, 405–440. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.R.; Wang, L.; Wu, Z.; Yu, Z.; Liu, M.; Han, Y.; Xie, P. Analysis on the Ecosystem Structure and Function of Lake Qiandao Based on Ecopath Model. Acta. Hydrobiol. Sin. 2021, 45, 308–317. (In Chinese) [Google Scholar]
- Zhang, Y. The Study of Fishery Resources and Ecopath Model in Jinshahe Reservoir Ecosystem, Hubei Province; Wuhan: Huazhong Agricultural University: Wuhan, China, 2015. (In Chinese) [Google Scholar]
- Wu, B.; Wang, H.H.; Xi, H.B. The Carbon Sink Capacity of the Chinese Freshwater Aquaculture. J. Biosafety. 2016, 25, 308–312. (In Chinese) [Google Scholar]
- Panikkar, P.; Khan, M.F.; Desai, V.R.; Shrivastava, N.; Sharma, A. Characterizing Trophic Interactions of a Catfish Dominated Tropical Reservoir Ecosystem to Assess the Effects of Management Practices. Environ. Biol. Fishes 2014, 98, 237–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, K.; Wang, X.; Zhang, J.; Duan, J.; Hu, Z.; Liu, Q. Food Web Structure and Ecosystem Functions of the Water Source in the Middle Route of China’s South-to-North Water Diversion Project. Fishes 2024, 9, 202. [Google Scholar] [CrossRef]
- Konar, M.; Qiu, S.; Tougher, B.; Vause, J.; Tlusty, M.; Fitzsimmons, K.; Barrows, R.; Cao, L. Illustrating the Hidden Economic, Social and Ecological Values of Global Forage Fish Resources. Resour. Conserv. Recycl. 2019, 151, 104456. [Google Scholar] [CrossRef]
- Ahmed, N.; Bunting, S.W.; Glaser, M.; Flaherty, M.S.; Diana, J.S. Can Greening of Aquaculture Sequester Blue Carbon? Ambio 2017, 46, 468–477. [Google Scholar] [CrossRef]
- Hilborn, R.; Agostini, V.N.; Chaloupka, M.; Garcia, S.M.; Gerber, L.R.; Gilman, E.; Hanich, Q.; Himes-Cornell, A.; Hobday, A.J.; Itano, D. Area-based Management of Blue Water Fisheries: Current Knowledge and Research Needs. Fish Fish. 2021, 23, 492–518. [Google Scholar] [CrossRef]
- Jihong, Z.; Yi, L.; Wenguang, W.; Xinmeng, W.; Yi, Z. Overview of the Marine Fishery Carbon Sink Project Methodology. Prog. Fish. Sci. 2022, 43, 151–159. [Google Scholar]
- Gao, F.; Tian, Z.; Wang, Y.; Yang, Z.; Ding, G. Study on Carbon stock and Sequestration Potential of Typical Grasslands in Northern China: A Case Study of Wuchuan County. Sustainability 2024, 16, 4053. [Google Scholar] [CrossRef]
- Czamanski, M.; Nugraha, P.; Lasbleiz, A.; Caroff, R.; Tréguer, P. Carbon, Nitrogen and Phosphorus Elemental Stoichiometry in Aquacultured and Wild-Caught Fish and Consequences for Pelagic Nutrient Dynamics. Mar. Biol. 2011, 158, 2847–2862. [Google Scholar] [CrossRef]
- Mariani, G.; Cheung, W.W.L.; Lyet, A.; Sala, E.; Mayorga, J.; Velez, L.; Gaines, S.D.; Dejean, T.; Troussellier, M.; Mouillot, D. Let More Big Fish Sink: Fisheries Prevent Blue Carbon Sequestration—Half in Unprofitable Areas. Sci. Adv. 2020, 6, eabb4848. [Google Scholar] [CrossRef]
- Hilborn, R. Future Directions in Ecosystem based Fisheries Management: A Personal Perspective. Fish. Res. 2011, 108, 235–239. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Xu, C.; Shi, L.; Zhou, L.; Jeppesen, E.; Chen, J.; Xie, P. Can the “10-year Fishing Ban” Rescue Biodiversity of the Yangtze River? Innovation 2022, 3, 100235. [Google Scholar] [CrossRef]
