Antioxidants, ACE I Inhibitory Peptides, and Physicochemical Composition, with a Special Focus on Trace Elements and Pollutants, of SPRING Spawning Atlantic Herring (Clupea harengus) Milt and Hydrolysates for Functional Food Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of Enzymatic Hydrolysates
2.3. Physicochemical Characterisation
2.4. Total Amino Acid and Peptide Molecular Weight Profiling
2.5. DNA Quantification
2.6. Bioactivity Characterisation
2.6.1. Antioxidative Capacity
2.6.2. ACE I Inhibitory Activity
2.7. Techno-Functional Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of NVG Herring Milt and Derived Concentrates
3.1.1. General Physicochemical Characterisation
3.1.2. Peptide Profile by Size Exclusion Chromatography
3.1.3. Presence of TMA/TMAO and Heavy Metals
3.2. Bioactivity
3.2.1. Antioxidant Capacity
3.2.2. ACE I Inhibitory Activity In Vitro
3.3. Hydrophobicity
3.4. Estimation of Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Forghani, B.; Abdollahi, M.; Undeland, I. Five cuts from herring (Clupea harengus): Comparison of nutritional and chemical composition between co-product fractions and fillets. Food Chem. X 2022, 6, 100488. [Google Scholar] [CrossRef] [PubMed]
- Bazarnova, J.; Korableva, N.; Ozerova, O.; Moskvicheva, E. Biochemical composition and quality of herring preserves with addition of bio-protective cultures. Agron. Res. 2020, 18, 1629–1639. [Google Scholar]
- Egerton, S.; Mannion, D.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The proximate composition of three marine pelagic fish: Blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). Ir. J. Agric. Food Res. 2020, 59, 185–200. [Google Scholar] [CrossRef]
- EUMOFA. Blue Bioeconomy: Situation Report and Perspectives. 2018. Available online: https://www.eumofa.eu/documents/20178/84590/Blue+bioeconomy_Final.pdf (accessed on 28 May 2024).
- Sorokina, L.; Rieder, A.; Koga, S.; Afseth, N.K.; De Cássia Lemos Lima, R.; Wilson, S.R.; Wubshet, S.G. Multivariate correlation of infrared fingerprints and molecular weight distributions with bioactivity of poultry by-product protein hydrolysates. J. Func. Foods 2022, 95, 105170. [Google Scholar] [CrossRef]
- Šližytė, R.; Carvajal, A.K.; Mozuraityte, R.; Aursand, M.; Storrø, I. Nutritionally rich marine proteins from fresh herring by-products for human consumption. Process Biochem. 2014, 49, 1205–1215. [Google Scholar] [CrossRef]
- Delves-Broughton, J. 6—Natural antimicrobials as additives and ingredients for the preservation of foods and beverages. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 127–161. ISBN 9781845698119. [Google Scholar] [CrossRef]
- Balaban, M.O.; Misimi, E.; Ayvaz Chapter, Z. 10—Quality Evaluation of Seafoods. In Computer Vision Technology for Food Quality Evaluation, 2nd ed.; Sun, D.-W., Ed.; Academic Press: London, UK, 2016; pp. 243–270. ISBN 9780128022320. [Google Scholar] [CrossRef]
- Ashraf, S.A.; Adnan, M.; Patel, M.; Siddiqui, A.J.; Sachidanandan, M.; Snoussi, M.; Hadi, S. Fish- based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the sea. Mar. Drugs 2020, 18, 265. [Google Scholar] [CrossRef]
- Sun, H.; Chen, J.; Xiong, D.; Long, M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: A Review. Biol. Trace Elem. Res. 2023, 201, 5441–5454. [Google Scholar] [CrossRef]
- Bledsoe, G.E.; Bledsoe, C.D.; Rasco, B. Caviars and fish roe products. Crit. Rev. Food Sci. Nutr. 2003, 43, 317–356. [Google Scholar] [CrossRef]
- Lutova, E. and Kliuchko, N. Study of quality indicators of processed cheese enriched with caviar and milt of Baltic herring (Clupea harengus membras) during storage. BIO Web Conf. 2023, 64, 9. [Google Scholar] [CrossRef]
- Moss, M.L. The nutritional value of Pacific herring: An ancient cultural keystone species on the Northwest Coast of North America. J. Archaeol. Sci. Rep. 2016, 5, 649–655. [Google Scholar] [CrossRef]
