Gene Expression Comparison Between the Injured Tubercule Skin of Turbot (Scophthalmus maximus) and the Scale Skin of Brill (Scophthalmus rhombus)
Abstract
:1. Introduction
2. Material and Methods
2.1. Biological Sampling
2.2. RNA Extraction and Sample Selection
2.3. Characterization of the Turbot and Brill Skin Transcriptome
2.3.1. Turbot
2.3.2. Brill
2.3.3. RNA-Seq
2.3.4. Microarray Hybridizations and Gene Expression Analysis
2.3.5. Gene Ontology (GO) Functional Annotation and Enrichment
2.3.6. qPCR Microarray Validation
2.3.7. Histological Analysis
3. Results and Discussion
3.1. qPCR Microarray Validation
3.2. Skin Transcriptome Characterization
3.3. Differential Skin Response to Injury
3.4. Skin Response to Injury-Related Genes
3.5. Histological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldsmith, L.A. Physiology, Biochemistry, and Molecular Biology of the Skin, 2nd ed.; Goldsmith, L.A., Ed.; Oxford University Press: New York, NY, USA, 1991; ISBN 0195056124. [Google Scholar]
- Proksch, E.; Brandner, J.M.; Jensen, J.-M. The Skin: An Indispensable Barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Rakers, S.; Gebert, M.; Uppalapati, S.; Meyer, W.; Maderson, P.; Sell, A.F.; Kruse, C.; Paus, R. “Fish Matters”: The Relevance of Fish Skin Biology to Investigative Dermatology. Exp. Dermatol. 2010, 19, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Groff, J.M.M. Cutaneous Biology and Diseases of Fish. Vet. Clin. N. Am. Exot. Anim. Pract. 2001, 4, 321–411. [Google Scholar] [CrossRef]
- Ferguson, H.W. Systemic Pathology of Fish: A Text and Atlas of Normal Tissues in Teleosts and Their Responses in Disease, 2nd ed.; Ferguson, H.W., Ed.; Scotian Press: London, UK, 2006; Volume 44, ISBN 0-9553037-0-2. [Google Scholar]
- Harder, W. Anatomy of Fishes; Sokoloff, S., Translator; Schweizerbart Science Publishers: Stuttgart, Germany, 1976; ISBN 9783510650675. [Google Scholar]
- Whitear, M. The Skin Surface of Bony Fishes. J. Zool. 2009, 160, 437–454. [Google Scholar] [CrossRef]
- Whitear, M. A Functional Comparison between the Epidermis of Fish and of Amphibians. Symp. Zool. Soc. Lond. 1977, 39, 291–313. [Google Scholar]
- Bullock, A.M.; Roberts, R.J. The Dermatology of Marine Teleost Fish. I. The Normal Integument. Oceanogr. Mar. Biol.-Annu. Rev. 1974, 13, 383–411. [Google Scholar]
- Roberts, R.J. Fish Pathology, 4th ed.; Sons, J.W., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; ISBN 978-1-4443-3282-7. [Google Scholar]
- Mittal, A.K.; Munshi, J.S. On the Regeneration and Repair of Superficial Wounds in the Skin of Rita Rita (Ham.) (Bagridae, Pisces). Acta Anat. 1974, 88, 424–442. [Google Scholar] [CrossRef]
- Quilhac, A.; Sire, J.Y. Spreading, Proliferation, and Differentiation of the Epidermis after Wounding a Cichlid Fish, Hemichromis bimaculatus. Anat. Rec. 1999, 254, 435–451. [Google Scholar] [CrossRef]
- Mittal, A.K.; Rai, A.K.; Banerjee, T.K. Studies on the Pattern of Healing of Wounds in the Skin of a Catfish Heteropneustes Fossilis (Bloch) (Heteropneustidae, Pisces). Z. Mikrosk. Anat. Forsch. 1978, 91, 270–286. [Google Scholar]
- Bullock, A.M.; Roberts, R.J. Inhibition of Epidermal Migration in the Skin of Rainbow Trout Salmo gairdneri Richardson, in the Presence of Achronogemic Aeromonas salmonicida. J. Fish Dis. 1980, 3, 517–524. [Google Scholar] [CrossRef]
- Anderson, C.D.; Roberts, R.J. A Comparison of the Effects of Temperature on Wound Healing in a Tropical and a Temperate Teleost. J. Fish Biol. 1975, 7, 173–182. [Google Scholar] [CrossRef]
- Roberts, R.J. The Effect of Temperature on Diseases and Their Histopathological Manifestations in Fish. In The Pathology of Fishes; Ribelin, W.E., Migaki, G., Eds.; University of Wisconsin: Madison, WI, USA, 1975; pp. 477–496. [Google Scholar]
- Roberts, R.J.; Bullock, A.M. The Dermatology of Marine Teleost Fish. II. Dermatopathology of the Integument. Oceanogr. Mar. Biol. Annu. Rev. 1976, 14, 227–246. [Google Scholar]
