Depletion Estimation, Stock–Recruitment Relationships, and Interpretation of Biomass Reference Points
Abstract
:1. Introduction
2. Depletion Estimation
2.1. Index of Relative Abundance
2.2. Composition Data
2.3. Integrated Analysis
2.4. Temporal Variation in Recruitment’s Influence on the Depletion Estimator
3. Depletion-Based Reference Points
3.1. Double Jeopardy of the Stock–Recruitment Relationship
3.2. Temporal Variation in Recruitment’s Influence on Reference Points
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Quantity | Value |
---|---|
Number of years | 10 |
0.6 | |
0.2 | |
Q | 1 |
R0 | 100 |
M | 0.2 |
H | 0.75 |
References
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty; Chapman and Hall: New York, NY, USA, 1992; 570p. [Google Scholar]
- Caddy, J.F.; Mahon, R. Reference points for fisheries management. FAO Fish. Tech. Pap. 1995, 347, 1–83. [Google Scholar]
- Magnusson, A.; Hilborn, R. What makes fisheries data informative? Fish Fish. 2007, 8, 337–358. [Google Scholar] [CrossRef]
- Maunder, M.N.; Piner, K.R. Contemporary fisheries stock assessment: Many issues still remain. ICES J. Mar. Sci. 2015, 72, 7–18. [Google Scholar] [CrossRef]
- Berger, A.M. Character of temporal variability in stock productivity influences the utility of dynamic reference points. Fish. Res. 2019, 217, 185–197. [Google Scholar] [CrossRef]
- Plagányi, E.E.; Haywood, M.D.E.; Gorton, R.J.; Siple, M.C.; Deng, R.A. Management implications of modelling fisheries recruitment. Fish. Res. 2019, 217, 35–45. [Google Scholar] [CrossRef]
- Hoyle, S.D.; Campbell, R.A.; Ducharme-Barth, N.D.; Grüss, A.; Moore, B.R.; Thorson, J.T.; Tremblay-Boyer, L.; Winker, H.; Zhou, S.; Maunder, M.N. Catch per unit effort modelling for stock assessment: A summary of good practices. Fish. Res. 2023, 269, 106860. [Google Scholar] [CrossRef]
- Maunder, M.N.; Deriso, R.B. Proposal for biomass and fishing mortality limit reference points based on reduction in recruitment. IATTC Stock. Assess. Rep. 2014, 15, 193–206. [Google Scholar]
- Maunder, M.N.; Punt, A.E. A review of integrated analysis in fisheries stock assessment. Fish. Res. 2013, 142, 61–74. [Google Scholar] [CrossRef]
- Dick, E.J.; MacCall, A.D. Depletion-based stock reduction Analysis: A catch-based method for determining sustainable yields for data-poor fish stocks. Fish. Res. 2011, 110, 331–341. [Google Scholar] [CrossRef]
- Polacheck, T.; Hilborn, R.; Punt, A.E. Fitting surplus production models: Comparing methods and measuring uncertainty. Can. J. Fish. Aquat. Sci. 1993, 50, 2597–2607. [Google Scholar] [CrossRef]
- Deriso, R.B. Relationship of fishing mortality to natural mortality and growth at the level of maximum sustainable yield. Can. J. Fish. Aquat. Sci. 1982, 39, 1054–1058. [Google Scholar] [CrossRef]
- Schaefer, M.B. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bull. Inter-Am. Trop. Tuna Comm. 1954, 1, 25–56. [Google Scholar]
- Fox, W.W. An exponential surplus-yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc. 1970, 99, 80–88. [Google Scholar] [CrossRef]
- IATTC 2019. Modelling Recruitment in the EPO Bigeye Tuna Stock Assessment. IATTC Document WSBET-02-01. 13p. Available online: https://www.iattc.org/Meetings/Meetings2019/BET-02/Docs/_English/BET-02-01_Modeling%20recruitment%20in%20the%20eastern%20Pacific%20Ocean%20bigeye%20tuna%20stock%20assessment.pdf (accessed on 5 March 2024).
- Pella, J.J.; Tomlinson, P.K. A generalized stock production model. Bull. Inter-Am. Trop. Tuna Comm. 1969, 13, 421–458. [Google Scholar]
- Karnowski, M.; Gertseva, V.; Stephens, A. Historical Reconstruction of Oregon’s Commercial Fisheries Landings; Fisheries Division Information Report No 2014-02; Oregon Department of Fish and Wildlife: Gold Beach, OR, USA, 2014. [Google Scholar]
- Ralston, S.; Pearson, D.E.; Field, J.C.; Santora, J.A.; Key, M. Documentation of the California catch reconstruction project. NOAA Tech. Memo. NMFS, NOAA-TM-NMFS-SWFSC-461. 2010. Available online: https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-461.pdf (accessed on 5 March 2024).