- Furey, A.E.; Hoeche, U.; McLaughlin, C.; Noci, F. Incorporation of roe, milt and liver from plaice (Pleuronectes platessa), herring (Clupea harengus) and cod (Gadus morhua) in newly developed seafood pates: Sensory evaluation by teenage consumers in Ireland and their attitudes to seafood. Int. J. Gastron. Food Sci. 2022, 28, 100524. [Google Scholar] [CrossRef]
- Todeschini, S.; Perreault, V.; Goulet, C.; Bouchard, M.; Dubé, P.; Boutin, Y.; Bazinet, L. Assessment of the Performance of Electrodialysis in the Removal of the Most Potent Odor-Active Compounds of Herring Milt Hydrolysate: Focus on Ion-Exchange Membrane Fouling and Water Dissociation as Limiting Process Conditions. Membranes 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Rustad, T.; Kerry, J.P.; Murphy, S.C.; Falch, E.; Sandbakk, M.; Aursand, M.; Torres, J.A.; Chen, Y.C.; Rodrigo-García, J.; et al. Maximising the value of marine by-products. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, UK, 2007; 560p, ISBN 9781845690137. [Google Scholar] [CrossRef]
- Naz, S.; Chatha, A.M.M.; Téllez-Isaías, G.; Ullah, S.; Ullah, Q.; Khan, M.Z.; Shah, M.K.; Abbas, G.; Kiran, A.; Mushtaq, R.; et al. A Comprehensive Review on Metallic Trace Elements Toxicity in Fishes and Potential Remedial Measures. Water 2023, 15, 3017. [Google Scholar] [CrossRef]
- Kumar, T.S.V.; Devi, M.S.; Kumar, V.; Behera, B.K.; Das, B.K. Effect of heavy metals in fish reproduction: A review. J. Environ. Biol. 2022, 43, 631–642. [Google Scholar] [CrossRef]
- Sathivel, S.; Bechtel, P.J.; Babbitt, J.; Smiley, S.; Crapo, C.; Reppond, K.D.; Prinyawiwatkul, W. Biochemical and Functional Properties of Herring (Clupea harengus) Byproduct Hydrolysates. J. Food Sci. 2006, 68, 2196–2200. [Google Scholar] [CrossRef]
- Todeschini, S.; Perreault, V.; Goulet, C.; Bouchard, M.; Dubé, P.; Boutin, Y.; Bazinet, L. Impacts of pH and Base Substitution during Deaerator Treatments of Herring Milt Hydrolysate on the Odorous Content and the Antioxidant Activity. Foods 2022, 11, 1829. [Google Scholar] [CrossRef]
- Durand, R.; Ouellette, A.; Houde, V.P.; Guénard, F.; Varin, T.V.; Marcotte, B.; Pilon, G.; Fraboulet, E.; Vohl, M.-C.; Marette, A.; et al. Animal and Cellular Studies Demonstrate Some of the Beneficial Impacts of Herring Milt Hydrolysates on Obesity-Induced Glucose Intolerance and Inflammation. Nutrients 2020, 12, 3235. [Google Scholar] [CrossRef]
- Durand, R.; Pellerin, G.; Thibodeau, J.; Fraboulet, E.; Marette, A.; Bazinet, L. Screening for metabolic syndrome application of a herring by-product hydrolysate after its separation by electrodialysis with ultrafiltration membrane and identification of novel anti-inflammatory peptides. Sep. Purif. Technol. 2020, 235, 116205. [Google Scholar] [CrossRef]
- Wang, Y.; Nair, S.; Gagnon, J. Herring Milt and Herring Milt Protein Hydrolysate Are Equally Efective in Improving Insulin Sensitivity and Pancreatic Beta-Cell Function in Diet-Induced Obese- and Insulin-Resistant Mice. Mar. Drugs 2020, 18, 635. [Google Scholar] [CrossRef]
- Durand, R.; Fraboulet, E.; Marette, A.C.L. Simultaneous double cationic and anionic molecule separation from herring milt hydrolysate and impact on resulting fraction bioactivities. Sep. Purif. Technol. 2019, 210, 431–441. [Google Scholar] [CrossRef]
- Abeer, M.M.; Trajkovic, S.; Brayden, D.J. Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed. Pharmacother. 2021, 144, 112275. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, S.; Hiidenhovi, J.; Huang, X.; Lima, A.D.S.; Azevedo, L.; Setälä, J.; Välimaa, A.-L.; Mattila, P.; Granato, D. Production of Bioactive Peptides from Baltic Herring (Clupea harengus membras): Dipeptidyl Peptidase-4 Inhibitory, Antioxidant and Antiproliferative Properties. Molecules 2022, 27, 5816. [Google Scholar] [CrossRef] [PubMed]
- Price Growth Led to a Record Start for Norwegian Seafood Exports in 2023. Available online: https://en.seafood.no/news-and-media/news-archive/price-growth-led-to-a-record-start-for-norwegian-seafood-exports-in-2023/ (accessed on 31 October 2023).