- Sire, J.-Y.; Géraudie, J. Fine Structure of Regenerating Scales and Their Associated Cells in the Cichlid Hemichromis Bimaculatus (Gill). Cell Tissue Res. 1984, 237, 537–547. [Google Scholar] [CrossRef]
- Kobayashi, S.; Yamada, J.; Maekawa, K.; Ouchi, K. Calcification and Nucleation in Fish-Scales. Biominer. Res. Rep. 1972, 6, 84–90. [Google Scholar]
- Waterman, R.E. Fine Structure of Scale Development in the Teleost, Brachydanio rerio. Anat. Rec. 1970, 168, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Sire, J.-Y.; Allizard, F.; Babiar, O.; Bourguignon, J.; Quilhac, A. Scale Development in Zebrafish (Danio rerio). J. Anat. 1997, 190, 545–561. [Google Scholar] [CrossRef]
- Brown, G.A.; Wellings, S.R. Collagen Formation and Calcification in Teleost Scales. Z. Zellforsch. Mikrosk. Anat. 1969, 93, 571–582. [Google Scholar] [CrossRef]
- Lanzing, W.J.; Wright, R.G. The Ultrastructure and Calcification of the Scales of Tilapia mossambica (Peters). Cell Tissue Res. 1976, 167, 37–47. [Google Scholar] [CrossRef]
- Schönbörner, A.A.; Boivin, G.; Baud, C.A. The Mineralization Processes in Teleost Fish Scales. Cell Tissue Res 1979, 202, 203–212. [Google Scholar] [CrossRef]
- Zylberberg, L.; Nicolas, G. Ultrastructure of Scales in a Teleost (Carassius auratus L.) after Use of Rapid Freeze-Fixation and Freeze-Substitution. Cell Tissue Res. 1982, 223, 349–367. [Google Scholar] [CrossRef]
- Moyle, P.B.; Cech, J.J., Jr. Fishes: An Introduction to Ichthyology, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Vieira, F.A.; Gregório, S.F.; Ferraresso, S.; Thorne, M.; Costa, R.; Milan, M.; Bargelloni, L.; Clark, M.; Canario, A.V.; Power, D.M. Skin Healing and Scale Regeneration in Fed and Unfed Sea Bream, Sparus auratus. BMC Genom. 2011, 12, 490. [Google Scholar] [CrossRef]
- Feng, X.; Jia, Y.; Zhu, R.; Li, K.; Guan, Z.; Chen, Y. Comparative Transcriptome Analysis of Scaled and Scaleless Skins in Gymnocypris eckloni Provides Insights into the Molecular Mechanism of Scale Degeneration. BMC Genom. 2020, 21, 835. [Google Scholar] [CrossRef]
- Cai, W.; Kumar, S.; Navaneethaiyer, U.; Caballero-Solares, A.; Carvalho, L.A.; Whyte, S.K.; Purcell, S.L.; Gagne, N.; Hori, T.S.; Allen, M.; et al. Transcriptome Analysis of Atlantic Salmon (Salmo salar) Skin in Response to Sea Lice and Infectious Salmon Anemia Virus Co-Infection Under Different Experimental Functional Diets. Front. Immunol. 2022, 12, 5535. [Google Scholar] [CrossRef]
- Anderson, K.C.; Ghosh, B.; Chetty, T.; Walker, S.P.; Symonds, J.E.; Nowak, B.F. Transcriptomic Characterisation of a Common Skin Lesion in Farmed Chinook Salmon. Fish Shellfish Immunol. 2022, 124, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, A.; Xu, Y.; Jiang, B.; Lu, G.; Luo, X. Transcriptomic Variation of Locally-Infected Skin of Epinephelus Coioides Reveals the Mucosal Immune Mechanism against Cryptocaryon irritans. Fish Shellfish Immunol. 2017, 66, 398–410. [Google Scholar] [CrossRef]
- Gao, S. Immune and Gustatory Roles of the Channel Catfish Skin as Revealed by Comparative Transcriptomic Analyses. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2016. [Google Scholar]
- Rohner, N.; Bercsényi, M.; Orbán, L.; Kolanczyk, M.E.; Linke, D.; Brand, M.; Nüsslein-Volhard, C.; Harris, M.P. Duplication of Fgfr1 Permits Fgf Signaling to Serve as a Target for Selection during Domestication. Curr. Biol. 2009, 19, 1642–1647. [Google Scholar] [CrossRef]
- Kondo, S.; Kuwahara, Y.; Kondo, M.; Naruse, K.; Mitani, H.; Wakamatsu, Y.; Ozato, K.; Asakawa, S.; Shimizu, N.; Shima, A. The Medaka Rs-3 Locus Required for Scale Development Encodes Ectodysplasin-A Receptor. Curr. Biol. 2001, 11, 1202–1206. [Google Scholar]
- Nelson, J.S. Fishes of the World; Wiley: Hoboken, NJ, USA, 1994; ISBN 9780471547136. [Google Scholar]
- Froese, R.; Pauly, D. Scophthalmus rhombus. Brill: Fisheries, Gamefish. Available online: https://www.fishbase.de/summary/529 (accessed on 22 January 2021).
