The Functional Response of Estuarine Fish Communities to Hydrologic Change in a Semi-Arid Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Functional Trait Classification
2.4. Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Functional Assemblage of Fish Community
3.3. Spatial-Temporal Distribution of Functional Abundance
3.4. Effect of Environmental Parameters on Functional Assemblage
3.5. Functional Group and Species Response to High and Low Inflows
4. Discussion
4.1. Functional Redundancy in the Functional Groups
4.2. Bioindicators
4.3. Other Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliott, M.; Quintino, V. The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Pollut. Bull. 2007, 54, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.; Whitfield, A.K.; Potter, I.C.; Blaber, S.J.M.; Cyrus, D.P.; Nordlie, F.G.; Harrison, T.D. The guild approach to categorizing estuarine fish assemblages: A global review. Fish Fish. 2007, 8, 241–268. [Google Scholar] [CrossRef]
- Longley, W.L. Freshwater Inflows to Texas Bays and Estuaries: Ecological Relationships and Methods for Determination of Needs; Texas Water Development Board and Texas Parks and Wildlife Department: Austin, TX, USA, 1994.
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Flemer, D.A.; Champ, M.A. What is the future fate of estuaries given nutrient over enrichment, freshwater diversion and low flows? Mar. Pollut. Bull. 2006, 52, 247–258. [Google Scholar] [CrossRef]
- Kennish, M.J.; Paerl, H.W.; Crosswell, J.R. Climate Change and Estuaries; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation. Environ. Sci. Policy 2000, 3, 89–98. [Google Scholar] [CrossRef]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef]
- Dorado, S.; Booe, T.; Steichen, J.L.; McInnes, A.S.; Windham, R.; Shepard, A.K.; Lucchese, A.; Preischel, H.; Pinckney, J.L.; Davis, S.E.; et al. Towards an understanding of the interactions between freshwater inflows and phytoplankton communities in a subtropical estuary in the Gulf of Mexico. PLoS ONE 2015, 10, e0130931. [Google Scholar] [CrossRef]
- McFarlane, R.; Leskovskaya, A.; Lester, J.; Gonzalez, L. The effect of four environmental parameters on the structure of estuarine shoreline communities in Texas, USA. Ecosphere 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Steichen, J.L.; Quigg, A. Fish species as indicators of freshwater inflow within a subtropical estuary in the Gulf of Mexico. Ecol. Indic. 2018, 85, 180–189. [Google Scholar] [CrossRef]
- Gonzalez, L.A.; Quigg, A.; Steichen, J.L.; Gelwick, F.P.; Lester, L.J. A new approach to functionally assess estuarine fish communities in response to hydrologic change. Estuaries Coasts 2020, 44, 1118–1131. [Google Scholar] [CrossRef]
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.M.; Lemley, D.A.; Quigg, A.; Steppe, C.N. Impacts of urbanization and development on estuarine ecosystems and water quality. Estuaries Coasts 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Johns, N.D.; Heger, N.A. Characterizing estuarine salinity patterns with event duration and frequency of reoccurrence approaches. Limnol. Oceanogr. Methods 2018, 16, 180–198. [Google Scholar] [CrossRef]
- Grange, N.; Whitfield, A.K.; De Villiers, C.J.; Allanson, B.R. The response of two South African east coast estuaries to altered river flow regimes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2000, 10, 155–177. [Google Scholar] [CrossRef]
- Deutsch, C.; Ferrel, A.; Seibel, B.; Pörtner, H.O.; Huey, R.B. Ecophysiology. Climate change tightens a metabolic constraint on marine habitats. Science 2015, 348, 1132–1135. [Google Scholar] [CrossRef]