- AOAC. Official Methods of Analysis, 17th ed.; Methods 925.10, 65.17, 974.24, 992.16; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- NS-EN ISO 17294-2:2023; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes (ISO 17294-2:2023, Corrected version 2024-02). Available online: https://online.standard.no/nb/ns-en-iso-17294-2-2023 (accessed on 28 May 2024).
- Swedish Standard · SS-EN 16277:2012; Animal Feeding Stuffs—Determination of Mercury by Cold-Vapour Atomic Absorption Spectrometry (CVAAS) After Microwave Pressure Digestion (Extraction with 65% Nitric Acid and 30% Hydrogen Peroxide). Available online: https://www.sis.se/en/produkter/agriculture/animal-feeding-stuffs/ssen162772012/ (accessed on 28 May 2024).
- EN 15111:2007; (Main) Foodstuffs—Determination of Trace Elements—Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Available online: https://standards.iteh.ai/catalog/standards/cen/9d0d78ee-dc99-47d1-807a-a4f7328e94dc/en-15111-2007?srsltid=AfmBOoq8B6Ts1JdiVpVAIj3Wznd_wTPBbXhkpVMMcfOx9gvgNvyBx-_d (accessed on 28 May 2024).
- ISO 13903:2005; Animal Feeding Stuffs—Determination of Amino Acids Content. Available online: https://www.iso.org/standard/37258.html (accessed on 28 May 2024).
- FAO; WHO; UNU. Protein and Amino Acid Requirements in Human Nutrition; Report of a Joint FAO/WHO/UNU Expert Consultation, Technical Report Series 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Held, P. Performing Oxygen Radical Absorbance Capacity Assays with Synergy™ HT. Application Note; BioTek Instruments Inc.: Winooski, VT, USA, 2006; p. 9. [Google Scholar]
- Sandoval-Gallardo, J.M.; Osuna-Ruiz, I.; Martínez-Montaño, E.; Hernández, C.; Hurtado-Oliva, M.Á.; Valdez-Ortiz, Á.; Rios-Herrera, G.D.; Salazar-Leyva, J.A.; Ramírez-Pérez, J.S. Influence of enzymatic hydrolysis conditions on biochemical and antioxidant properties of pacific thread herring (Ophistonema libertate) hydrolysates. CyTA J. Food 2020, 18, 392–400. [Google Scholar] [CrossRef]
- Ween, O.; Stangeland, J.K.; Fylling, T.S.; Aas, G.H. Nutritional and functional properties of fishmeal produced from fresh by-products of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon 2017, 3, e00343. [Google Scholar] [CrossRef]
- Felix, M.; Romero, A.; Rustad, T.; Guerrero, A. Rheological properties and antioxidant activity of protein gels-like systems made from crayfish concentrate and hydrolysates. Food Bioprod. Process. 2017, 102, 167–176. [Google Scholar] [CrossRef]
- The EFSA Comprehensive European Food Consumption Database, Food Composition Data. 2024. Available online: https://www.efsa.europa.eu/en/microstrategy/food-composition-data (accessed on 28 May 2024).
- EFSA Dietary Reference Values for the EU. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 28 May 2024).
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the tolerable upper intake level for selenium. EFSA J. 2023, 21, e07704. [Google Scholar] [CrossRef]
- Alexander, J.; Olsen, A.-K. Selenium—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10320. [Google Scholar] [CrossRef]
- Buffini, M.; Nugent, A.P.; Walton, J.; Flynn, A.; McNulty, B.A. Selenium intakes in the Irish adult population. J. Nutr. Sci. 2023, 12, e35. [Google Scholar] [CrossRef]
- Wang, P.; Chen, B.; Huang, Y.; Li, J.; Cao, D.; Chen, Z.; Li, J.; Ran, B.; Yang, J.; Wang, R.; et al. Selenium intake and multiple health-related outcomes: An umbrella review of meta-analyses. Front. Nutr. 2023, 10, 1263853. [Google Scholar] [CrossRef]
- Viljoen, C.D.; Booysen, C.; Tantuan, S.S. The suitability of using spectrophotometry to determine the concentration and purity of DNA extracted from processed food matrices. J. Food Comp. Anal. 2022, 112, 104689. [Google Scholar] [CrossRef]
- QIAGEN DNeasy® Blood &Tissue Handbook. June 2023. Available online: https://www.qiagen.com/se/resources/download.aspx?id=68f29296-5a9f-40fa-8b3d-1c148d0b3030&lang=en (accessed on 28 May 2024).
