The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review
Abstract
:1. Introduction
2. The Impact of Biological Flocs on Water Quality
2.1. Nitrogen Removal Mechanism
2.2. The Effects of Different Conditions on the Total Suspended Solids (TSS) and Biofloc Volume (BFV) in the Biofloc Culture System of A. japonicus
3. Effects of BFT on A. japonicus and Common Species
3.1. Growth Performance
3.2. Antioxidant Reaction
3.3. Immunoreaction
3.4. Disease Resistance
4. Application Prospect of Bioflocs in the Culture of A. japonicus
4.1. Study on the Tolerance of A. japonicus to the BFV and TSS and Water Quality Management
4.2. Study on the Optimal Culture Density of A. japonicus in Biological Floc Systems
4.3. Optimization of Feeding Habits and the Floc Sedimentation of A. japonicus
4.4. Protein Requirements of A. japonicus and the Optimization of Floc Nutrients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Elayaraja, S.; Mabrok, M.; Algammal, A.; Sabitha, E.; Rajeswari, M.V.; Zágoršek, K.; Ye, Z.; Zhu, S.; Rodkhum, C. Potential influence of jaggery-based biofloc technology at different C: N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 107, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.A.; Rana, M.M. Biofloc technology: An eco-friendly “green approach” to boost up aquaculture production. Aquac. Int. 2022, 30, 51–72. [Google Scholar] [CrossRef]
- Minaz, M.; Kubilay, A. Operating parameters affecting biofloc technology: Carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquac. Int. 2021, 29, 1121–1140. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Zahedi, S.; Sharifinia, M.; Hajirezaee, S.; Singh, S.K. Biological removal of nitrogenous waste compounds in the biofloc aquaculture system: A review. Ann. Anim. Sci. 2023. [Google Scholar] [CrossRef]
- Nisar, U.; Peng, D.; Mu, Y.; Sun, Y. A solution for sustainable utilization of aquaculture waste: A comprehensive review of biofloc technology and aquamimicry. Front. Nutr. 2022, 8, 791738. [Google Scholar] [CrossRef]
- Ma, M.; Gui, Q.; Zheng, W.; Zhang, Y.; Wang, K. Nitrogen Removal Mechanism and Microbial Community Changes of the MBR Bioaugmented with Two Novel Fungi Pichia kudriavzevii N7 and Candida tropicalis N9. Water 2024, 16, 757. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Wei, H.; Zhu, X.; Han, D.; Jin, J.; Yang, Y.; Xie, S. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture 2019, 506, 256–269. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mohammadi, A.; Emerenciano, M.G.C. Microorganisms in biofloc aquaculture system. Aquac. Rep. 2022, 26, 101300. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, S.; Behera, B.K.; Swain, H.S.; Das, B.K. Biofloc microbiome with bioremediation and health benefits. Front. Microbiol. 2021, 12, 741164. [Google Scholar] [CrossRef]
- Xia, B.; Ren, Y.; Wang, J.; Sun, Y.; Zhang, Z. Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 2017, 466, 26–32. [Google Scholar] [CrossRef]
- Xia, B.; Sun, Z.; Sun, Y.; Gao, Q.; Dong, S.; Li, L.; Wen, H.; Feng, J. Uptake of farming wastes by sea cucumber Apostichopus japonicus in polyculture systems of abalone Haliotis discus hannai: Evidence from C and N stable isotopes. Aquac. Environ. Interact. 2017, 9, 223–230. [Google Scholar] [CrossRef]
- Wang, D.; Wu, F. China Fishery Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2022. [Google Scholar]
- Plotieau, T.; Baele, J.-M.; Vaucher, R.; Hasler, C.-A.; Koudad, D.; Eeckhaut, I. Analysis of the impact of Holothuria scabra intensive farming on sediment. Cah. Biol. Mar. 2013, 54, 703–711. [Google Scholar] [CrossRef]