- Shultz, A.D.; Zuckerman, Z.C.; Suski, C.D. Thermal tolerance of nearshore fishes across seasons: Implications for coastal fish communities in a changing climate. Mar. Biol. 2016, 163, 83. [Google Scholar] [CrossRef]
- Fujiwara, M.; Martinez-Andrade, F.; Wells, R.J.D.; Fisher, M.; Pawluk, M.; Livernois, M.C. Climate-Related factors cause changes in the diversity of fish and invertebrates in subtropical coast of the Gulf of Mexico. Commun. Biol. 2019, 2, 403. [Google Scholar] [CrossRef]
- Pawluk, M.; Martinez-Andrade, F.; Fujiwara, M. Climate effects on fish diversity in the subtropical bays of Texas. Estuar. Coast. Shelf Sci. 2021, 249, 107121. [Google Scholar] [CrossRef]
- Montagna, P.A.; Douglas, A.R. Freshwater Inflows to Texas Bays and Estuaries: A Regional-Scale Review, Synthesis, and Recommendations. Springer Nature: Cham, Switzerland, 2024; (in press). [Google Scholar]
- Steichen, J.L.; Gonzalez, L.; Quigg, A. Seasonal and spatial variations between the fish community and environmental factors in a subtropical estuary. Estuar. Coast. Shelf Sci. 2024, 301, 108753. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Elliott, A. Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future. J. Fish Biol. 2002, 61, 229–250. [Google Scholar] [CrossRef]
- Franco, A.; Elliott, M.; Franzoil, P.; Torricellil, P. Life strategies of fishes in European estuaries: The functional guild approach. Mar. Ecol.-Prog. Ser. 2008, 354, 219–228. [Google Scholar] [CrossRef]
- Potter, I.C.; Tweedley, J.R.; Elliott, M.; Whitfield, A.K. The ways in which fish use estuaries: A refinement and expansion of the guild approach. Fish Fish. 2015, 16, 230–239. [Google Scholar] [CrossRef]
- Walker, B.H. Biodiversity and ecological redundancy. Conserv. Biol. 1992, 6, 18–23. [Google Scholar] [CrossRef]
- Blondel, J. Guilds or functional groups: Does it matter? Oikos 2003, 100, 223–231. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Able, K.W.; Barletta, M.; Blaber, S.J.M.; Harrison, T.D. Life-history guilds of fishes associated with estuaries: Opportunism versus dependency. Estuar. Coast. Shelf Sci. 2023, 292, 108456. [Google Scholar] [CrossRef]
- West, A.; Wetz, M.; Pollack, J.B.; Berger, A. San Antonio Bay Ecosystem Health Report Card, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi. Available online: https://www.sabaypartnership.org/san-antonio-bay-ecosystem-health-report-card/ (accessed on 8 October 2023).
- Nicolas, D.; Lobry, J.; Le Pape, O.; Boet, P. Functional diversity in European estuaries: Relating the composition of fish assemblages to the abiotic environment. Estuar. Coast. Shelf Sci. 2010, 88, 329–338. [Google Scholar] [CrossRef]
- Palmer, T.A.; Montagna, P.A. Impacts of droughts and low flows on estuarine water quality and benthic fauna. Hydrobiologia 2015, 753, 111–129. [Google Scholar] [CrossRef]
- Ward, G.H. Ecological Study of SAN Antonio Bay; Texas Water Development Board: Austin, TX, USA, 2012.
- Slack, R.D.; Grant, W.E.; Davis, S.E., III; Swannack, T.M.; Wozniak, J.; Greer, D.; Snelgrove, A. San Antonio Guadalupe Estuarine System. Linking Freshwater Inflows and Marsh Community Dynamics in San Antonio Bay to Whooping Cranes; Texas Water Development Board: Austin, TX, USA, 2009.
- TWDB. Coastal Hydrology Dataset; Texas Water Development Board: Austin, TX, USA, 2019.
- Montagna, P.A.; Kalke, R.D. The effect of freshwater inflow on meiofaunal and macrofaulnal populations in the Guadalupe and Nueces Estuaries. Estuaries 1992, 15, 307–326. [Google Scholar] [CrossRef]
- U.S. Census Bureau (USCB) 2020. Population Census, 1 April 2020—Refugio County, Texas; Calhoun County, Texas; Aransas County, Texas (USA, Quick Facts). Available online: https://www.census.gov/quickfacts/fact/table/refugiocountytexas,calhouncountytexas,aransascountytexas,US/POP010220 (accessed on 27 December 2023).