- Wheeler, A. A List of the Common and Scientific Names of Fishes of the British Isles. J. Fish Biol. 1992, 41, 1–37. [Google Scholar]
- Pardo, B.G.; Machordom, A.; Foresti, F.; Porto-Foresti, F.; Azevedo, M.F.C.; Bañón, R.; Sánchez, L.; Martínez, P. Phylogenetic Analysis of Flatfish (Order Pleuronectiformes) Based on Mitochondrial 16s RDNA Sequences. Sci. Mar. 2005, 69, 531–543. [Google Scholar] [CrossRef]
- Azevedo, M.; Oliveira, C.; Pardo, B.; Martinez, P.; Foresti, F. Phylogenetic Analysis of the Order Pleuronectiformes (Teleostei) Based on Sequences of 12S and 16S Mitochondrial Genes. Genet. Mol. Biol. 2008, 31, 284–292. [Google Scholar]
- Muus, B.J.; Nielsen, J.G. Sea Fish; Scandinavian Fishing Year Book: Hedehusene, Denmark, 1999; p. 340. [Google Scholar]
- Faílde, L.D.; Bermúdez, R.; Vigliano, F.; Quiroga, M.I.; Coscelli, G.A.; Quiroga, M.I. Morphological, Immunohistochemical and Ultrastructural Characterization of the Skin of Turbot (Psetta maxima L.). Tissue Cell 2014, 46, 334–342. [Google Scholar] [CrossRef]
- Zylberberg, L.; Chanet, B.; Wagemans, F.; Meunier, F.J. Structural Peculiarities of the Tubercles in the Skin of the Turbot, Scophthalmus maximus (L., 1758) (Osteichthyes, Pleuronectiformes, Scophthalmidae). J. Morphol. 2003, 258, 84–96. [Google Scholar] [CrossRef]
- Voronina, E.P. On Morphology and Taxonomy of Scophthalmids. J. Ichthyol. 2010, 50, 695–703. [Google Scholar] [CrossRef]
- Spinner, M.; Kortmann, M.; Traini, C.; Gorb, S.N. Key Role of Scale Morphology in Flatfishes (Pleuronectiformes) in the Ability to Keep Sand. Sci. Rep. 2016, 6, 26308. [Google Scholar] [CrossRef]
- Figueras, A.; Robledo, D.; Corvelo, A.; Hermida, M.; Pereiro, P.; Rubiolo, J.A.; Gómez-Garrido, J.; Carreté, L.; Bello, X.; Gut, M.; et al. Whole Genome Sequencing of Turbot (Scophthalmus maximus; Pleuronectiformes): A Fish Adapted to Demersal Life. DNA Res. 2016, 23, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Millán, A.; Gómez-Tato, A.; Fernández, C.; Pardo, B.G.; Alvarez-Dios, J.A.; Calaza, M.; Bouza, C.; Vázquez, M.; Cabaleiro, S.; Martínez, P. Design and Performance of a Turbot (Scophthalmus maximus) Oligo-Microarray Based on ESTs from Immune Tissues. Mar. Biotechnol. 2010, 12, 452–465. [Google Scholar] [CrossRef]
- Millán, A.; Gómez-Tato, A.; Pardo, B.G.; Fernández, C.; Bouza, C.; Vera, M.; Alvarez-Dios, J.A.; Cabaleiro, S.; Lamas, J.; Lemos, M.L.; et al. Gene Expression Profiles of the Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) along the Infection Process with Aeromonas salmonicida Using an Immune-Enriched Oligo-Microarray. Mar. Biotechnol. 2011, 13, 1099–1114. [Google Scholar] [CrossRef]
- Pardo, B.G.; Millán, A.; Gómez-Tato, A.; Fernández, C.; Bouza, C.; Alvarez-Dios, J.A.; Cabaleiro, S.; Lamas, J.; Leiro, J.M.; Martínez, P. Gene Expression Profiles of Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) along the Infection Process with Philasterides Dicentrarchi Using an Immune-Enriched Oligo-Microarray. Mar. Biotechnol. 2012, 14, 570–582. [Google Scholar] [CrossRef]
- Aramburu, O.; Blanco, A.; Bouza, C.; Martínez, P. Integration of Host-Pathogen Functional Genomics Data into the Chromosome-Level Genome Assembly of Turbot (Scophthalmus maximus). Aquaculture 2023, 564, 739067. [Google Scholar] [CrossRef]
- Martínez, P.; Robledo, D.; Taboada, X.; Blanco, A.; Moser, M.; Maroso, F.; Hermida, M.; Gómez-Tato, A.; Álvarez-Blázquez, B.; Cabaleiro, S.; et al. A Genome-Wide Association Study, Supported by a New Chromosome-Level Genome Assembly, Suggests Sox2 as a Main Driver of the Undifferentiatiated ZZ/ZW Sex Determination of Turbot (Scophthalmus maximus). Genomics 2021, 113, 1705–1718. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online] 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 15 September 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Ribas, L.; Pardo, B.G.; Fernández, C.; Alvarez-Diós, J.A.; Gómez-Tato, A.; Quiroga, M.I.; Planas, J.V.; Sitjà-Bobadilla, A.; Martínez, P.; Piferrer, F. A Combined Strategy Involving Sanger and 454 Pyrosequencing Increases Genomic Resources to Aid in the Management of Reproduction, Disease Control and Genetic Selection in the Turbot (Scophthalmus maximus). BMC Genom. 2013, 14, 180. [Google Scholar] [CrossRef]
- Saeed, A.I.; Bhagabati, N.K.; Braisted, J.C.; Liang, W.; Sharov, V.; Howe, E.A.; Li, J.; Thiagarajan, M.; White, J.A.; Quackenbush, J. TM4 Microarray Software Suite. Methods Enzymol. 2006, 411, 134–193. [Google Scholar] [CrossRef]