- Santos, L.; Ramos, F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sohn, S.; Kim, S.; Hur, Y. Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol. 2020, 97, 194–203. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenström, T.A. Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules 2016, 22, 29. [Google Scholar] [CrossRef]
- Mohsin, S.; Amin, M.N. Superbugs: A constraint to achieving the sustainable development goals. Bull. Natl. Res. Cent. 2023, 47, 63. [Google Scholar] [CrossRef]
- Sengupta, D.; Raghunathan, A. Rise of the Superbugs: What We Need to Know: Overview of Antimicrobial Resistance. Resonance 2021, 26, 1251–1266. [Google Scholar] [CrossRef]
- Verma, A.; Rani, A.B.; Rathore, G.; Saharan, N.; Gora, A.H. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture 2016, 457, 61–67. [Google Scholar] [CrossRef]
- Ragasa, C.; Agyakwah, S.K.; Asmah, R.; Mensah, E.T.-D.; Amewu, S.; Oyih, M. Accelerating pond aquaculture development and resilience beyond COVID: Ensuring food and jobs in Ghana. Aquaculture 2022, 547, 737476. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Sewid, A.H.; Nada, H.S.; Kamel, M.A.; El-Mandrawy, S.A.; Abdelhakim, T.M.; El-Murr, A.E.I.; Nahhas, N.E.; Hozzein, W.N.; Ibrahim, D. Mannanoligosaccharides as a carbon source in Biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus). Animals 2020, 10, 1724. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy Rajkumar, M.R.; Pandey, P.; Radhakrishnapillai Aravind, R.A.; Alagarsamy Vennila, A.V.; Vivekanand Bharti, V.B.; Purushothaman, C. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus Vannamei. Appl. Biochem. Biotechnol. 2016, 196, 3860–3890. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2013; Volume 4503. [Google Scholar]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [PubMed]
- Minabi, K.; Sourinejad, I.; Alizadeh, M.; Ghatrami, E.R.; Khanjani, M.H. Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int. 2020, 28, 1883–1898. [Google Scholar] [CrossRef]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 2012, 356, 351–356. [Google Scholar] [CrossRef]
- Ahmad, I.; Babitha Rani, A.; Verma, A.; Maqsood, M. Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef]
- Zhang, Q.; Dai, Y.; Li, Y.; Zhao, Y.; Zeng, H.; Zhang, J.; Pan, Y. Identification and Phylogenesis of Ammonifying Bacteria from Pond Water of Litopenaeus vannamei. J. Fish. China 2007, 31, 692–698. [Google Scholar]
- Şentürk, E.; Atasoy, G.; Şanlıbaba, P. Ammonia-Oxidizing Bacteria: Biochemical and Molecular Characteristics. In Anammox Technology in Industrial Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 11–33. [Google Scholar]
- Mahala, D.M.; Maheshwari, H.S.; Yadav, R.K.; Prabina, B.J.; Bharti, A.; Reddy, K.K.; Kumawat, C.; Ramesh, A. Microbial transformation of nutrients in soil: An overview. Rhizosphere Microbes Soil Plant Funct. 2020, 23, 175–211. [Google Scholar] [CrossRef]
- Yu, Z.; Oh, Y.; Kim, S.; Han, K.; Srikulnath, K.; Li, Q.; Jang, J.-S.; Lee, H.-S. Multilocus sequence typing and antibiotic resistance of Aeromonas isolated from freshwater fish in Hebei Province. PLoS ONE 2024, 19, e0298745. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Y.; Song, Z.; Pan, Y.; Zhang, Q. Isolation and identification of ammonifying bacterium and characteristics of degrading NH3-N. Acta Hydrobiol. Sin. 2010, 34, 1198–1201. [Google Scholar] [CrossRef]
- Schneider, O.; Sereti, V.; Eding, E.; Verreth, J. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac. Eng. 2005, 32, 379–401. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Kochva, M.; Diab, S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Isr. J. Aquac. Bamidgeh 1994, 46, 119–131. Available online: www.researchgate.net/publication/284802042 (accessed on 1 November 2024).