- NOAA, Climate Graphs: Galveston. National Oceanic and Atmospheric Administration, National Weather Service. 2019. Available online: https://www.weather.gov/hgx/climate_graphs_gls (accessed on 30 June 2020).
- Guthrie, C.G.; Matsumoto, J.; Solis, R.S. Analysis of the Influence of Water Plan Strategies on Inflows and Salinity in Galveston Bay; Texas Water Development Board: Austin, TX, USA, 2012.
- Matsumoto, J. User’s Manual for the Texas Water Development Board’s Rainfall-Runoff Model, TxRR; Texas Water Development Board: Austin, TX, USA, 1992.
- Martinez-Andrade, F.; Fisher, M.; Bowling, B.; Balboa, B. Marine Resource Monitoring Operations Manual; Texas Parks and Wildlife Department: Rockport, TX, USA, 2015.
- Livingston, R.J. Trophic Organization in Coastal Systems; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bowling, B. Identification Guide to Marine Organisms of Texas; Texas Parks and Wildlife Department: Dickinson, TX, USA, 2019.
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial, 7th ed.; Primer-e: Plymouth, UK, 2015. [Google Scholar]
- Nielsen-Gammon, J.W. The 2011 Texas Drought. Tex. Water J. 2012, 3, 59–95. [Google Scholar] [CrossRef]
- Otter, I.C.; Beckley, L.E.; Whitfield, A.K.; Lenanton, R.C.J. Comparisons between the roles played by estuaries in the life-cycles of fishes in temperate Western Australia and Southern Africa. Environ. Biol. Fishes 1990, 28, 143–178. [Google Scholar] [CrossRef]
- Dumay, O.; Tari, P.S.; Tomasini, J.A.; Mouillot, D. Functional groups of lagoon fish species in Languedoc Roussillon, southern France. J. Fish Biol. 2004, 64, 970–983. [Google Scholar] [CrossRef]
- Plavan, A.A.; Passadore, C.; Gimenez, L. Fish assemblage in a temperate estuary on the Uruguayan coast: Seasonal variation and environmental influence. Braz. J. Oceanogr. 2010, 58, 299–314. [Google Scholar] [CrossRef]
- Fonseca, V.E.; Vasconcelos, R.P.; Gamito, R.; Pasquaud, S.; Goncalves, C.I.; Costa, J.L.; Costa, M.J.; Cabral, H.N. Fish community-based measures of estuarine ecological quality and pressure impact relationships. Estuar. Coast. Shelf Sci. 2013, 134, 128–137. [Google Scholar] [CrossRef]
- Lester, L.J.; Gonzalez, L.A. The State of the Bay: A Characterization of the Galveston Bay Ecosystem; Texas Commission on Environmental Quality Galveston Bay Estuary Program: Houston, TX, USA, 2011.
- Roelke, D.L.; Li, H.P.; Hayden, N.J.; Miller, C.J.; Davis, S.E.; Quigg, A.; Buyukates, Y. Co-occurring and opposing freshwater inflow effects on phytoplankton biomass, productivity and community composition of Galveston Bay, USA. Mar. Ecol. Prog. Ser. 2013, 477, 61–76. [Google Scholar] [CrossRef]
- Boucek, R.E.; Rehage, J.S. Climate extremes drive changes in functional community structure. Glob. Change Biol. 2014, 20, 1821–1831. [Google Scholar] [CrossRef]
- Bortone, S.A. The Quest for the Perfect Estuarine Indicator: An Introduction Estuarine Bioindicators; CRC Press: Boca Roton, FL, USA, 2005. [Google Scholar]
- Fonseca, C.R.; Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 2001, 89, 118–125. [Google Scholar] [CrossRef]
- Fuls, B.E.; Wagner, T.; McEachron, L.W. Characterization of Commercial Shrimp Trawl Bycatch in Texas During Spring and Fall Commercial Bay-Shrimp Seasons: 1993–1995 (Management Data Series number 180); Texas Parks and Wildlife Department: Austin, TX, USA, 2002.