- Coelho, M.O.C.; Monteyne, A.J.; Kamalanathan, I.D.; Najdanovic-Visak, V.; Finnigan, T.J.A.; Stephens, F.B.; Wall, B.T. High dietary nucleotide consumption for one week increases circulating uric acid concentrations but does not compromise metabolic health: A randomised controlled trial. Clin. Nutr. ESPEN 2022, 49, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, A.M.; Copat, C.; Raffa, A.; Rossitto, L.; Grasso, A.; Fiore, M.; Ferrante, M.; Ferrito, V. Fish-Based Baby Food Concern-From Species Authentica;tion to Exposure Risk Assessment. Molecules 2020, 25, 3961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Regulation (EU) 2016/127 of 25 September 2015 Supplementing Regulation EU No. 609/2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Infant Formula and Follow-on Formula and as Regards to the Requirements on Information Relating to Infant and Young Child Feeding. OJ L25, 2 February 2016, p.1. Available online: https://eur-lex.europa.eu/eli/reg_del/2016/127/oj (accessed on 28 May 2024).
- Sankar, T.V. Understanding Food Safety in Fish and Fishery Products. In Advances in Fish Processing Technologies; Majumder, R.K., Balange, A.K., Eds.; Apple Academic Press: New York, NY, USA, 2023; 550p. [Google Scholar] [CrossRef]
- Carver, J.D. Dietary nucleotides: Effects on the immune and gastrointestinal systems. Acta Paediatr. Suppl. 1999, 88, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Kakko, T.; Damerau, A.; Nisov, A.; Puganen, A.; Tuomasjukka, S.; Honkapää, K.; Tarvainen, M.; Yang, B. Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis. Foods 2022, 11, 230. [Google Scholar] [CrossRef]
- Vasconi, M.; Tirloni, E.; Stella, S.; Coppola, C.; Lopez, A.; Bellagamba, F.; Bernardi, C.; Moretti, V.M. Comparison of Chemical Composition and Safety Issues in Fish Roe Products: Application of Chemometrics to Chemical Data. Foods 2020, 9, 540. [Google Scholar] [CrossRef]
- Bjørndal, B.; Strand, E.; Gjerde, J.; Bohov, P.; Svardal, A.; Diehl, B.W.K.; Innis, S.M.; Berger, A.; Berge, R.K. Phospholipids from herring roe improve plasma lipids and glucose tolerance in healthy, young adults. Lipids Health Dis. 2014, 13, 82. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Ulug, S.K.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Lees, M.J.; Nolan, D.; Amigo-Benavent, M.; Raleigh, C.J.; Khatib, N.; Harnedy-Rothwell, P.; FitzGerald, R.J.; Egan, B.; Carson, B.P. A Fish-Derived Protein Hydrolysate Induces Postprandial Aminoacidaemia and Skeletal Muscle Anabolism in an In Vitro Cell Model Using Ex Vivo Human Serum. Nutrients 2021, 13, 647. [Google Scholar] [CrossRef]
- Dale, H.F.; Jensen, C.; Hausken, T.; Hatlebakk, J.G.; Brønstad, I.; Valeur, J.; Hoff, D.A.L.; Lied, G.A. Effects of a Cod Protein Hydrolysate Supplement on Symptoms, Gut Integrity Markers and Fecal Fermentation in Patients with Irritable Bowel Syndrome. Nutrients 2019, 11, 1635. [Google Scholar] [CrossRef]
- Aspevik, T.; Thoresen, L.; Steinsholm, S.; Carlehög, M.; Kousoulaki, K. Sensory and Chemical Properties of Protein Hydrolysates Based on Mackerel (Scomber scombrus) and Salmon (Salmo salar) Side Stream Materials. J. Aquat. Food Prod. Technol. 2021, 30, 176–187. [Google Scholar] [CrossRef]
- Evans, M.; Dai, L.; Avesani, C.M.; Kublickiene, K.; Stenvinkel, P. The dietary source of trimethylamine N-oxide and clinical outcomes: An unexpected liaison. Clin. Kidney J. 2023, 16, 1804–1812. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Noor, S.; Piscopo, S.; Berthouze, S. 1.33—Gut Microbial Dysbiosis and Cardiovascular Diseases. In Comprehensive Gut Microbiota; Glibetic, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–474. ISBN 9780128220368. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2019/627 of 15 March 2019 Laying Down Uniform Practical Arrangements for the Performance of Official Controls on Products of Animal Origin Intended for Human Consumption in Accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and Amending Commission Regulation (EC) No 2074/2005 as Regards Official Controls (Text with EEA Relevance). OJ L 131 17.5.2019, p. 51. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02019R0627-20230109 (accessed on 28 May 2024).