- Zhao, P. The Study and Application of Bioflocs Technology in Seawater Aquaculture; Hanghai Ocean University: Shanghai, China, 2011. [Google Scholar]
- Sinha, B.; Annachhatre, A.P. Partial nitrification—Operational parameters and microorganisms involved. Rev. Environ. Sci. Bio/Technol. 2007, 6, 285–313. [Google Scholar] [CrossRef]
- McCarty, P.L. Biological denitrification of wastewaters by addition of organic materials. In Proceedings of the 24th Annual Purdue Industrial Waste Conference, West Lafayette, IN, USA, 6–8 May 1969. [Google Scholar]
- Xu, W.J.; Pan, L.Q.; Sun, X.H.; Huang, J. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquac. Res. 2013, 44, 1093–1102. [Google Scholar] [CrossRef]
- Liu, W.; Luo, G.; Tan, H.; Sun, D.; Liu, B.; Zhang, S. Treatment efficiency of wastewater in pilot test of biofloc reactor in. recirculating aquaculture systems. Trans. Chin. Soc. Agric. Eng. 2016, 32, 184–191. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Ma, Q.; Wang, B.; Song, X.; Liu, Y.; Liu, A.; Bai, Y.; Jin, Y.; Ren, L. Effects of Bioflocs on the Water Quality Control and the Growth of Apostichopus japonicus. Prog. Fish. Sci. 2014, 35, 85–90. [Google Scholar] [CrossRef]
- Panigrahi, A.; Esakkiraj, P.; Saranya, C.; Das, R.; Sundaram, M.; Sudheer, N.; Biju, I.; Jayanthi, M. A biofloc-based aquaculture system bio-augmented with probiotic bacteria Bacillus tequilensis AP BFT3 improves culture environment, production performances, and proteomic changes in Penaeus vannamei. Probiotics Antimicrob. Proteins 2022, 14, 277–287. [Google Scholar] [CrossRef]
- Chen, J.; Ren, Y.; Li, Y.; Xia, B. Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems. Fish Shellfish Immunol. 2018, 77, 175–186. [Google Scholar] [CrossRef]
- Padeniya, U.; Davis, D.A.; Wells, D.E.; Bruce, T.J. Microbial interactions, growth, and health of aquatic species in biofloc systems. Water 2022, 14, 4019. [Google Scholar] [CrossRef]
- González-Garcinuño, Á.; Tabernero, A.; Sánchez-Álvarez, J.M.; Galán, M.A.; Martin del Valle, E.M. Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microb. Cell Factories 2017, 16, 91. [Google Scholar] [CrossRef]
- Wang, F.-Q.; Bartosik, D.; Sidhu, C.; Siebers, R.; Lu, D.-C.; Trautwein-Schult, A.; Becher, D.; Huettel, B.; Rick, J.; Kirstein, I.V. Particle-attached bacteria act as gatekeepers in the decomposition of complex phytoplankton polysaccharides. Microbiome 2024, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Sichert, A.; Cordero, O.X. Polysaccharide-bacteria interactions from the lens of evolutionary ecology. Front. Microbiol. 2021, 12, 705082. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ren, Y.; Wang, G.; Xia, B.; Li, Y. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish Shellfish Immunol. 2018, 72, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, X.; Chen, Y.; Zhang, S.; Dai, L.; Zhu, W.; Chen, Y. Optimized utilization of organic carbon in aquaculture biofloc systems: A review. Fishes 2023, 8, 465. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mohammadi, A.; Emerenciano, M.G.C. Water quality in biofloc technology (BFT): An applied review for an evolving aquaculture. Aquac. Int. 2024, 26, 101300. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Qual. 2017, 5, 92–109. [Google Scholar] [CrossRef]