- Boyd, N.; Bubley, W. San Antonio Bay: Status and Trends Reports; Coastal Bend Bays and Estuaries Program Publication CBBEP-92. Available online: https://www.sabaypartnership.org/manager/wp-content/uploads/SABP-Status-and-Trends-FINAL-low-res.pdf (accessed on 10 October 2023).
- Parker, J.C. The Biology of the Spot, Leiostomus xanthurus, and Atlantic Croaker, Micropogon undulatus, in Two Gulf of Mexico Nursery Areas; Agricultural Extension Service, Texas A&M University: College Station, TX, USA, 1971; p. 182. [Google Scholar]
- Vaughan, D.S.; Shertzer, K.W.; Smith, J.W. Gulf menhaden (Brevoortia patronus) in the U.S. Gulf of Mexico: Fishery characteristics and biological reference points for management. Fish. Res. 2007, 83, 263–275. [Google Scholar] [CrossRef]
- McLusky, D.S.; Elliott, M. Transitional waters: A new approach, semantics or just muddying the waters? Estuar. Coast. Shelf Sci. 2007, 71, 359–363. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 2007, 315, 95–97. [Google Scholar] [CrossRef]
- Roelke, D.L.; Li, H.-P.; Miller-DeBoer, C.J.; Gable, G.M.; Davis, S.E. Regional shifts in phytoplankton succession and primary productivity in the San Antonio Bay System (USA) in response to diminished freshwater inflows. Mar. Freshw. Res. 2017, 68, 131–145. [Google Scholar] [CrossRef]
- Espey, W.H.; Lester, L.J.; Browning, R.; Buzan, D.; Frossard, W.; Guillen, G.; McFarlane, R.; Reedy, M.; Plummer, A.H.; Quigg, A.; et al. Trinity and San Jacinto and Galveston Bay Basin and Bay Expert Science Team Environmental Flows Recommendations Report; Texas Commission on Environmental Quality: Austin, TX, USA, 2009.
- Scott, S.; Wassenich, D. Guadalupe, San Antonio, Mission, and Aransas Rivers and Mission, Copano, Aransas, and San Antonio Bays Basin and Bay Expert Science Team. Final Submission to the Basin and Bay Expert Science Team Environmental Flows Recommendations Report; Texas Commission on Environmental Quality: Austin, TX, USA, 2011.
- Graham, K. A review of the biology and management of blue catfish. Am. Fish. Soc. Symp. 1999, 24, 37–49. Available online: https://api.semanticscholar.org/CorpusID:15920802 (accessed on 10 October 2023).
Functional Group (Richness) 3 | Functional Trait: Estuarine Use | Functional Trait: Feeding Guild | Otter Trawl | Gill Net | Dominant Species (Top 90% Abundance of the Dataset) | |
---|---|---|---|---|---|---|
ANC (1) | Anadromous | Carnivore | ||||
ERC (22) | Estuarine resident | Carnivore | x | Atlantic croaker | Micropogonias undulatus | |
x | Bay anchovy | Anchoa mitchilli | ||||
x | Black drum | Pogonias cromis | ||||
x | Gafftopsail fish | Bagre marinus | ||||
x | x | Hardheaded catfish | Ariopsis felis | |||