- Simó, C.; Fornari, T.; García-Risco, M.R.; Peña-Cearra, A.; Abecia, L.; Anguita, J.; Rodriguez, H.; García-Cañas, V. Resazurin-based high-throughput screening method for the discovery of dietary phytochemicals to target microbial transformation of L-carnitine into trimethylamine, a gut metabolite associated with cardiovascular disease. Food Func. 2022, 13, 5640–5653. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). C/2023/35, OJ L 119, p. 103–157. 5 May 2023. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 28 May 2024).
- Kim, D.-Y.; Jeon, H.; Shin, H.-S. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods 2023, 12, 3750. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Li, Y.; Bi, L.; Jin, L.; Peng, R. Toxic Effects of Cadmium on Fish. Toxics 2022, 10, 622. [Google Scholar] [CrossRef]
- Sandbichler, A.M.; Höckner, M. Cadmium Protection Strategies—A Hidden Trade-Off? Int. J. Mol. Sci. 2016, 17, 139. [Google Scholar] [CrossRef]
- World Health Organization. Safety Evaluation of Certain Contaminants in Food; (WHO 2023) WHO FOOD ADDITIVES SERIES: 82; Prepared by the ninety-first meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland; ISBN 978-92-4-006076-0. (electronic version).
- European Food Safety Authority; Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [CrossRef]
- Asma, U.; Bertotti, M.L.; Zamai, S.; Arnold, M.; Amorati, R. A kinetic approach to oxygen radical absorbance capacity (ORAC): Restoring order to the antioxidant activity of hydroxycinnamic acids and fruit juices. Antioxidants 2024, 13, 222. [Google Scholar] [CrossRef]
- Anusha, G.P.; Samaranayaka, E.; Li-Chan, C.Y. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 2008, 107, 768–776. [Google Scholar] [CrossRef]
- Zhang, X.; Noisa, P.; Yongsawatdigul, J. Chemical and Cellular Antioxidant Activities of In Vitro Digesta of Tilapia Protein and Its Hydrolysates. Foods 2020, 9, 833. [Google Scholar] [CrossRef]
- Lee, J.E.; Noh, S.K.; Kim, M.J. Effects of Enzymatic- and Ultrasound-Assisted Extraction on Physicochemical and Antioxidant Properties of Collagen Hydrolysate Fractions from Alaska Pollack (Theragra chalcogramma) Skin. Antioxidants 2022, 11, 2112. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Xing, R.; Chen, X.; Li, R.; Li, K.; Liu, S.; Li, P. Purification and identification of antioxidative peptides from mackerel (Pneumatophorus japonicus) protein. RSC Adv. 2018, 8, 20488–20498. [Google Scholar] [CrossRef] [PubMed]
- Silva-Velasco, D.L.; Cervantes-Pérez, L.G.; Sánchez-Mendoza, A. ACE inhibitors and their interaction with systems and molecules involved in metabolism. Heliyon 2024, 10, e24655. [Google Scholar] [CrossRef] [PubMed]
- Drotningsvik, A.; Pampanin, D.M.; Slizyte, R.; Carvajal, A.; Høgøy, I.; Remman, T.; Gudbrandsen, O.A. Hydrolyzed proteins from herring and salmon rest raw material contain peptide motifs with angiotensin-I converting enzyme inhibitors and resulted in lower urine concentrations of protein, cystatin C and glucose when fed to obese Zucker fa/fa rats. Nutr. Res. 2018, 52, pp. 14–21. [Google Scholar] [CrossRef]