- Deng, M.; Dai, Z.; Senbati, Y.; Li, L.; Song, K.; He, X. Aerobic denitrification microbial community and function in zero-discharge recirculating aquaculture system using a single biofloc-based suspended growth reactor: Influence of the carbon-to-nitrogen ratio. Front. Microbiol. 2020, 11, 1760. [Google Scholar] [CrossRef]
- Raza, B.; Zheng, Z.; Zhu, J.; Yang, W. A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms 2024, 12, 1013. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, M.; Zuo, R.; Sun, P.; Yang, Z.; Qiao, Y.; Ma, Y. Effects of probiotics on growth, digestive enzyme activity, and immune response of juvenile sea cucumber Apostichopus japonicus in a biofloc culture system. J. Dalian Ocean. Univ. 2022, 32, 68–72. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, S.; Liu, D.; Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapias fingerlings, Oreochromis niloticus reared in biofloc systems. Aquac. Res. 2018, 49, 2429–2439. [Google Scholar] [CrossRef]
- Ma, Y.; Li, B.; Zhang, X.; Bai, Y.; Liu, A.; Liu, Y.; Ren, L.; Wang, Y.; Sun, S.; Wang, Y. The Effect of Bio-floc on Digestive and Immune Enzymes Activity in Juvenile Sea Cucumber Apostichopus japonicus. J. Hydroecol. 2013, 34, 91–95. [Google Scholar] [CrossRef]
- Debbarma, R.; Meena, D.K.; Biswas, P.; Meitei, M.M.; Singh, S.K. Portioning of microbial waste into fish nutrition via frugal biofloc production: A sustainable paradigm for greening of environment. J. Clean. Prod. 2022, 334, 130246. [Google Scholar] [CrossRef]
- Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 2014, 422, 1–7. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Alizadeh, M.; Sharifinia, M. Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int. 2021, 29, 307–321. [Google Scholar] [CrossRef]
- Chen, J.; Liu, P.; Li, Y.; Li, M.; Xia, B. Effects of dietary biofloc on growth, digestibility, protein turnover and energy budget of sea cucumber Apostichopus japonicus (Selenka). Anim. Feed Sci. Technol. 2018, 241, 151–162. [Google Scholar] [CrossRef]
- Peiro-Alcantar, C.; Rivas-Vega, M.E.; Martínez-Porchas, M.; Lizárraga-Armenta, J.A.; Miranda-Baeza, A.; Martínez-Córdova, L.R. Effect of adding vegetable substrates on Penaeus vannamei pre-grown in biofloc system on shrimp performance, water quality and biofloc composition. Lat. Am. J. Aquat. Res. 2019, 47, 784–790. [Google Scholar] [CrossRef]
- Xu, W.-J.; Pan, L.-Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 2012, 356, 147–152. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Li, Y.; Zhou, X.; Zhang, X.; Liu, T.; Liu, B.; Wang, L.; Li, L.; Li, C. The distribution, expression of the Cu/Zn superoxide dismutase in Apostichopus japonicus and its function for sea cucumber immunity. Fish Shellfish Immunol. 2019, 89, 745–752. [Google Scholar] [CrossRef]
- Anwar, S.; Alrumaihi, F.; Sarwar, T.; Babiker, A.Y.; Khan, A.A.; Prabhu, S.V.; Rahmani, A.H. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024, 14, 697. [Google Scholar] [CrossRef]
- Liu, G.; Ye, Z.; Liu, D.; Zhao, J.; Sivaramasamy, E.; Deng, Y.; Zhu, S. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol. 2018, 81, 416–422. [Google Scholar] [CrossRef]