- Maunder, M.N. Problems with using an environmental based recruitment index: Examples from a New Zealand snapper (Pagrus auratus) assessment. In Fishery Stock Assessment Models; Funk, F., Quinn, T.J., II, Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.J., Sullivan, P.J., Zhang, C.I., Eds.; Alaska Sea Grant College Program Report No. AK-SG-98-01; University of Alaska: Fairbanks, AK, USA, 1998; pp. 679–692. [Google Scholar]
- Kokkalis, A.; Berg, C.W.; Ichinokawa, M.; Kapur, M.S.; Miyagawa, M.; Winker, H.; Medeiros-Leal, W.; Jacobsen, N.S.; Nielsen, J.R.; Mildenberger, T.K. Good practices for surplus production models. Fish. Res. 2024, 275, 107010. [Google Scholar] [CrossRef]
- Restrepo, V.R.; Legault, C.M. A stochastic implementation of an age-structured production model. In Fishery Stock Assessment Models; Funk, F., Quinn, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.F., Sullivan, P.J., Zhang, C.-I., Eds.; Alaska Sea Grant College Program Rep. AK-SG-98-01; University of Alaska: Fairbanks, AK, USA, 1998; pp. 435–450. [Google Scholar]
- Lee, H.H.; Maunder, M.N.; Piner, K.R. Good Practices for estimating and using length-at-age in integrated stock assessments. Fish. Res. 2024, 270, 106883. [Google Scholar] [CrossRef]
- Brooks, E.N. Pragmatic approaches to modeling recruitment in fisheries stock assessment: A perspective. Fish. Res. 2024, 270, 106896. [Google Scholar] [CrossRef]
- Mace, P.M.; Doonan, I.J. A Generalized Bio-Economic Simulation Model for Fish Population Dynamics; New Zealand Fisheries Assessment Research Document, 88/4; NZ Ministry of Agriculture and Fisheries: Wellington, New Zealand, 1988.
- Francis, R.I.C. Use of risk analysis to assess fishery management strategies: A case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise New Zealand. Can. J. Fish. Aquat. Sci. 1992, 49, 922–930. [Google Scholar] [CrossRef]
- Lee, H.-H.; Maunder, M.N.; Piner, K.R.; Methot, R.D. Estimating natural mortality within a fisheries stock assessment model. An evaluation using simulation analysis based on twelve stock assessments. Fish. Res. 2011, 109, 89–94. [Google Scholar] [CrossRef]
- Methot, R.D.; Wetzel, C.R. Stock Synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 2013, 142, 86–99. [Google Scholar] [CrossRef]
- Pope, J.G. An investigation of the accuracy of virtual population analysis using Cohort analysis. Bull. Int. Comm. Northwest Atl. Fish. Res. 1972, 9, 65–74. [Google Scholar]
- Gulland, J.A. Estimation of mortality rates. Annex to Arctic Fisheries Working Group. In Proceedings of the International Council for the Exploitation of the Sea, C.M, Hamburg, Germany, 18–23 January 1965. Document 3 (Mimeo), Copenhagen. [Google Scholar]
- Gavaris, S. An adaptive framework for the estimation of population size. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 1988, 88, 12. [Google Scholar]
- Shepherd, J.G. Extended survivors analysis: An improved method for the analysis of catch-at-age data and abundance indices. ICES J. Mar. Sci. 1999, 56, 584–591. [Google Scholar] [CrossRef]
- Laurec, A.; Shepherd, J.G. On the analysis of catch and effort data. J. Du Cons. Pour L’exploration De La Mer 1983, 41, 81–84. [Google Scholar] [CrossRef]
- Fournier, D.; Archibald, C.P. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 1982, 39, 1195–1207. [Google Scholar] [CrossRef]
- Sippel, T.; Lee, H.H.; Piner, K.; Teo, S.L.H. Searching for M: Is there more information about natural mortality in stock assessments than we realize? Fish. Res. 2017, 192, 135–140. [Google Scholar] [CrossRef]
- He, X.; Field, J.C. Effects of recruitment variability and fishing history on estimation of stock-recruitment relationships: Two case studies from U.S. West Coast fisheries. Fish. Res. 2019, 217, 21–34. [Google Scholar] [CrossRef]
- Sellinger, E.L.; Szuwalski, C.; Punt, A.E. The robustness of our assumptions about recruitment: A re-examination of marine recruitment dynamics with additional data and novel methods. Fish. Res. 2023, 269, 106862. [Google Scholar] [CrossRef]
- Winker, H.; Carvalho, F.; Kapur, M. JABBA: Just Another Bayesian Biomass Assessment. Fish. Res. 2018, 204, 275–288. [Google Scholar] [CrossRef]
- Minte-Vera, C.V.; Maunder, M.N.; Aires-da-Silva, A.M. Auxiliary diagnostic analyses used to detect model misspecification and highlight potential solutions in stock assessments: Application to yellowfin tuna in the eastern Pacific Ocean. ICES J. Mar. Sci. 2021, 78, 3521–3537. [Google Scholar] [CrossRef]