x | Red drum | Sciaenops ocellatus | ||||
x | Silver perch | Bidyanus bidyanus | ||||
x | Spotted seatrout | Cynoscion nebulosus | ||||
ERO (9) | Estuarine resident | Omnivore | x | x | Gulf menhaden | Brevoortia patronus |
x | x | Pinfish | Lagodon rhomboides | |||
x | x | Spot | Leiostomus xanthurus | |||
x | Striped mullet | Mugil cephalus | ||||
FMC (6) | Freshwater migrant | Carnivore | x | Alligator gar | Atractosteus spatula | |
x | x | Blue catfish | Ictalurus furcatus | |||
x | Longnose gar | Lepisosteus osseus | ||||
x | Spotted gar | Lepisosteus oculatus | ||||
FMO (3) | Freshwater migrant | Omnivore | x | x | American gizzard shad | Dorosoma cepedianum |
x | Threadfin shad | Dorosoma petenense | ||||
FSC (7) | Freshwater straggler | Carnivore | ||||
FSO (3) | Freshwater straggler | Omnivore | ||||
MMC (38) | Marine migrant | Carnivore | x | Atlantic bumper | Chloroscombrus chrysurus | |
x | Atlantic cutlassfish | Trichiurus lepturus | ||||
x | Fringed flounder | Etropus crossotus | ||||
x | Inshore lizardfish | Synodus foetens | ||||
x | Least puffer | Sphoeroides parvus | ||||
x | Naked goby | Croilia mossambica | ||||
x | Ocellated flounder | Ancylopsetta ommata | ||||
x | Pigfish | Bodianus unimaculatus | ||||
x | Scaled sardine | Harengula jaguana | ||||
x | Silver seatrout | Cynoscion nothus | ||||
x | Striped burrfish | Chilomycterus schoepfi | ||||
MMO (6) | Marine migrant | Omnivore | x | Sheepshead | Archosargus probatocephalus | |
MSC (51) | Marine straggler | Carnivore | x | Atlantic threadfin herring | Opisthonema oglinum | |
x | Bull shark | Carcharhinus leucas | ||||
x | Gulf butterfish | Peprilus burti | ||||
x | Gulf toadfish | Opsanus beta | ||||
MSO (8) | Marine straggler | Omnivore |
Low Inflow | High Inflow | |||
---|---|---|---|---|
n | Mean ± SD (Range) | n | Mean ± SD (Range) | |
Salinity | 4461 | 21.4 ± 10.3 (0.0–43.0) | 3776 | 14.1 ± 10.0 (0.0–37.0) |
Guadalupe | 203 | 6.5 ± 8.2 (0.0–29.6) | 164 | 2.0 ± 4.2 (0.0–23.2) |
Hynes | 319 | 11.7 ± 8.8 (0.0–35.0) | 272 | 4.1 ± 4.5 (0.0–20.0) |
San Antonio | 2709 | 20.6 ± 9.8 (0.0–43.0) | 2326 | 12.2 ± 8.7 (0.0–37.0) |
Ayres | 74 | 22.5 ± 9.1 (0.0–39.6) | 70 | 15.1 ± 7.9 (0.0–35.0) |
Espiritu Santo | 1156 | 28.6 ± 5.3 (5.0–41.0) | 944 | 23.6 ± 7.2 (0.0–36.8) |
Temperature (°C) | 4465 | 23.7 ± 6.0 (6.6–34.0) | 3778 | 23.7 ± 6.1 (5.9–34.8) |
Guadalupe | 203 | 24.4 ± 5.9 (9.8–33.1) | 164 | 24.3 ± 6.0 (5.9–32.5) |
Hynes | 318 | 24.3 ± 6.1 (8.0–32.3) | 272 | 23.7 ± 6.1 (8.1–32.0) |
San Antonio | 2713 | 23.5 ± 6.3 (6.6–34.0) | 2327 | 23.6 ± 6.3 (6.5–34.8) |
Ayres | 75 | 24.9 ± 6.1 (7.4–31.5) | 71 | 26.7 ± 4.1 (13.6–33.2) |
Espiritu Santo | 1156 | 23.8 ± 5.3 (9.3–32.9) | 944 | 23.5 ± 5.5 (9.0–33.3) |