- Haridas, H.; Verma, A.K.; Rathore, G.; Prakash, C.; Sawant, P.B.; Babitha Rani, A.M. Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res. 2017, 48, 4346–4355. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Bai, Y.; Ma, Q.; Liu, A.; Liu, Y.; Song, X.; Wang, Z.; Sun, S. Effect of bioflocs on enzyme activities and growth performance of juvenile sea cucumber Apostichopus japonicus. J. Fish. Sci. China 2014, 21, 793–799. [Google Scholar]
- Shourbela, R.M.; Khatab, S.A.; Hassan, M.M.; Van Doan, H.; Dawood, M.A. The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Animals 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Sharawy, Z.Z.; El Nahas, A.F.; Hemeda, S.A.; El-Haroun, E.; Abbas, E.M. Carbon sources improve water quality, microbial community, immune-related and antioxidant genes expression and survival of challenged Litopenaeus vannamei Postlarvae in biofloc system. Aquac. Res. 2022, 53, 5902–5914. [Google Scholar] [CrossRef]
- Liu, G.; Ye, Z.; Liu, D.; Zhu, S. Inorganic nitrogen control, growth, and immunophysiological response of Litopenaeus vannamei (Boone, 1931) in a biofloc system and in clear water with or without commercial probiotic. Aquac. Int. 2018, 26, 981–999. [Google Scholar] [CrossRef]
- Yao, C.-L.; Wu, C.-G.; Xiang, J.-H.; Li, F.; Wang, Z.-Y.; Han, X. The lysosome and lysozyme response in Chinese shrimp Fenneropenaeus chinensis to Vibrio anguillarum and laminarin stimulation. J. Exp. Mar. Biol. Ecol. 2008, 363, 124–129. [Google Scholar] [CrossRef]
- Javahery, S.; Noori, A.; Hoseinifar, S.H. Growth performance, immune response, and digestive enzyme activity in Pacific white shrimp, Penaeus vannamei Boone, 1931, fed dietary microbial lysozyme. Fish Shellfish Immunol. 2019, 92, 528–535. [Google Scholar] [CrossRef]
- Iven, H.; Walker, T.W.; Anthony, M. Biotic interactions in soil are underestimated drivers of microbial carbon use efficiency. Curr. Microbiol. 2023, 80, 13. [Google Scholar] [CrossRef]
- Mao, H.; Li, G.; Leng, K.; Sun, L.; Liu, K.; Lin, Y.; Liu, J.; Xiang, X. Effects of core soil microbial taxa on soil carbon source utilization under different long-term fertilization treatments in Ultisol. Soil Ecol. Lett. 2024, 6, 240241. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, W.; Wang, H.; Li, C.; Wang, L.; Li, Y.; Wang, J. Bacillus baekryungensis MS1 regulates the growth, non-specific immune parameters and gut microbiota of the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2020, 102, 133–139. [Google Scholar] [CrossRef]
- Cui, J.; Tan, X.; Xu, Z.; Sun, X.; Wang, L.; Zhan, H.; Liu, Y.; Li, Y.; Liu, B. Evaluation of growth, immune characteristics and gut microbiota of juvenile sea cucumber Apostichopus japonicus fed with fermented feed from Corynebacterium glutamicum. Aquac. Int. 2024, 32, 6827–6843. [Google Scholar] [CrossRef]
- Mansour, A.T.; Esteban, M.á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 64, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Bai, Q.; Wang, L.; Li, C.; Li, Y.; Liu, B. Effects of dietary Bacillus baekryungensis on body wall nutrients, digestion and immunity of the sea cucumber Apostichopus japonicus. Fish. Sci. 2023, 89, 233–241. [Google Scholar] [CrossRef]
- Makris, K.; Mousa, C.; Cavalier, E. Alkaline phosphatases: Biochemistry, functions, and measurement. Calcif. Tissue Int. 2023, 112, 233–242. [Google Scholar] [CrossRef]
- Lowe, D.; Sanvictores, T.; Zubair, M.; John, S. Alkaline phosphatase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.statpearls.com/point-of-care/17359 (accessed on 1 November 2024).