- Zhu, J.; Maunder, M.N.; Aires-da-Silva, A.M.; Chen, Y. Estimation of growth within Stock Synthesis models: Management implications when using length-composition data. Fish. Res. 2016, 180, 87–91. [Google Scholar] [CrossRef]
- Clark, W.G. Groundfish exploitation rates based on life history parameters. Can. J. Fish. Aquat. Sci. 1991, 48, 734–750. [Google Scholar] [CrossRef]
- MacCall, A.D.; Klingbeil, R.A.; Methot, R.D. Recent increased abundance and potential productivity of Pacific mackerel (Scomber japonicus). Calif. Coop. Ocean. Fish. Investig. Rep. 1985, 26, 119–129. [Google Scholar]
- Brooks, E.N.; Thorson, J.T.; Shertzer, K.W.; Nash, R.D.M.; Brodziak, J.K.T.; Johnson, K.F.; Klibansky, N.; Wells, B.K.; White, K. Paulik revisited: Statistical framework and estimation performance of multistage recruitment functions. Fish. Res. 2019, 217, 58–70. [Google Scholar] [CrossRef]
- Punt, A.E.; Cope, J.M. Extending integrated stock assessment models to use non-depensatory three-parameter stock-recruitment relationships. Fish. Res. 2019, 217, 46–57. [Google Scholar] [CrossRef]
- Thorson, J.T.; Dorn, M.W.; Hamel, O.S. Steepness for West Coast rockfishes: Results from a twelve-year experiment in iterative regional meta-analysis. Fish. Res. 2019, 217, 11–20. [Google Scholar] [CrossRef]
- Maunder, M.N. Stock-recruitment models from the viewpoint of density-dependent survival and the onset of strong density-dependence when a carrying capacity limit is reached. Fish. Res. 2022, 249, 106249. [Google Scholar] [CrossRef]
- Deriso, R.B. Optimal F0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 1987, 44 (Suppl. S2), 339–348. [Google Scholar] [CrossRef]
- Katsukawa, T. Evaluation of current and alternative fisheries management scenarios based on spawning-per-recruit (SPR), revenue-per-recruit (RPR), and yield-per-recruit (YPR) diagrams. ICES J. Mar. Sci. 2005, 62, 841–846. [Google Scholar] [CrossRef]
- Myers, R.A.; Bowen, K.G.; Barrowman, N.J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 1999, 56, 2404–2419. [Google Scholar] [CrossRef]
- Gilbert, D.J. Towards a new recruitment paradigm for fish stocks. Can. J. Fish. Aquat. Sci. 1997, 54, 969–977. [Google Scholar] [CrossRef]
- Vert-pre, K.A.; Amoroso, R.O.; Jensen, O.P.; Hilborn, R. Frequency and intensity of productivity regime shifts in marine fish stocks. Proc. Natl. Acad. Sci. USA 2013, 110, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Szuwalski, C.S.; Vert-Pre, K.A.; Punt, A.E.; Branch, T.A.; Hilborn, R. Examining common assumptions about recruitment: A meta-analysis of recruitment dynamics for worldwide marine fisheries. Fish Fish. 2014, 1, 633–648. [Google Scholar] [CrossRef]
- Conn, P.B.; Williams, E.H.; Shertzer, K.W. When can we reliably estimate the productivity of fish stocks? Can. J. Fish. Aquat. Sci. 2010, 67, 511–523. [Google Scholar] [CrossRef]
- Bravington, M.V.; Skaug, H.J.; Anderson, E.C. Close-Kin Mark-Recapture. Stat. Sci. 2016, 31, 259–274. [Google Scholar] [CrossRef]
- Hamel, O.S.; Cope, J.M. Development and considerations for application of a longevity-based prior for the natural mortality rate. Fish. Res. 2022, 256, 106477. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Hearn, W.S.; Leigh, G.M.; Latour, R.J. Principles for estimating natural mortality rate. Fish. Res. 2024, 281, 107195. [Google Scholar] [CrossRef]
- Punt, A.E.; Thomson, R.; Little, L.R.; Bessell-Browne, P.; Burch, P.; Bravington, M. Including close-kin mark-recapture data in statistical catch-at-age stock assessments and management strategies. Fish. Res. 2024, 276, 107057. [Google Scholar] [CrossRef]
- Cope, J.M.; Whitman, A.D. Status of Vermillion Rockfish (Sebastes miniatus) along the US West-Oregon Coast in 2021; Pacific Fisheries Management Council: Portland, OR, USA, 2021; 131p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maunder, M.N.; Piner, K.R. Depletion Estimation, Stock–Recruitment Relationships, and Interpretation of Biomass Reference Points. Fishes 2024, 9, 447. https://doi.org/10.3390/fishes9110447
Maunder MN, Piner KR. Depletion Estimation, Stock–Recruitment Relationships, and Interpretation of Biomass Reference Points. Fishes. 2024; 9(11):447. https://doi.org/10.3390/fishes9110447
Chicago/Turabian StyleMaunder, Mark N., and Kevin R. Piner. 2024. "Depletion Estimation, Stock–Recruitment Relationships, and Interpretation of Biomass Reference Points" Fishes 9, no. 11: 447. https://doi.org/10.3390/fishes9110447
APA StyleMaunder, M. N., & Piner, K. R. (2024). Depletion Estimation, Stock–Recruitment Relationships, and Interpretation of Biomass Reference Points. Fishes, 9(11), 447. https://doi.org/10.3390/fishes9110447