- Delahaije, R.J.B.M.; Wierenga, P.A.; van Nieuwenhuijzen, N.H.; Giuseppin, M.L.F.; Gruppen, H. Protein Concentration and Protein-Exposed Hydrophobicity as Dominant Parameters Determining the Flocculation of Protein-Stabilized Oil-in-Water Emulsions. Langmuir 2013, 29, 11567–11574. [Google Scholar] [CrossRef]
- Sarower, M.G.; Hasanuzzaman, A.F.M.; Biswas, B.; Abe, H. Taste producing components in fish and fisheries products: A review. Int. J. Food Ferment. Technol. 2012, 2, 113–121. [Google Scholar]
- Aspevik, T.; Samuelsen, T.A.; Gaarder, M.Ø.; Oterhals, Å. Sensory Properties and Chemical Composition of Fish Solubles Obtained from Upcycling of Fish Filleting Side Streams. J. Aquat. Food Prod. Technol. 2023, 32, 336–348. [Google Scholar] [CrossRef]
- Fu, H.; Pan, L.; Wang, J.; Zhao, J.; Guo, X.; Chen, J.; Lu, S.; Dong, J.; Wang, Q. Sensory Properties and Main Differential Metabolites Influencing the Taste Quality of Dry-Cured Beef during Processing. Foods 2022, 11, 531. [Google Scholar] [CrossRef]
- Tanase, R.; Senda, R.; Matsunaga, Y.; Narukawa, M. Taste characteristics of various amino acid derivatives. J. Nutr. Sci. Vitaminol. 2022, 68, 475–480. [Google Scholar] [CrossRef]
- Jangra, A.; Gola, P.; Singh, J.; Gond, P.; Ghosh, S.; Rachamalla, M.; Dey, A.; Iqbal, D.; Kamal, M.; Sachdeva, P.; et al. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen. Res. 2024, 19, 62–68. [Google Scholar] [CrossRef]
Nutrient | Herring Milt (HM) | Hydrolysate H1 | Hydrolysate H2 | Hydrolysate H3 | ¤/¤¤Population Reference Intake (PRI) |
---|---|---|---|---|---|
Water content [%] | 6.30 ± 0.03 | 10.10 ± 0.03 | 9.5 ± 0.03 | 9.9 ± 0.03 | NA (adequate intake (AI) = 2 L/day) |
True protein [ΣTAA] [mg/kg] | 102.04 ± 2.04 | 63.51 ± 0.03 | 65.03 ± 0.01 | 95.45 ± 0.45 | NA (AI) (AR § of 0.83 g/kg bw per day) |
Ash [%] | 21.78 ± 1.24 | 12.53 ± 0.74 | 15.35 ± 0.89 | 18.94 ± 0.57 | NA |
Fat [%] * | 6.10 ± 0.48 | 2.20 ± 0.40 | 2.20 ± 0.09 | 3.10 ± 0.05 | NA |
DNA content of the soluble fraction [g/100 g sample] # | 8.23 ± 1 | 21.60 ± 1 | 7.63 ± 1 | 11.00 ± 1 | NA |
Minerals: | [mg/kg] | [mg/kg] | [mg/kg] | [mg/kg] | |
Copper (Cu) | 3.2 ± 0.6 | 3.3 ± 0.7 | 3.1 ± 0.6 | 3.0 ± 0.6 | NA (AI 1.3 mg (female) −1.6 mg (male)/day; UL = 5 mg/day) ## |
Zinc (Zn) | 24 ± 5 | 20 ± 4 | 43 ± 9 | 42 ± 8 | 7.5–12.7 mg/day (UL = 25 mg/day) |
Iron (Fe) | 53 ± 10 | 42 ± 8 | 55 ± 11 | 39 ± 8 | 11 mg/day |
Calcium (Ca) | 280 ± 56 | 540 ± 108 | 360 ± 72 | 280 ± 56 | 1000 mg/day (UL = 2500 mg/day) |
Magnesium (Mg) | 1300 ± 260 | 1300 ± 260 | 1300 ± 260 | 980 ± 196 | NA (AI = 300–350 mg/day female/male) |
Manganese (Mn) | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 | NA (AI = 3 mg/day) |
Selenium (Se) | 2.5 ± 0.5 | 2.0 ± 0.4 | 1.8 ± 0.4 | 2.3 ± 0.5 | NA (AI = 70 µg/day; UL = 300 µg/day) |