- Yang, T.; Li, D.; Xu, Q.; Zhu, Y.; Zhu, Z.; Leng, X.; Zhao, D.; An, S. Effects of A Fishing Ban on the Ecosystem Stability and Water Quality of A Plateau Lake: A Case Study of Caohai Lake, China. Water 2024, 16, 782. [Google Scholar] [CrossRef]
- Cao, W. Ten-year Fishing Ban is An Important Step for the Protection of the Yangtze River. J. Aquat. Biol. 2022, 46, 1. [Google Scholar]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.G.; Green, B.S.; Hartmann, K.; Tyedmers, P.H.; Watson, R.A. Fuel Use and Greenhouse Gas Emissions of World Fisheries. Nat. Clim. Chang. 2018, 8, 333–337. [Google Scholar] [CrossRef]
- Pikitch, E.K.; Santora, C.; Babcock, E.A.; Bakun, A.; Bonfil, R.; Conover, D.O.; Dayton, P.; Doukakis, P.; Fluharty, D.; Heneman, B.; et al. Ecosystem-based Fishery Management. Science 2004, 305, 346–347. [Google Scholar] [CrossRef] [PubMed]
Number | Functional Group | Trophic Level | B (t/km2) | P/B (a−1) | Q/B (a−1) | EE | P/Q (a−1) |
---|---|---|---|---|---|---|---|
1 | Sliver carp | 2.190 | 8.345 | 1.534 | 8.65 | 0.009 | 0.177 |
2 | Bighead carp | 2.560 | 6.879 | 1.325 | 7.239 | 0.008 | 0.183 |
3 | Crucian carp | 2.413 | 3.876 | 1.231 | 8.967 | 0.012 | 0.137 |
4 | Common carp | 2.361 | 0.25 | 1.212 | 6.789 | 0.089 | 0.179 |
5 | Herbivorous fish | 2.169 | 0.65 | 1.789 | 12.13 | 0.036 | 0.147 |
6 | Snail carp | 2.651 | 0.523 | 1.845 | 8.154 | 0.028 | 0.226 |
7 | Culter | 3.281 | 0.187 | 1.546 | 7.895 | 0 | 0.196 |
8 | Sharpbelly | 2.342 | 0.26 | 2.15 | 10.145 | 0.396 | 0.212 |
9 | Xenocypris | 2.160 | 0.15 | 2.45 | 13.478 | 0.222 | 0.182 |
10 | Siniperca | 2.813 | 0.28 | 1.56 | 9.678 | 0.709 | 0.161 |
11 | Yellow catfish | 2.312 | 0.08 | 1.89 | 9.452 | 0.600 | 0.200 |
12 | Sweetfish | 2.360 | 0.136 | 1.859 | 9.98 | 0.569 | 0.186 |
13 | Other fishes | 2.483 | 5.879 | 1.22 | 8.678 | 0.154 | 0.141 |
14 | Crab | 2.300 | 0.652 | 3.092 | 38.95 | 0.787 | 0.079 |
15 | Shimps | 2.247 | 1.63 | 3.092 | 39.95 | 0.508 | 0.077 |
16 | Zoobenthos | 2.240 | 2.897 | 8.88 | 195.85 | 0.607 | 0.045 |
17 | Zooplankton | 2.000 | 30.028 | 18.84 | 120 | 0.394 | 0.157 |
18 | Macrophyte | 1.000 | 15.987 | 15.87 | 0.040 | ||
19 | Phytoplankton | 1.000 | 32.875 | 93.89 | 0.512 | ||
20 | Heterotrophic bacteria | 1.000 | 28.532 | 42.6 | 0.927 | ||
21 | Detritus | 1.000 | 52.672 | 0.246 |
Attribute Parameter [19] | Unit | State of the Ecosystem |
---|---|---|
Total system throughput (TST) | t/(km2·a) | 13232.99 |
Sum of all production (P) | t/(km2·a) | 5192.688 |
Sum of all consumption (C) | t/(km2·a) | 4493.812 |
Sum of all exports (E) | t/(km2·a) | 2485.766 |
Sum of all respiratory (R) | t/(km2·a) | 2958.194 |
Sum of all flows into detritus (D) | t/(km2·a) | 3295.221 |
Net primary production (NPP) | t/(km2·a) | 4555.832 |
Ratio of total primary production to total respiration (TPP/TR) | / | 1.540072 |