- Pereiro, P.; Balseiro, P.; Romero, A.; Dios, S.; Forn-Cuni, G.; Fuste, B.; Planas, J.V.; Beltran, S.; Novoa, B.; Figueras, A. High-Throughput Sequence Analysis of Turbot (Scophthalmus maximus) Transcriptome Using 454-Pyrosequencing for the Discovery of Antiviral Immune Genes. PLoS ONE 2012, 7, e35369. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Robledo, D.; Hernández-Urcera, J.; Cal, R.M.; Pardo, B.G.; Sánchez, L.; Martínez, P.; Viñas, A. Analysis of QPCR Reference Gene Stability Determination Methods and a Practical Approach for Efficiency Calculation on a Turbot (Scophthalmus maximus) Gonad Dataset. BMC Genom. 2014, 15, 648. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; ISBN 0443102791. [Google Scholar]
- Maroso, F.; Casanova, A.; do Prado, F.D.; Bouza, C.; Pardo, B.G.; Blanco, A.; Hermida, M.; Fernández, C.; Vera, M.; Martínez, P. Species Identification of Two Closely Exploited Flatfish, Turbot (Scophthalmus maximus) and Brill (Scophthalmus rhombus), Using a DdRADseq Genomic Approach. Aquat. Conserv. 2018, 28, 1253–1260. [Google Scholar] [CrossRef]
- Alves, R.N.; Gomes, A.S.; Stueber, K.; Tine, M.; Thorne, M.A.S.; Smáradóttir, H.; Reinhard, R.; Clark, M.S.; Rønnestad, I.; Power, D.M. The Transcriptome of Metamorphosing Flatfish. BMC Genom. 2016, 17, 413. [Google Scholar] [CrossRef]
- Ghodke, I.; Remisova, M.; Furst, A.; Kilic, S.; Reina-San-Martin, B.; Poetsch, A.R.; Altmeyer, M.; Soutoglou, E. AHNAK Controls 53BP1-Mediated P53 Response by Restraining 53BP1 Oligomerization and Phase Separation. Mol. Cell 2021, 81, 2596–2610.e7. [Google Scholar] [CrossRef]
- Ma, W.; Liao, Y.; Gao, Z.; Zhu, W.; Liu, J.; She, W. Overexpression of LIMA1 Indicates Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Clin. Med. Insights Oncol. 2022, 16, 11795549221109492. [Google Scholar] [CrossRef]
- Angireddy, R.; Kazmi, H.R.; Srinivasan, S.; Sun, L.; Iqbal, J.; Fuchs, S.Y.; Guha, M.; Kijima, T.; Yuen, T.; Zaidi, M.; et al. Cytochrome c Oxidase Dysfunction Enhances Phagocytic Function and Osteoclast Formation in Macrophages. FASEB J. 2019, 33, 9167–9181. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, S.; Chu, W. The Effects of Dietary Bacillus Cereus QSI-1 on Skin Mucus Proteins Profile and Immune Response in Crucian Carp (Carassius auratus Gibelio). Fish Shellfish Immunol. 2019, 89, 319–325. [Google Scholar] [CrossRef]
- Oláhová, M.; Yoon, W.H.; Thompson, K.; Jangam, S.; Fernandez, L.; Davidson, J.M.; Kyle, J.E.; Grove, M.E.; Fisk, D.G.; Kohler, J.N.; et al. Biallelic Mutations in ATP5F1D, Which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. Am. J. Hum. Genet. 2018, 102, 494–504. [Google Scholar] [CrossRef]
- Ivanov, A.; Shuvalova, E.; Egorova, T.; Shuvalov, A.; Sokolova, E.; Bizyaev, N.; Shatsky, I.; Terenin, I.; Alkalaeva, E. Polyadenylate-Binding Protein–Interacting Proteins PAIP1 and PAIP2 Affect Translation Termination. J. Biol. Chem. 2019, 294, 8630–8639. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Hong, W.-F.; Liu, M.-L.; Guo, X.; Yu, Y.-Y.; Cui, Y.-H.; Liu, T.-S.; Liang, L. An Integrated Bioinformatic Investigation of Mitochondrial Solute Carrier Family 25 (SLC25) in Colon Cancer Followed by Preliminary Validation of Member 5 (SLC25A5) in Tumorigenesis. Cell Death Dis. 2022, 13, 237. [Google Scholar] [CrossRef]
- Zaccone, G.; Fasulo, S.; Ainis, L. Distribution Patterns of the Paraneuronal Endocrine Cells in the Skin, Gills and the Airways of Fishes as Determined by Immunohistochemical and Histological Methods. Histochem. J. 1994, 26, 609–629. [Google Scholar] [CrossRef]
- Bergsson, G.; Agerberth, B.; Jörnvall, H.; Gudmundsson, G.H. Isolation and Identification of Antimicrobial Components from the Epidermal Mucus of Atlantic Cod (Gadus morhua). FEBS J. 2005, 272, 4960–4969. [Google Scholar] [CrossRef]
- Coelho, G.R.; Neto, P.P.; Barbosa, F.C.; Dos Santos, R.S.; Brigatte, P.; Spencer, P.J.; Sampaio, S.C.; D’Amélio, F.; Pimenta, D.C.; Sciani, J.M. Biochemical and Biological Characterization of the Hypanus americanus Mucus: A Perspective on Stingray Immunity and Toxins. Fish Shellfish Immunol. 2019, 93, 832–840. [Google Scholar] [CrossRef]
- Fernández-Montero, Á.; Torrecillas, S.; Montero, D.; Acosta, F.; Prieto-Álamo, M.-J.; Abril, N.; Jurado, J. Proteomic Profile and Protease Activity in the Skin Mucus of Greater Amberjack (Seriola dumerili) Infected with the Ectoparasite Neobenedenia Girellae—An Immunological Approach. Fish Shellfish Immunol. 2021, 110, 100–115. [Google Scholar] [CrossRef]
- Giordano, S.; Glasgow, E.; Tesser, P.; Schechter, N. A Type II Keratin Is Expressed in Glial Cells of the Goldfish Visual Pathway. Neuron 1989, 2, 1507–1516. [Google Scholar] [CrossRef]
- Kwon, E.; Todorova, K.; Wang, J.; Horos, R.; Lee, K.K.; Neel, V.A.; Negri, G.L.; Sorensen, P.H.; Lee, S.W.; Hentze, M.W.; et al. The RNA-Binding Protein YBX1 Regulates Epidermal Progenitors at a Posttranscriptional Level. Nat. Commun. 2018, 9, 1734. [Google Scholar] [CrossRef]
- Lapi, I.; Kolliniati, O.; Aspevik, T.; Deiktakis, E.E.; Axarlis, K.; Daskalaki, M.G.; Dermitzaki, E.; Tzardi, M.; Kampranis, S.C.; Marsni, Z.E.; et al. Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar. Drugs 2021, 19, 396. [Google Scholar] [CrossRef]
