Monitoring and Conservation of Freshwater and Marine Fishes: Synopsis
1. Introduction
2. Synopsis for Special Issue
2.1. Assessments of Drought or the Climate Crisis
2.2. Assemblage Assessments Dealing with Non-Native or Stocked Species
2.3. Assemblage Assessments with Macrohabitat Considerations
2.4. Eurasian-Minnow Genetics, Hybridization, and Speciation
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vadas, R.L., Jr.; Hughes, R.M.; Bae, Y.J.; Baek, M.J.; Gonzáles, O.C.; Callisto, M.; de Carvalho, D.R.; Chen, K.; Ferreira, M.T.; Fierro, P.; et al. Assemblage-based biomonitoring of aquatic ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biol. Secur. 2022, 1, 100054. [Google Scholar]
- Hughes, R.M.; Vadas, R.L., Jr.; Michael, J.H., Jr.; Knutson, A.C., Jr.; DellaSala, D.A.; Burroughs, J.; Beecher, H. Why advocate—And how? In Conservation Science and Advocacy for a Planet in Crisis: Speaking Truth to Power; DellaSala, D., Ed.; Elsevier: Cambridge, MA, USA, 2021; pp. 177–197. [Google Scholar]
- Sulliván, S.M.P.; Hughes, R.M.; Vadas, R.L., Jr.; Davies, G.T.; Shirey, P.D.; Colvin, S.A.R.; Infante, D.M.; Danehy, R.J.; Sanchez, N.K.; Keast, R.B. Waterbody connectivity: Linking science and policy for improved waterbody protection. BioScience 2024, in press.
- Hauer, F.R.; Locke, H.; Dreitz, V.J.; Hebblewhite, M.; Lowe, W.H.; Muhlfeld, C.C.; Nelson, C.R.; Proctor, M.F.; Rood, S.B. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2016, 2, e1600026. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.M.; Karr, J.R.; Vadas, R.L.; DellaSala, D.A.; Callisto, M.; Feio, M.J.; Ferreira, T.; Kleynhans, N.; Ruaro, R.; Yoder, C.O.; et al. Global concerns related to water biology and security: The need for language and policies that safeguard living resources versus those that dilute scientific knowledge. Water Biol. Secur. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Hughes, R.M.; Chambers, D.M.; DellaSala, D.A.; Karr, J.R.; Lubetkin, S.C.; O’Neal, S.; Vadas, R.L., Jr.; Woody, C.A. Environmental impact assessments should include rigorous scientific peer review. Water Biol. Secur. 2024, 3, 100269. [Google Scholar] [CrossRef]
- Vadas, R.L., Jr.; Beecher, H.A.; Boessow, S.N.; Kohr, J.H. Coastal Cutthroat Trout redd counts impacted by natural water supply variations. North Am. J. Fish. Manag. 2016, 36, 900–912. [Google Scholar] [CrossRef]
- Ruaro, R.; Gubiani, É.A.; Padial, A.A.; Karr, J.R.; Hughes, R.M.; Mormul, R.P. Responses of multimetric indices to disturbance are affected by index construction features. Environ. Rev. 2024, 32, 278–293. [Google Scholar] [CrossRef]
- Resh, V.H.; McElravy, E.P. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In Freshwater Biomonitoring and Benthic Macroinvertebrates; Rosenberg, D.M., Resh, V.H., Eds.; Chapman & Hall: New York, NY, USA, 1993; pp. 159–194. [Google Scholar]
- Whittier, T.R.; Hughes, R.M.; Stoddard, J.L.; Lomnicky, G.A.; Peck, D.V.; Herlihy, A.T. A structured approach to developing indices of biotic integrity: Three examples from western USA streams and rivers. Trans. Am. Fish. Soc. 2007, 136, 718–735. [Google Scholar] [CrossRef]
- Aparicio, E.; Alcaraz, C.; Rocaspana, R.; Pou-Rovira, Q.; García-Berthou, E. Adaptation of the European Fish Index (EFI+) to include the alien fish pressure. Fishes 2024, 9, 13. [Google Scholar] [CrossRef]
- Allen, A.P.; Whittier, T.R.; Larsen, D.P.; Kaufmann, P.R.; O’Connor, R.J.; Hughes, R.M.; Stemberger, R.S.; Dixit, S.S.; Brinkhurst, R.O.; Herlihy, A.T.; et al. Concordance of taxonomic composition patterns across multiple lake assemblages: Effects of scale, body size, and land use. Can. J. Fish. Aquat. Sci. 1999, 56, 2029–2040. [Google Scholar] [CrossRef]