- Mirzakhani, N.; Ebrahimi, E.; Jalali, S.A.H.; Ekasari, J. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C: N ratios. Aquaculture 2019, 512, 734235. [Google Scholar] [CrossRef]
- Long, L.; Yang, J.; Li, Y.; Guan, C.; Wu, F. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 2015, 448, 135–141. [Google Scholar] [CrossRef]
- Aliabad, H.S.; Naji, A.; Mortezaei, S.R.S.; Sourinejad, I.; Akbarzadeh, A. Effects of restricted feeding levels and stocking densities on water quality, growth performance, body composition and mucosal innate immunity of Nile tilapia (Oreochromis niloticus) fry in a biofloc system. Aquaculture 2022, 546, 737320. [Google Scholar] [CrossRef]
- Gustilatov, M.; Ekasari, J.; Pande, G.S.J. Protective effects of the biofloc system in Pacific white shrimp (Penaeus vannamei) culture against pathogenic Vibrio parahaemolyticus infection. Fish Shellfish Immunol. 2022, 124, 66–73. [Google Scholar] [CrossRef]
- Ekasari, J.; Azhar, M.H.; Surawidjaja, E.H.; Nuryati, S.; De Schryver, P.; Bossier, P. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 2014, 41, 332–339. [Google Scholar] [CrossRef]
- Song, H.; Guan, C.; Zhang, Y. Effects of Culture Density on Growth of Penaeusvannamei and Water Quality in Biofloc Model. Chin. Agric. Sci. Bull. 2023, 116–120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, P.; Wang, G.; Wang, X.; Pan, L.; Huang, J. The Environmental and Production Effect of Bio-floc Aquaculture of Litopenaeus vannamei at Different Stocking Densities. Prog. Fish. Sci. 2013, 34, 9. [Google Scholar]
- Cheng, L.; Song, J.; He, Z.; Ning, J.; Pang, Y. Acute Toxicity of Ammonia Nitrogen on Juvenile Sea Cucumber (Apostichopus japonicas). J. Anhui Agriic. 2013, 41, 3. [Google Scholar] [CrossRef]
- Zhu, F. Research Methods on the Effects of Turbidity on the Development and Metamorphosis Attachment of Sea Cucumber Larvae. CN201510984985.0, 4 July 2017. [Google Scholar]
- Zhu, W.; Mai, K.; Zhang, B.; Wang, Z.; Xu, G. Study ondietary proteinandlipidrequirementfor sea cucumber, Stichopus japonicus. Mar. Sci. China 2005, 54–58. [Google Scholar] [CrossRef]
Carbon | C/N | Culture | Amount of Inoculum | Period | BFV mL/L | TSS mg/L | Reference |
---|---|---|---|---|---|---|---|
* | * | Bacillus Fermentation Liquid | 0 mg/L | 31 d | 2.5 | * | [36] |
40 mg/L | 4 | ||||||
70 mg/L | 5 | ||||||
100 mg/L | 12.5 | ||||||
120 mg/L | 17.5 | ||||||
Sucrose | 20:1 | Photosynthetic Bacteria | 104 cfu/L | 20 d | * | 50 | [41] |
Saccharomycetes | 125 | ||||||
Bacillus | 200 | ||||||
Glucose | 15:1 | * | * | 60 d | 22 | 225 | [43] |
Sucrose | 17 | 190 | |||||
Starch | 9 | 160 |
Species | Carbon | C/N | Period | Growth | Reference |
---|---|---|---|---|---|
Apostichopus japonicus | * | * | 60 d | − | [60] |
+ | |||||
+ | |||||
+ | |||||
× | |||||
× | |||||
× | |||||
Glucose | 15:1 | 60 d | + | [43] | |
Starch | × | ||||
Sucrose | + | ||||
Sucrose (0% Feed Replacement) | 20:1 | 30 d | + | [56] | |