Total phosphorus (P) | 31,000 ± 6200 | 25,000 ± 5000 | 27,000 ± 5400 | 25,000 ± 5000 | NA (AI = 550 mg/day) |
Iodine (I) | 0.3 ± 0.2 | 0.3 ± 0.2 | 0.3 ± 0.2 | 0.4 ± 0.2 | NA (AI = 150 µg/day; UL = 600 µg/day) |
Sulphur (S) | 7400 ± 1480 | 6700 ± 1340 | 6200 ± 1240 | 7700 ± 1540 | NA |
Potassium (K) | 7000 ± 1400 | 6600 ± 1320 | 7400 ± 1480 | 6400 ± 1280 | NA (AI = 3500 mg/day) |
Sodium (Na) | 8700 ± 1740 | 9900 ± 1980 | 9200 ± 1840 | 5800 ± 1160 | Safe and adequate intake 2 g/day |
Fatty Acid (FA) | Unhydrolysed Herring Milt (HMC) [mg/100 g ds] | Sample H1 [mg/100 g ds] | Sample H2 [mg/100 g ds] | Sample H3 [mg/100 g ds] |
---|---|---|---|---|
Saturated | ||||
14:0 | 56.32 | 39.86 | 50.41 | 108.85 |
15:0 | 33.39 | 25.78 | 28.38 | 39.42 |
16:0 | 1347.44 | 994.87 | 998.43 | 1124.38 |
18:0 | 154.35 | 116.72 | 115.62 | 143.49 |
20:0 | <LOQ * | <LOQ | <LOQ | <LOQ |
22:0 | <LOQ | <LOQ | <LOQ | 6.71 |
24:0 | <LOQ | <LOQ | <LOQ | <LOQ |
Total Σ saturated FA | 1591.49 | 1177.22 | 1192.84 | 1422.85 |
Monounsaturated (MU) FA | ||||
16:ln-9 | 12.53 | 7.23 | 7.55 | 11.49 |
16:ln-7 | 65.94 | 42.73 | 42.32 | 79.39 |
18:ln-9 | 441.89 | 269.41 | 261.09 | 425.32 |
18:ln-7 | 511.88 | 367.41 | 353.58 | 358.38 |
20:ln-11 | 26.06 | 17.90 | 17.01 | 31.01 |
20:ln-9 | 103.38 | 62.80 | 64.01 | 206.89 |
20:ln-7 | <LOQ | <LOQ | <LOQ | 7.35 |
22:ln-11 | 46.46 | 27.84 | 37.04 | 191.73 |
22:ln-9 | 9.40 | 8.48 | 10.33 | 25.64 |
24:ln-9 | 23.69 | 19.63 | 19.82 | 33.68 |
Total Σ MUFA | 1241.22 | 823.43 | 812.75 | 1370.88 |
Polyunsaturated (PU) FA | ||||
18:2n-6 | 68.24 | 16.79 | 21.16 | 33.91 |
18:3n-6 | 12.38 | <LOQ | <LOQ | <LOQ |
20:2n-6 | 15.05 | 5.95 | 8.46 | 14.70 |
20:3n-6 | <LOQ | <LOQ | <LOQ | <LOQ |
20:4n-6 | 52.49 | <LOQ | 7.55 | 12.41 |
22:4n-6 | <LOQ | <LOQ | <LOQ | <LOQ |
22:5n-6 | 16.20 | <LOQ | <LOQ | <LOQ |
Total Σ n-6 PUFA | 164.36 | 22.73 | 37.17 | 61.02 |
18:3n-3 | 28.73 | <LOQ | 5.98 | 14.61 |
18:4n-3 | 20.17 | <LOQ | <LOQ | 8.64 |
20:3n-3 | 7.34 | <LOQ | <LOQ | 8.18 |
20:4n-3 | 41.95 | <LOQ | 6.75 | 13.05 |
20:5n-3 | 884.00 | 47.94 | 58.53 | 79.95 |
21:5n-3 | 12.91 | <LOQ | <LOQ | <LOQ |
22:5n-3 | 98.80 | 6.08 | 6.69 | 11.26 |
22:6n-3 | 2024.06 | 71.99 | 89.08 | 142.57 |
Total Σ n-3 PUFA | 3117.96 | 126.01 | 167.03 | 278.25 |
16:2 | <LOQ | <LOQ | <LOQ | <LOQ |
16:3 | <LOQ | <LOQ | <LOQ | <LOQ |
16:4 | <LOQ | <LOQ | <LOQ | <LOQ |
Total Σ PUFA | 3282.32 | 148.74 | 204.20 | 339.26 |
Ratio saturated/unsaturated | 0.35 | 1.21 | 1.17 | 0.83 |
Ratio n-3/n-6 | 18.97 | 5.54 | 4.49 | 4.56 |
TOTAL [Σ FA] | 6115.03 | 2149.39 | 2209.79 | 3132.99 |
MW Distribution [kDa] | H1 [%] | H2 [%] | H3 [%] |
---|---|---|---|
<0.200 | 8.07 ± 0. 28 | 13.04 ± 0.06 | 15.00 ± 0.18 |
0.2–0.5 | 12.02 ± 0.31 | 10.37 ± 0.04 | 9.07 ± 0.34 |
0.5–1.0 | 37.27 ± 1.04 | 38.61 ± 0.43 | 35.41 ± 2.29 |
1.0–2.0 | 29.01 ± 0.60 | 26.20 ± 0.07 | 20.39 ± 0.61 |
2.0–5.0 | 9.96 ± 0.11 | 7.73 ± 0.04 | 6.28 ± 0.20 |
5.0–10.0 | 1.82 ± 0.05 | 1.8 ± 0.02 | 0.34 ± 0.16 |
10.0–15.0 | 1.43 ± 0.26 | 1.54 ± 0.04 | 3.05 ± 0.45 |