- Feio, M.J.; Hughes, R.M.; Serra, S.R.; Nichols, S.J.; Kefford, B.J.; Lintermans, M.; Robinson, W.; Odume, O.N.; Callisto, M.; Macedo, D.R.; et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Change Biol. 2023, 29, 355–374. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, L.H. Evaluating and managing cumulative impacts: Processes and constraints. Environ. Manag. 2000, 26, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Peck, M.A. Climate change effects of fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 2010, 77, 1745–1779. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.L.; Bartuska, A.M.; Brown, J.H.; Carpenter, S.; d’Antonio, C.; Francis, R.; Franklin, J.F.; MacMahon, J.A.; Noss, R.F.; Parsons, D.J.; et al. The report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management. Ecol. Appl. 1996, 6, 665–691. [Google Scholar] [CrossRef]
- Rahel, F.J. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 2002, 33, 291–315. [Google Scholar] [CrossRef]
- Leprieur, F.; Beauchard, O.; Blanchet, S.; Oberdorff, T.; Brosse, S. Fish invasions in the world’s river systems: When natural processes are blurred by human activities. PLoS Biol. 2008, 6, e28. [Google Scholar]
- Ruaro, R.; Mormul, R.P.; Gubiani, É.A.; Piana, P.A.; Cunico, A.M.; da Graca, W.J. Non-native fish species are related to the loss of ecological integrity in neotropical streams: A multimetric approach. Hydrobiologia 2018, 817, 413–430. [Google Scholar] [CrossRef]
- Pompeu, P.S.; Wouters, L.; Hilário, H.O.; Loures, R.C.; Peressin, A.; Prado, I.G.; Suzuki, F.M.; Carvalho, D.C. Inadequate sampling frequency and imprecise taxonomic identification mask results in studies of migratory freshwater fish ichthyoplankton. Fishes 2023, 8, 518. [Google Scholar] [CrossRef]
- Pawlowski, J.; Bonin, A.; Boyer, F.; Cordier, T.; Taberlet, P. Environmental DNA for biomonitoring. Mol. Ecol. 2021, 30, 2931–2936. [Google Scholar] [CrossRef]
- Takahashi, M.; Saccò, M.; Kestel, J.H.; Nester, G.; Campbell, M.A.; Van Der Heyde, M.; Heydenrych, M.J.; Juszkiewicz, D.J.; Nevill, P.; Dawkins, K.L.; et al. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Sci. Total Environ. 2023, 873, 162322. [Google Scholar] [CrossRef]
- von der Heyden, S. Environmental DNA surveys of African biodiversity: State of knowledge, challenges, and opportunities. Environ. DNA 2023, 5, 12–17. [Google Scholar] [CrossRef]
- Hamilton, E.F.; Juurakko, C.L.; Engel, K.; Neufeld, J.D.; Casselman, J.M.; Greer, C.W.; Walker, V.K. Environmental impacts on skin microbiomes of sympatric high Arctic salmonids. Fishes 2023, 8, 214. [Google Scholar] [CrossRef]
- Pinder, A.C.; Gozlan, R.E.; Britton, J.R. Dispersal of the invasive topmouth gudgeon, Pseudorasbora parva in the UK: A vector for an emergent infectious disease. Fish. Manag. Ecol. 2005, 12, 411–414. [Google Scholar] [CrossRef]
- Robinson, W.; Koehn, J.; Lintermans, M. Contemporary trends in the spatial extent of common riverine fish species in Australia’s Murray–Darling Basin. Fishes 2024, 9, 221. [Google Scholar] [CrossRef]
- AFS (American Fisheries Society). Statement of world aquatic scientific societies on the need to take urgent action against human-caused climate change, based on scientific evidence. Fisheries 2021, 46, 413–422. Available online: https://climate.fisheries.org/world-climate-statement (accessed on 10 November 2024). [CrossRef]
- Winfield, I.J.; Hateley, J.; Fletcher, J.M.; James, J.B.; Bean, C.W.; Clabburn, P. Population trends of Arctic Charr (Salvelinus alpinus) in the UK: Assessing the evidence for a widespread decline in response to climate change. Hydrobiologia 2010, 650, 55–65. [Google Scholar] [CrossRef]
- Hughes, R.M.; Herlihy, A.T.; Comeleo, R.; Peck, D.V.; Mitchell, R.M.; Paulsen, S. Patterns in and predictors of stream and river macroinvertebrate genera and fish species richness across the conterminous USA. Knowl. Manag. Aquat. Ecosyst. 2023, 424, 19. [Google Scholar] [CrossRef]
- TNCA. The nationally significant wetlands of Brindingabba. In The Nature Conservancy-Australia, Land and Freshwater Stories (Victoria); TNCA: Melbourne, VIC, Australia, 2022; 1p, Available online: https://www.natureaustralia.org.au/what-we-do/our-priorities/land-and-freshwater/land-freshwater-stories/brindingabba (accessed on 10 November 2024).