- Morita, T.; Tsuchiya, A.; Sugimoto, M. Myosin II Activity Is Required for Functional Leading-Edge Cells and Closure of Epidermal Sheets in Fish Skin Ex Vivo. Cell Tissue Res. 2011, 345, 379–390. [Google Scholar] [CrossRef]
- Malachowicz, M.; Wenne, R.; Burzynski, A. De Novo Assembly of the Sea Trout (Salmo trutta m. Trutta) Skin Transcriptome to Identify Putative Genes Involved in the Immune Response and Epidermal Mucus Secretion. PLoS ONE 2017, 12, e0172282. [Google Scholar] [CrossRef]
- Bai, J.; Hu, X.; Lü, A.; Wang, R.; Liu, R.; Sun, J.; Niu, Y. Skin Transcriptome, Tissue Distribution of Mucin Genes and Discovery of Simple Sequence Repeats in Crucian Carp (Carassius auratus). J. Fish Biol. 2020, 97, 1542–1553. [Google Scholar] [CrossRef]
- Long, Y.; Li, Q.; Zhou, B.; Song, G.; Li, T.; Cui, Z. De Novo Assembly of Mud Loach (Misgurnus Anguillicaudatus) Skin Transcriptome to Identify Putative Genes Involved in Immunity and Epidermal Mucus Secretion. PLoS ONE 2013, 8, e56998. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lim, Y.Y.; Kim, H.M.; Park, Y.M.; Kang, H.; Kim, B.J. Synergistic Inhibition of Tumor Necrosis Factor-Alpha-Stimulated Pro-Inflammatory Cytokine Expression in HaCaT Cells by a Combination of Rapamycin and Mycophenolic Acid. Ann. Dermatol. 2015, 27, 32–39. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Orfanidou, T.; Liaskos, C.; Smyk, D.S.; Spyrou, V.; Sakkas, L.I.; Rigopoulou, E.I.; Bogdanos, D.P. P38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity. Autoimmune Dis. 2013, 2013, 728529. [Google Scholar] [CrossRef]
- Jinlian, L.; Yingbin, Z.; Chunbo, W. P38 MAPK in Regulating Cellular Responses to Ultraviolet Radiation. J. Biomed. Sci. 2007, 14, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Subhan, F.; Kang, H.Y.; Lim, Y.; Ikram, M.; Baek, S.-Y.; Jin, S.; Jeong, Y.H.; Kwak, J.Y.; Yoon, S. Fish Scale Collagen Peptides Protect against CoCl2/TNF-α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF-κB Pathways in HaCaT Cells. Oxid. Med. Cell. Longev. 2017, 2017, 9703609. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.A.; Cardoso, J.C.R.; Power, D.M. Evolution of the Angiopoietin-like Gene Family in Teleosts and Their Role in Skin Regeneration. BMC Evol. Biol. 2017, 17, 14. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin Anti-Aging Strategies. Derm. Endocrinol. 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Van Zuijlen, P.P.M.; Ruurda, J.J.B.; Van Veen, H.A.; Van Marle, J.; Van Trier, A.J.M.; Groenevelt, F.; Kreis, R.W.; Middelkoop, E. Collagen Morphology in Human Skin and Scar Tissue: No Adaptations in Response to Mechanical Loading at Joints. Burns 2003, 29, 423–431. [Google Scholar] [CrossRef]
- Blair, M.J.; Jones, J.D.; Woessner, A.E.; Quinn, K.P. Skin Structure–Function Relationships and the Wound Healing Response to Intrinsic Aging. Adv. Wound Care 2019, 9, 127–143. [Google Scholar] [CrossRef]
- Hwang, S.J.; Ha, G.H.; Seo, W.Y.; Kim, C.K.; Kim, K.J.; Lee, S.B. Human Collagen Alpha-2 Type I Stimulates Collagen Synthesis, Wound Healing, and Elastin Production in Normal Human Dermal Fibroblasts (HDFs). BMB Rep. 2020, 53, 539–544. [Google Scholar] [CrossRef]
- Ge, B.; Wang, H.; Li, J.; Liu, H.; Yin, Y.; Zhang, N.; Qin, S. Comprehensive Assessment of Nile Tilapia Skin (Oreochromis Niloticus) Collagen Hydrogels for Wound Dressings. Mar. Drugs 2020, 18, 178. [Google Scholar] [CrossRef]
- Burdick, J.A.; Prestwich, G.D. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Mater. 2011, 23, H41–H56. [Google Scholar] [CrossRef]
- Kundu, B.; Kundu, S.C. Silk Sericin/Polyacrylamide in Situ Forming Hydrogels for Dermal Reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef]
- Gnavi, S.; di Blasio, L.; Tonda-Turo, C.; Mancardi, A.; Primo, L.; Ciardelli, G.; Gambarotta, G.; Geuna, S.; Perroteau, I. Gelatin-Based Hydrogel for Vascular Endothelial Growth Factor Release in Peripheral Nerve Tissue Engineering. J. Tissue Eng. Regen. Med. 2017, 11, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Desimone, M.F.; Hélary, C.; Mosser, G.; Giraud-Guille, M.M.; Livage, J.; Coradin, T. Fibroblast Encapsulation in Hybrid Silica–Collagen Hydrogels. J. Mater. Chem. 2010, 20, 666–668. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.M.; Chi, C.F.; Luo, H.Y.; Deng, S.G.; Ma, J.Y. Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea). Mar. Drugs 2013, 11, 4641–4661. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Koyama, Y.I.; Nomura, Y. Effects of Collagen Peptide Ingestion on UV-B-Induced Skin Damage. Biosci. Biotechnol. Biochem. 2009, 73, 930–932. [Google Scholar] [CrossRef]
- Lee, J.K.; Kang, S.I.; Kim, Y.J.; Kim, M.J.; Heu, M.S.; Choi, B.D.; Kim, J.S. Comparison of Collagen Characteristics of Sea- and Freshwater-Rainbow Trout Skin. Food Sci. Biotechnol. 2016, 25, 131–136. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, N.; Xue, Y.; Ding, T.; Liu, X.; Mo, X.; Sun, J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf. B Biointerfaces 2016, 143, 415–422. [Google Scholar] [CrossRef]