Sucrose (10% Feed Replacement) | + | ||||
Sucrose (15% Feed Replacement) | − | ||||
Sucrose (20% Feed Replacement) | × | ||||
Sucrose (No Bacteria) | 7:10 Sucrose/Fodder | 60 d | − | [54] | |
Sucrose (Bacteria Addition) | + | ||||
100% Sucrose | 20: 1 | 20 d | + | [41] | |
6.7:3.3 (Sucrose/Corn Starch) | − | ||||
5:5 (Sucrose/Corn Starch) | − | ||||
3.3:6.7 (Sucrose/Corn Starch) | − | ||||
* | * | 60 d | − | [48] | |
+ | |||||
+ | |||||
− | |||||
Oreochromis niloticus | Molasses | 8.4:1 | 74 d | + | [22] |
Glycerinum | 15:1 | 74 d | + | [58] | |
Mannooligosaccharides | + | ||||
Glucose | 15:1 | 120 d | + | [55] | |
Starch | 15:1 | 30 d | + | [59] | |
Litopenaeus vannamei | Molasses | 17:1 | 90 d | + | [23] |
Tapioca | 10:1 | ||||
Wheat Flour | 9:1 | ||||
Millfeed | 12:1 | 36 d | + | [61] | |
Amaranth Seed | |||||
Oat Bran | |||||
Sucrose | 15:1 | 30 d | + | [62] |
Replacement of Feed with Bioflocs | Period | Growth | SOD Activity | LZM Activity | ACP Activity | ALP Activity | Reference |
---|---|---|---|---|---|---|---|
5% | 60 d | × | * | * | * | * | [60] |
10% | + | ||||||
15% | + | ||||||
20% | + | ||||||
30% | × | ||||||
45% | × | ||||||
60% | × | ||||||
5% | 60 d | × | × | × | × | × | [48] |
10% | + | + | + | + | + | ||
15% | + | + | + | + | + | ||
20% | × | + | + | + | + |
Species | Carbon | C/N | Enzyme Activity Type | Period | Target Organ | Response | Reference |
---|---|---|---|---|---|---|---|
Apostichopus japonicus | Glucose | 15:1 | SOD | 60 d | Body Fluid | + | [48] |
Starch | + | ||||||
Sucrose | + | ||||||
Sucrose (0% Feed Replacement) | 20:1 | SOD | 30 d | Body Wall | + | [56] | |
Sucrose (10% Feed Replacement) | + | ||||||
Sucrose (15% Feed Replacement) | + | ||||||
Sucrose (20% Feed Replacement) | + | ||||||
Glucose | 20:1 | SOD | 60 d | Body Wall | − | [67] | |
Sucrose | + | ||||||
Corn Starch | + | ||||||
Sweet Potato Flour | − | ||||||
Oreochromis niloticus | Glycerinum | 15:1 | SOD | 98 d | Serum | + | [68] |
Molasses | + | ||||||
Starch | × | ||||||
Glucose | 10:1 | SOD | 120 d | Liver | + | [65] | |
15:1 | + | ||||||
20:1 | − | ||||||
Wheatmeal | 15:1 | SOD | 90 d | Liver | − | [66] | |
Litopenaeus vannamei | Sucrose | 15:1 | SOD | 30 d | Plasma | + | [62] |
20:1 | |||||||
Bagasse | * | SOD | 60 d | Hepatopancreas | + | [69] | |
Rice Bran | + | ||||||
Straw | − | ||||||
Apostichopus japonicus | Glucose | 15:1 | CAT | 60 d | Body Fluid | + | [48] |
Starch | + | ||||||
Sucrose | + | ||||||
Oreochromis niloticus | Glycerinum | 15:1 | CAT | 98 d | Serum | + | [68] |
Molasses | + | ||||||
Starch | + | ||||||
Litopenaeus vannamei | Bagasse | * | CAT | 60 d | Hepatopancreas | + | [69] |
Rice Bran | + | ||||||
Straw | − |
Species | Carbon | C/N | Enzyme Activity Type | Period | Target Organ | Response | Reference |
---|---|---|---|---|---|---|---|
Apostichopus japonicus | Glucose | 15:1 | LZM | 60 d | Body Fluid | + | [48] |