Net system production (NSP) | t/(km2·a) | 1597.638 |
Ratio of total primary production to total biomass (TPP/TB) | 32.51924 | |
Ratio of total biomass to total throughput (TB/TP) | 0.01058691 | |
Connectance index (CI) | 0.27 | |
System omnivory index (SOI) | 0.1963563 | |
Finn’s cycling index (FCI, %) | 11.35 | |
Shannon diversity index (Shannon) | 2.06 |
Dominant Species Composition | Biomass (tons/km2) | Trophic Level | Carbon Sink Calculated by Trophic Level Method (tons/km2) | Carbon Content (%) | Carbon Sink Calculated by Carbon Content (tons/km2) |
---|---|---|---|---|---|
Sliver carp | 2.19 | 8.345 | 18.27555 | 16.19 | 1.351056 |
Bighead carp | 2.56 | 6.879 | 17.61024 | 13.4 | 0.921786 |
Crucian carp | 2.413 | 3.876 | 9.352788 | 11.36 | 0.440314 |
Common carp | 2.361 | 0.25 | 0.59025 | 12.14 | 0.03035 |
Herbivorous fish | 2.169 | 0.65 | 1.40985 | 13.15 | 0.085475 |
Snail carp | 2.651 | 0.523 | 1.386473 | 13.26 | 0.06935 |
Culter | 3.281 | 0.187 | 0.613547 | 16.78 | 0.031379 |
Sharpbelly | 2.342 | 0.26 | 0.60892 | 14.56 | 0.037856 |
Xenocypris | 2.16 | 0.15 | 0.324 | 13.21 | 0.019815 |
Siniperca | 2.813 | 0.28 | 0.78764 | 12.34 | 0.034552 |
Yellow catfish | 2.312 | 0.08 | 0.18496 | 14.51 | 0.011608 |
Sweetfish | 2.36 | 0.136 | 0.32096 | 13.67 | 0.018591 |
Other fishes | 2.483 | 5.879 | 14.59756 | 14.12 | 0.830115 |
Crab | 2.3 | 0.652 | 1.4996 | 12.34 | 0.080457 |
Shimps | 2.247 | 1.63 | 3.66261 | 14.26 | 0.232438 |
Zoobenthos | 2.24 | 2.897 | 6.48928 | 39.78 | 1.152427 |
Zooplankton | 2 | 30.028 | 60.056 | 42.23 | 12.68082 |
Macrophyte | 1 | 15.987 | 15.987 | 5.968947 | 41.22 |
Phytoplankton | 1 | 32.875 | 32.875 | 12.27429 | 36.45 |
Heterotrophic bacteria | 1 | 28.532 | 28.532 | 10.65278 | 39.56 |
Detritus | 1 | 52.672 | 52.672 | 19.66575 | 35.68 |
Total | 44.882 | 267.8362 | 66.6818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Shu, M.; Lian, Q.; Guo, A.; Zhou, D.; Zou, S.; Yuan, J.; Chen, G. Assessment of Ecosystem Characteristics and Fishery Carbon Sink Potential of Qianxiahu Reservoir Based on Trophic Level and Carbon Content Methods. Fishes 2024, 9, 438. https://doi.org/10.3390/fishes9110438
Liu M, Shu M, Lian Q, Guo A, Zhou D, Zou S, Yuan J, Chen G. Assessment of Ecosystem Characteristics and Fishery Carbon Sink Potential of Qianxiahu Reservoir Based on Trophic Level and Carbon Content Methods. Fishes. 2024; 9(11):438. https://doi.org/10.3390/fishes9110438
Chicago/Turabian StyleLiu, Mei, Mengxia Shu, Qingping Lian, Aihuan Guo, Dan Zhou, Songbao Zou, Julin Yuan, and Guangmei Chen. 2024. "Assessment of Ecosystem Characteristics and Fishery Carbon Sink Potential of Qianxiahu Reservoir Based on Trophic Level and Carbon Content Methods" Fishes 9, no. 11: 438. https://doi.org/10.3390/fishes9110438
APA StyleLiu, M., Shu, M., Lian, Q., Guo, A., Zhou, D., Zou, S., Yuan, J., & Chen, G. (2024). Assessment of Ecosystem Characteristics and Fishery Carbon Sink Potential of Qianxiahu Reservoir Based on Trophic Level and Carbon Content Methods. Fishes, 9(11), 438. https://doi.org/10.3390/fishes9110438