- Kim, W.S.; Park, B.S.; Sung, J.H.; Yang, J.M.; Park, S.B.; Kwak, S.J.; Park, J.S. Wound Healing Effect of Adipose-Derived Stem Cells: A Critical Role of Secretory Factors on Human Dermal Fibroblasts. J. Dermatol. Sci. 2007, 48, 15–24. [Google Scholar] [CrossRef]
- Ross, R.; Benditt, E.P. WOUND HEALING AND COLLAGEN FORMATION IV. Distortion of Ribosomal Patterns of Fibroblasts in Scurvy. J. Cell Biol. 1964, 22, 365–398. [Google Scholar] [CrossRef]
- Montesano, R.; Orci, L. Transforming Growth Factor Beta Stimulates Collagen-Matrix Contraction by Fibroblasts: Implications for Wound Healing. Proc. Natl. Acad. Sci. USA 1988, 85, 4894–4897. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, P.; Zhou, C.; Li, S.; Hong, P. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis Niloticus): Characterization and Wound Healing Evaluation. Mar. Drugs 2017, 15, 102. [Google Scholar] [CrossRef]
- Chen, P.; Cescon, M.; Bonaldo, P. Lack of Collagen VI Promotes Wound-Induced Hair Growth. J. Investig. Dermatol. 2015, 135, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Lettmann, S.; Bloch, W.; Maaß, T.; Niehoff, A.; Schulz, J.N.; Eckes, B.; Eming, S.A.; Bonaldo, P.; Paulsson, M.; Wagener, R. Col6a1 Null Mice as a Model to Study Skin Phenotypes in Patients with Collagen VI Related Myopathies: Expression of Classical and Novel Collagen VI Variants during Wound Healing. PLoS ONE 2014, 9, e105686. [Google Scholar] [CrossRef] [PubMed]
- Bonaldo, P.; Russo, V.; Bucciotti, F.; Doliana, R.; Colombatti, A. Structural and Functional Features of the A3 Chain Indicate a Bridging Role for Chicken Collagen VI in Connective Tissues. Biochemistry 1990, 29, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Minamitani, T.; Ikuta, T.; Saito, Y.; Takebe, G.; Sato, M.; Sawa, H.; Nishimura, T.; Nakamura, F.; Takahashi, K.; Ariga, H.; et al. Modulation of Collagen Fibrillogenesis by Tenascin-X and Type VI Collagen. Exp. Cell Res. 2004, 298, 305–315. [Google Scholar] [CrossRef]
- Kuo, H.J.; Maslen, C.L.; Keene, D.R.; Glanville, R.W. Type VI Collagen Anchors Endothelial Basement Membranes by Interacting with Type IV Collagen. J. Biol. Chem. 1997, 272, 26522–26529. [Google Scholar] [CrossRef]
- Theocharidis, G.; Drymoussi, Z.; Kao, A.P.; Barber, A.H.; Lee, D.A.; Braun, K.M.; Connelly, J.T. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. J. Investig. Dermatol. 2016, 136, 74–83. [Google Scholar] [CrossRef]
- Shum, L.; Wang, X.; Kane, A.A.; Nuckolls, G.H. BMP4 Promotes Chondrocyte Proliferation and Hypertrophy in the Endochondral Cranial Base. Int. J. Dev. Biol. 2004, 47, 423–431. [Google Scholar]
- Mundlos, S.; Zabel, B. Developmental Expression of Human Cartilage Matrix Protein. Dev. Dyn. 1994, 199, 241–252. [Google Scholar] [CrossRef]
- Higgins, P.J.; Czekay, R.P.; Wilkins-Port, C.E.; Higgins, S.P.; Freytag, J.; Overstreet, J.M.; Klein, R.M.; Higgins, C.E.; Samarakoon, R. PAI-1: An Integrator of Cell Signaling and Migration. Int. J. Cell Biol. 2011, 562481. [Google Scholar] [CrossRef]
- Simone, T.M.; Higgins, P.J. Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. J. Dev. Biol. 2015, 3, 11–24. [Google Scholar] [CrossRef]
- Klein, R.M.; Bernstein, D.; Higgins, S.P.; Higgins, C.E.; Higgins, P.J. SERPINE1 Expression Discriminates Site-Specific Metastasis in Human Melanoma. Exp. Dermatol. 2012, 21, 551–554. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Vaughan, D.E. PAI-1 in Tissue Fibrosis. J. Cell Physiol. 2012, 227, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Lobie, P.E.; Breipohl, W.; Lincoln, D.T.; Garcia-Aragon, J.; Waters, M.J. Localization of the Growth Hormone Receptor/Binding Protein in Skin. J. Endocrinol. 1990, 126, 467. [Google Scholar] [CrossRef] [PubMed]
- Povóa, G.; Diniz, L.M. O Sistema Do Hormônio de Crescimento: Interações Com a Pele. Bras Dermatol. 2011, 86, 1159–1165. [Google Scholar] [CrossRef]
- Pilewski, J.M.; Liu, L.; Henry, A.C.; Knauer, A.V.; Feghali-Bostwick, C.A. Insulin-Like Growth Factor Binding Proteins 3 and 5 Are Overexpressed in Idiopathic Pulmonary Fibrosis and Contribute to Extracellular Matrix Deposition. Am. J. Pathol. 2005, 166, 399–407. [Google Scholar] [CrossRef]
- Yasuoka, H.; Jukic, D.M.; Zhou, Z.; Choi, A.M.K.; Feghali-Bostwick, C.A. Insulin-like Growth Factor Binding Protein 5 Induces Skin Fibrosis: A Novel Murine Model for Dermal Fibrosis. Arthritis Rheum. 2006, 54, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.; Allan, G.J.; Lochrie, J.D.; Flint, D.J. Insulin-like Growth Factor-Binding Protein-5 (IGFBP-5): A Critical Member of the IGF Axis. Biochem. J. 2006, 395, 1–19. [Google Scholar] [CrossRef]