Starch | + | ||||||
Sucrose | + | ||||||
Oreochromis niloticus | Sucrose | 10:1 | LZM | 98 d | Serum | × | [81] |
Glucose | 15:1 | LZM | 56 d | Serum | + | [82] | |
Glycerinum | 15:1 | LZM | 84 d | Serum | + | [58] | |
Glucose | 10:1 | LZM | 120 d | Liver | + | [65] | |
15:1 | + | ||||||
20:1 | + | ||||||
Molasses | 15:1 | LZM | 53 d | Skin | − | [83] | |
Wheat By-Product | 15:1 | LZM | 70 d | Liver | + | [77] | |
Rice Bran | + | ||||||
Litopenaeus vannamei | Sucrose | 15:1 | LZM | 30 d | Plasma | × | [62] |
20:1 | |||||||
Bagasse | − | LZM | 90 d | Hepatopancreas | + | [69] | |
Rice Bran | + | ||||||
Straw | − | ||||||
Apostichopus japonicus | Glucose | 15:1 | ACP | 60 d | Body Fluid | + | [48] |
Starch | + | ||||||
Sucrose | + | ||||||
Apostichopus japonicus | Sucrose (0% Feed Replacement) | 20:1 | ALP | 30 d | Body Wall | − | [56] |
Sucrose (10% Feed Replacement) | + | ||||||
Sucrose (15% Feed Replacement) | + | ||||||
Sucrose (20% Feed Replacement) | − | ||||||
Glucose | 20:1 | ALP | 60 d | Body Wall | + | [67] | |
Sucrose | + | ||||||
Corn Starch | + | ||||||
Sweet Potato Flour | × |
Species | Pathogen | Concentration | Carbon | C:N | Period | Rate of Survival | Response | Reference |
---|---|---|---|---|---|---|---|---|
Apostichopus japonicus | Vibrio splendidus | 108 cfu/L | Glucose | 15:1 | 14 d | 50% | + | [48] |
Starch | 45% | + | ||||||
Sucrose | 38% | + | ||||||
Litopenaeus vannamei | Vibrio parahaemolyticus | 103 cfu/L | Molasses | 10:1 | 21 d | * | + | [84] |
105 cfu/L | × | |||||||
107 cfu/L | + | |||||||
IMNV (Infectious Myonecrosis Virus) | 100 ML | Molasses | 15:1 | 6 d | * | × | [85] | |
Cassava | × | |||||||
Rice Bran | + | |||||||
Oreochromis niloticus | Aeromonas hydrophila | 106 cfu/L | Wheat Flour, 200 Fish/m3 | 15:1 | 3 d | 83.33% | + | [66] |
Wheat Flour, 250 Fish/m3 | 83.33% | + | ||||||
Wheat Flour, 300 Fish/m3 | 75% | + | ||||||
Wheat Flour, 350 Fish/m3 | 62.5% | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Li, S.; Wang, Z.; Tian, Y.; Zuo, Q.; Tian, F.; Wang, Y.; Zhao, C.; Ding, J. The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review. Fishes 2024, 9, 457. https://doi.org/10.3390/fishes9110457
Xiao H, Li S, Wang Z, Tian Y, Zuo Q, Tian F, Wang Y, Zhao C, Ding J. The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review. Fishes. 2024; 9(11):457. https://doi.org/10.3390/fishes9110457
Chicago/Turabian StyleXiao, Haoran, Shufeng Li, Zitong Wang, Ye Tian, Qiwei Zuo, Fenglin Tian, Yongjie Wang, Chong Zhao, and Jun Ding. 2024. "The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review" Fishes 9, no. 11: 457. https://doi.org/10.3390/fishes9110457
APA StyleXiao, H., Li, S., Wang, Z., Tian, Y., Zuo, Q., Tian, F., Wang, Y., Zhao, C., & Ding, J. (2024). The Effectiveness of Biofloc Technology and Its Application Prospects in Sea Cucumber (Apostichopus japonicus) Aquaculture: A Review. Fishes, 9(11), 457. https://doi.org/10.3390/fishes9110457