Dissolved Oxygen (mg O2 L−1) | 4469 | 7.7 ± 1.8 (1.1–18.5) | 3776 | 7.9 ± 1.9 (0.4–19.7) |
Guadalupe | 203 | 7.9 ± 1.9 (2.0–16.9) | 164 | 8.0 ± 2.4 (1.7–19.6) |
Hynes | 319 | 8.1 ± 2.1 (1.1–16.3) | 272 | 8.3 ± 2.1 (2.3–17.3) |
San Antonio | 2715 | 7.7 ± 1.8 (1.4–18.5) | 2326 | 8.0 ± 1.8 (0.4–19.7) |
Ayres | 76 | 7.8 ± 1.9 (4.7–14.0) | 71 | 7.6 ± 1.6 (2.6–14.0) |
Espiritu Santo | 1156 | 7.5 ± 1.6 (2.2–16.0) | 943 | 7.7 ± 1.6 (1.4–14.6) |
Turbidity (NTU) | 4465 | 17 ± 29.0 (0.0–771.0) | 3770 | 25.9 ± 39.3 (0.0–565.0) |
Guadalupe | 202 | 37.3 ± 48.4 (1.0–426.0) | 164 | 43.5 ± 50.9 (4.0–494.0) |
Hynes | 319 | 29.7 ± 39.3 (1.0–390.0) | 271 | 54.3 ± 58.0 (2.0–454.0) |
San Antonio | 2712 | 17.4 ± 29.7 (0.0–771.0) | 2324 | 27.1 ± 38.0 (0.0–565.0) |
Ayres | 76 | 24.3 ± 26.2 (1.0–109.0) | 71 | 40.5 ± 46.4 (1.0–234.0) |
Espiritu Santo | 1156 | 8.4 ± 10.1 (0.0–125.0) | 940 | 10.9 ± 23.0 (0.0–452.0) |
Salinity | Temperature (°C) | Dissolved Oxygen (ppm) | Turbidity (NTU) | |
---|---|---|---|---|
Guadalupe Bay R2 = 0.22 | p = 0.001 | p = 0.484 | p = 0.441 | p = 0.902 |
Hynes Bay R2 = 0.23 | p = 0.001 | p = 0.349 | p = 0.243 | p = 0.256 |
San Antonio Bay R2 = 0.22 | p = 0.13 | p = 0.48 | p =0.505 | p = 0.031 |
Ayres Bay R2 = 0.40 | p = 0.166 | p = 0.001 | p = 0.001 | p = 0.286 |
Espiritu Santo Bay R2 = 0.27 | p = 0.353 | p = 0.002 | p = 0.634 | p = 0.559 |
Salinity | Temperature (°C) | Dissolved Oxygen (ppm) | Turbidity (NTU) | |
---|---|---|---|---|
Guadalupe Bay R2 = 0.31 | p = 0.001 | p = 0.059 | p = 0.658 | p = 0.582 |
Hynes Bay R2 = 0.48 | p = 0.001 | p = 0.007 | p = 0.024 | p = 0.091 |
San Antonio Bay R2 = 0.17 | p = 0.016 | p = 0.394 | p = 0.016 | p = 0.716 |
Ayres Bay R2 = na | p = 0.293 | p = 0.60 | p = 0.20 | p = 0.149 |
Espiritu Santo Bay R2 = na | p = 0.093 | p = 0.209 | p = 0.715 | p = 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, L.A.; Quigg, A. The Functional Response of Estuarine Fish Communities to Hydrologic Change in a Semi-Arid Ecosystem. Fishes 2024, 9, 461. https://doi.org/10.3390/fishes9110461
Gonzalez LA, Quigg A. The Functional Response of Estuarine Fish Communities to Hydrologic Change in a Semi-Arid Ecosystem. Fishes. 2024; 9(11):461. https://doi.org/10.3390/fishes9110461
Chicago/Turabian StyleGonzalez, Lisa A., and Antonietta Quigg. 2024. "The Functional Response of Estuarine Fish Communities to Hydrologic Change in a Semi-Arid Ecosystem" Fishes 9, no. 11: 461. https://doi.org/10.3390/fishes9110461
APA StyleGonzalez, L. A., & Quigg, A. (2024). The Functional Response of Estuarine Fish Communities to Hydrologic Change in a Semi-Arid Ecosystem. Fishes, 9(11), 461. https://doi.org/10.3390/fishes9110461