- Verstrepen, L.; Verhelst, K.; van Loo, G.; Carpentier, I.; Ley, S.C.; Beyaert, R. Expression, Biological Activities and Mechanisms of Action of A20 (TNFAIP3). Biochem. Pharmacol. 2010, 80, 2009–2020. [Google Scholar] [CrossRef]
- Lee, E.G.; Boone, D.L.; Chai, S.; Libby, S.L.; Chien, M.; Lodolce, J.P.; Ma, A. Failure to Regulate TNF-Induced NF-ΚB and Cell Death Responses in A20-Deficient Mice. Science (1979) 2000, 289, 2350–2354. [Google Scholar] [CrossRef]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in Inflammation and Autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef]
- Ma, A.; Malynn, B.A. A20: Linking a Complex Regulator of Ubiquitylation to Immunity and Human Disease. Nat. Rev. Immunol. 2012, 12, 774–785. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ogata, H.; Morikawa, M.; Iijima, S.; Harada, N.; Yoshida, T.; Brown, W.R.; Inoue, N.; Hamada, Y.; Ishii, H.; et al. Distribution and Partial Characterisation of IgG Fc Binding Protein in Various Mucin Producing Cells and Body Fluids. Gut 2002, 51, 169–176. [Google Scholar] [CrossRef]
- Kouznetsova, I.; Gerlach, K.L.; Zahl, C.; Hoffmann, W. Expression Analysis of Human Salivary Glands by Laser Microdissection: Differences Between Submandibular and Labial Glands. Cell. Physiol. Biochem. 2010, 26, 375–382. [Google Scholar] [CrossRef]
- Kobayashi, K.; Blaser, M.J.; Brown, W.R. Identification of a Unique IgG Fc Binding Site in Human Intestinal Epithelium. J. Immunol. 1989, 143, 2567–2574. [Google Scholar] [CrossRef]
- Vázquez-Mendoza, A.; Carrero, J.C.; Rodriguez-Sosa, M. Parasitic Infections: A Role for C-Type Lectins Receptors. Biomed. Res. Int. 2013, 2013, 456352. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.H.; Gringhuis, S.I. Signalling through C-Type Lectin Receptors: Shaping Immune Responses. Nat. Rev. Immunol. 2009, 9, 465–479. [Google Scholar] [CrossRef]
- Redelinghuys, P.; Brown, G.D. Inhibitory C-Type Lectin Receptors in Myeloid Cells. Immunol. Lett. 2011, 136, 1–12. [Google Scholar] [CrossRef]
- Zhu, Q.; Huo, H.; Fu, Q.; Yang, N.; Xue, T.; Zhuang, C.; Liu, X.; Wang, B.; Su, B.; Li, C. Identification and Characterization of a C-Type Lectin in Turbot (Scophthalmus maximus) Which Functioning as a Pattern Recognition Receptor That Binds and Agglutinates Various Bacteria. Fish Shellfish Immunol. 2021, 115, 104–111. [Google Scholar] [CrossRef]
- Nakamoto, M.; Takeuchi, Y.; Akita, K.; Kumagai, R.; Suzuki, J.; Koyama, T.; Noda, T.; Yoshida, K.; Ozaki, A.; Araki, K.; et al. A Novel C-Type Lectin Gene Is a Strong Candidate Gene for Benedenia Disease Resistance in Japanese Yellowtail, Seriola quinqueradiata. Dev. Comp. Immunol. 2017, 76, 361–369. [Google Scholar] [CrossRef]
- Tsutsui, S.; Dotsuta, Y.; Ono, A.; Suzuki, M.; Tateno, H.; Hirabayashi, J.; Nakamura, O. A C-Type Lectin Isolated from the Skin of Japanese Bullhead Shark (Heterodontus japonicus) Binds a Remarkably Broad Range of Sugars and Induces Blood Coagulation. J. Biochem. 2015, 157, 345–356. [Google Scholar] [CrossRef]
- Welter, J.F.; Eckert, R.L. Differential Expression of the Fos and Jun Family Members C-Fos, FosB, Fra-1, Fra-2, c-Jun, JunB and JunD during Human Epidermal Keratinocyte Differentiation. Oncogene 1995, 11, 2681–2687. [Google Scholar]
- Florin, L.; Knebel, J.; Zigrino, P.; Vonderstrass, B.; Mauch, C.; Schorpp-Kistner, M.; Szabowski, A.; Angel, P. Delayed Wound Healing and Epidermal Hyperproliferation in Mice Lacking JunB in the Skin. J. Investig. Dermatol. 2006, 126, 902–911. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, T.; Tan, L.; Yu, J.T. TYROBP in Alzheimer’s Disease. Mol. Neurobiol. 2015, 51, 820–826. [Google Scholar] [CrossRef]
- Konishi, H.; Kiyama, H. Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Front. Cell Neurosci. 2018, 12, 206. [Google Scholar] [CrossRef]
- Tessarz, A.S.; Cerwenka, A. The TREM-1/DAP12 Pathway. Immunol. Lett. 2008, 116, 111–116. [Google Scholar] [CrossRef]
- Lanier, L.L. DAP10- and DAP12-Associated Receptors in Innate Immunity. Immunol. Rev. 2009, 227, 150–160. [Google Scholar] [CrossRef]
- Kobayashi, M.; Konishi, H.; Takai, T.; Kiyama, H. A DAP12-Dependent Signal Promotes pro-Inflammatory Polarization in Microglia Following Nerve Injury and Exacerbates Degeneration of Injured Neurons. Glia 2015, 63, 1073–1082. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Q.; Chen, J.; Huang, W.; Liu, J.; Wang, C.; Huang, M.; Li, H.; Zhou, S.; Xie, M.; et al. The Fgl2 Interaction with Tyrobp Promotes the Proliferation of Cutaneous Squamous Cell Carcinoma by Regulating ERK-Dependent Autophagy. Int. J. Med. Sci. 2022, 19, 195–204. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, F.; Zhang, Q.; Huang, X.; Wang, Z. Autophagy and Skin Wound Healing. Burns Trauma 2022, 10, 3. [Google Scholar] [CrossRef]