15–20 | 0.28 ± 0.06 | 0.40 ± 0.12 | 3.20 ± 1.62 |
20–50 | 0.10 ± 0.12 | 0.26 ± 0.07 | 1.27 ± 0.08 |
50–100 | 0.03 ± 0.01 | 0.08 ± 0.02 | 4.30 ± 0.58 |
100–200 | 0.01 ± 0.01 | 0.00 ± 0.01 | 1.72 ± 1.19 |
TOTAL % fraction above 1 kDa | 42.66 ± 1.22 | 38.00 ± 0.39 | 40.53 ± 4.89 |
TOTAL % fraction below 1 kDa | 57.36 ± 1.63 | 62.02 ± 0.53 | 59.48 ± 2.81 |
Sample | Mercury (Hg) (Total Content) [mg/kg] | Arsenic (As) (Total Content) [mg/kg] | Lead (Pb) (Total Content) [mg/kg] | Cadmium (Cd) (Total Content) [mg/kg] | TOTAL (TMA + TMAO) as Freshness Indicators [mg/100 g] § |
---|---|---|---|---|---|
HMC | 0.047 ± 0.02 a | 3.9 ± 1.2 a | <0.020 | 0.15 ± 0.05 a | 302 a |
H1 | 0.042 ± 0.02 a | 3.1 ± 0.9 a | <0.020 | 0.11 ± 0.04 a | 233 a |
H2 | 0.025 ± 0.01 b | 3.9 ± 1.2 a | <0.020 | 0.12 ± 0.04 a | 179 b |
H3 | <0.020 * | 3.8 ± 1.1 a | <0.020 | 0.07 ± 0.03 b | 233 a |
Maximum levels allowed in food ¥ [mg/kg] | 0.30 (muscle meat of C. harengus) | 0.020 (products to be placed on the market as powders) | 0.30 (muscle meat of fish, or portion intended for consumption) | 0.050 (muscle meat of fish, or portion intended for consumption) | 60 mg of total volatile nitrogen/100 g of whole fishery product used directly for the preparation of fish (oil) for human consumption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassova, M.R.; Stangeland, J.K.; Lausen, S.E.; Dahl, T.H.; Barnung, T.; Larssen, W.E. Antioxidants, ACE I Inhibitory Peptides, and Physicochemical Composition, with a Special Focus on Trace Elements and Pollutants, of SPRING Spawning Atlantic Herring (Clupea harengus) Milt and Hydrolysates for Functional Food Applications. Fishes 2024, 9, 456. https://doi.org/10.3390/fishes9110456
Atanassova MR, Stangeland JK, Lausen SE, Dahl TH, Barnung T, Larssen WE. Antioxidants, ACE I Inhibitory Peptides, and Physicochemical Composition, with a Special Focus on Trace Elements and Pollutants, of SPRING Spawning Atlantic Herring (Clupea harengus) Milt and Hydrolysates for Functional Food Applications. Fishes. 2024; 9(11):456. https://doi.org/10.3390/fishes9110456
Chicago/Turabian StyleAtanassova, Miroslava R., Janne K. Stangeland, Simon E. Lausen, Thomas H. Dahl, Trygg Barnung, and Wenche E. Larssen. 2024. "Antioxidants, ACE I Inhibitory Peptides, and Physicochemical Composition, with a Special Focus on Trace Elements and Pollutants, of SPRING Spawning Atlantic Herring (Clupea harengus) Milt and Hydrolysates for Functional Food Applications" Fishes 9, no. 11: 456. https://doi.org/10.3390/fishes9110456
APA StyleAtanassova, M. R., Stangeland, J. K., Lausen, S. E., Dahl, T. H., Barnung, T., & Larssen, W. E. (2024). Antioxidants, ACE I Inhibitory Peptides, and Physicochemical Composition, with a Special Focus on Trace Elements and Pollutants, of SPRING Spawning Atlantic Herring (Clupea harengus) Milt and Hydrolysates for Functional Food Applications. Fishes, 9(11), 456. https://doi.org/10.3390/fishes9110456