- Mohan, R.; Chintala, S.K.; Jung, J.C.; Villar, W.V.L.; McCabe, F.; Russo, L.A.; Lee, Y.; McCarthy, B.E.; Wollenberg, K.R.; Jester, J.V.; et al. Matrix Metalloproteinase Gelatinase B (MMP-9) Coordinates and Effects Epithelial Regeneration. J. Biol. Chem. 2002, 277, 2065–2072. [Google Scholar] [CrossRef]
- Gillard, J.A.; Reed, M.W.R.; Buttle, D.; Cross, S.S.; Brown, N.J. Matrix Metalloproteinase Activity and Immunohistochemical Profile of Matrix Metalloproteinase-2 and -9 and Tissue Inhibitor of Metalloproteinase-1 during Human Dermal Wound Healing. Wound Repair Regen. 2004, 12, 295–304. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kishimoto, J.; Ge, Y.; Jin, W.; Hudson, D.L.; Ouahes, N.; Ehama, R.; Shinkai, H.; Burgeson, R.E. A Novel Mechanism of Matrix Metalloproteinase-9 Gene Expression Implies a Role for Keratinization. EMBO Rep. 2001, 2, 604–608. [Google Scholar] [CrossRef]
- Brotchie, H.; Wakefield, D. Fibronectin: Structure, Function and Significance in Wound Healing. Australas. J. Dermatol. 1990, 31, 47–56. [Google Scholar] [CrossRef]
- Sun, L.; Zou, Z.; Collodi, P.; Xu, F.; Xu, X.; Zhao, Q. Identification and Characterization of a Second Fibronectin Gene in Zebrafish. Matrix Biol. 2005, 24, 69–77. [Google Scholar] [CrossRef]
- Yoshinari, N.; Ishida, T.; Kudo, A.; Kawakami, A. Gene Expression and Functional Analysis of Zebrafish Larval Fin Fold Regeneration. Dev. Biol. 2009, 325, 71–81. [Google Scholar] [CrossRef]
- Shibata, E.; Ando, K.; Murase, E.; Kawakami, A. Heterogeneous Fates and Dynamic Rearrangement of Regenerative Epidermis-Derived Cells during Zebrafish Fin Regeneration. Development 2018, 145, dev162016. [Google Scholar] [CrossRef]
- Rasmussen, J.P.; Vo, N.-T.; Sagasti, A. Fish Scales Dictate the Pattern of Adult Skin Innervation and Vascularization. Dev. Cell 2018, 46, 344–359.e4. [Google Scholar] [CrossRef]
Turbot | Brill | Shared Between Species | |
---|---|---|---|
Identified genes with RNA-seq | - | 11,838 | - |
Annotated genes with RNA-seq | - | 11,339 | - |
Identified genes with the microarray | 15,854 | 12,447 | 10,101 |
Annotated genes in the microarray | 11,953 | 9629 | 7883 |
Overlapping genes (RNA-seq and microarray) | - | 6086 | 4487 |
Gene Description | Function in Literature | References |
---|---|---|
AHNAK nucleoprotein | Cell architecture, intracellular trafficking, membrane repair | [63] |
LIM domain and actin binding 1a | Cell proliferation | [64] |
cytochrome c oxidase subunit 7C | Immune response | [65] |
protein S100-A6 | Immune response | [66] |
ATP synthase F1 subunit delta | Metabolism | [67] |
polyadenylate-binding protein 1a | Metabolism | [68] |
solute carrier family 25 member 3a | Metabolism | [69] |
enolase 1a | Neuroendocrine system | [70] |
60S acidic ribosomal protein P2 | Protein synthesis, immune function | [71,72] |
ribosomal protein S10 | Protein synthesis, immune function | [71,72] |
ribosomal protein S13 | Protein synthesis, immune function | [71,72] |
ribosomal protein S2 | Protein synthesis, immune function | [71,72] |
ribosomal protein S20 | Protein synthesis, immune function | [71,72] |
ribosomal protein S23 | Protein synthesis, immune function | [71,72] |
ribosomal protein S24 | Protein synthesis, immune function | [71,72] |
keratin type I cytoskeletal 13 | Skin structure | [73] |
keratin type II cytoskeletal cochleal | Skin structure | [73] |
intermediate filament protein ON3 | Tissue development | [74] |
Y box binding protein 1 | Tissue homeostasis | [75] |
collagen type I | Tissue repair | [76] |
myosin-9-like | Tissue repair | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estêvão, J.; Blanco-Hortas, A.; Rubiolo, J.A.; Aramburu, Ó.; Fernández, C.; Gómez-Tato, A.; Power, D.M.; Martínez, P. Gene Expression Comparison Between the Injured Tubercule Skin of Turbot (Scophthalmus maximus) and the Scale Skin of Brill (Scophthalmus rhombus). Fishes 2024, 9, 462. https://doi.org/10.3390/fishes9110462
Estêvão J, Blanco-Hortas A, Rubiolo JA, Aramburu Ó, Fernández C, Gómez-Tato A, Power DM, Martínez P. Gene Expression Comparison Between the Injured Tubercule Skin of Turbot (Scophthalmus maximus) and the Scale Skin of Brill (Scophthalmus rhombus). Fishes. 2024; 9(11):462. https://doi.org/10.3390/fishes9110462
Chicago/Turabian StyleEstêvão, João, Andrés Blanco-Hortas, Juan A. Rubiolo, Óscar Aramburu, Carlos Fernández, Antonio Gómez-Tato, Deborah M. Power, and Paulino Martínez. 2024. "Gene Expression Comparison Between the Injured Tubercule Skin of Turbot (Scophthalmus maximus) and the Scale Skin of Brill (Scophthalmus rhombus)" Fishes 9, no. 11: 462. https://doi.org/10.3390/fishes9110462
APA StyleEstêvão, J., Blanco-Hortas, A., Rubiolo, J. A., Aramburu, Ó., Fernández, C., Gómez-Tato, A., Power, D. M., & Martínez, P. (2024). Gene Expression Comparison Between the Injured Tubercule Skin of Turbot (Scophthalmus maximus) and the Scale Skin of Brill (Scophthalmus rhombus). Fishes, 9(11), 462. https://doi.org/10.3390/fishes9110462