- Bergström, K.; Berggren, H.; Nordahl, O.; Koch-Schmidt, P.; Tibblin, P.; Larsson, P. Seasonal and daily movement patterns by Wels catfish (Silurus glanis) at the northern fringe of its distribution range. Fishes 2024, 9, 280. [Google Scholar] [CrossRef]
- Vindenes, Y.; Edeline, E.; Ohlberger, J.; Langangen, Ø.; Winfield, I.J.; Stenseth, N.C.; Vøllestad, L.A. Effects of climate change on trait-based dynamics of a top predator in freshwater ecosystems. Am. Nat. 2014, 183, 243–256. [Google Scholar] [CrossRef]
- Kajee, M.; Dallas, H.F.; Griffiths, C.L.; Kleynhans, C.J.; Shelton, J.M. The status of South Africa’s freshwater fish fauna: A spatial analysis of diversity, threat, invasion, and protection. Fishes 2023, 8, 571. [Google Scholar] [CrossRef]
- Jelks, H.L.; Walsh, S.J.; Burkhead, N.M.; Contreras-Balderas, S.; Diaz-Pardo, E.; Hendrickson, D.A.; Lyons, J.; Mandrak, N.E.; McCormick, F.; Nelson, J.S.; et al. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 2008, 33, 372–407. [Google Scholar]
- Jones, P.E.; Tummers, J.S.; Galib, S.M.; Woodford, D.J.; Hume, J.B.; Silva, L.G.; Braga, R.R.; Garcia de Leaniz, C.; Vitule, J.R.; Herder, J.E.; et al. The use of barriers to limit the spread of aquatic invasive animal species: A global review. Front. Ecol. Evol. 2021, 9, 611631. [Google Scholar]
- de Carvalho, D.R.; Leal, C.G.; Junqueira, N.T.; de Castro, M.A.; Fagundes, D.C.; Alves, C.B.; Hughes, R.M.; Pompeu, P.S. A fish-based multimetric index for Brazilian savanna streams. Ecol. Indic. 2017, 77, 386–396. [Google Scholar]
- Faro, A.T.; Ferreira, M.T.; Oliveira, J.M. A fish-based tool for the quality assessment of Portuguese large rivers. Fishes 2024, 9, 149. [Google Scholar] [CrossRef]
- Schinegger, R.; Palt, M.; Segurado, P.; Schmutz, S. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Sci. Total Environ. 2016, 573, 1079–1088. [Google Scholar] [CrossRef]
- Wildhaber, M.L.; West, B.M.; Bennett, K.R.; May, J.H.; Albers, J.L.; Green, N.S. Sicklefin chub (Macrhybopsis meeki) and sturgeon chub (M. gelida) temporal and spatial patterns from extant population monitoring and habitat data spanning 23 years. Fishes 2024, 9, 43. [Google Scholar] [CrossRef]
- Hughes, R.M.; Rinne, J.N.; Calamusso, B. Historical changes in large river fish assemblages of the Americas: A synthesis. Am. Fish. Soc. Symp. 2005, 45, 603–612. [Google Scholar]
- Schmutz, S.; Jurajda, P.; Kaufmann, S.; Lorenz, A.W.; Muhar, S.; Paillex, A.; Poppe, M.; Wolter, C. Response of fish assemblages to hydromorphological restoration in central and northern European rivers. Hydrobiologia 2016, 769, 67–78. [Google Scholar] [CrossRef]
- Monahan, D.; Wesner, J.S.; Parker, S.M.; Schartel, H. Spatial patterns in fish assemblages across the National Ecological Observation Network (NEON): The first six years. Fishes 2023, 8, 55. [Google Scholar] [CrossRef]
- Heppell, S.A.; Heppell, S.S.; Arbuckle, N.S.; Gallagher, M.B. A cross-decadal change in the fish and crustacean community of lower Yaquina Bay, Oregon, USA. Fishes 2024, 9, 125. [Google Scholar] [CrossRef]
- Baptista, J.; Martinho, F.; Nyitrai, D.; Pardal, M.A. Long-term functional changes in an estuarine fish assemblage. Mar. Pollut. Bull. 2015, 97, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.; Ojala-Barbour, R.; Vadas, R., Jr.; McIntyre, A.; Quinn, T. Do small overwater structures impact marine habitats and biota? Pac. Conserv. Biol. 2024, 30, PC22037. [Google Scholar] [CrossRef]
- Valić, D.; Mirković, M.K.; Besendorfer, V.; Teskeredžić, E. Molecular analysis of two endemic Squalius species: Evidence for intergeneric introgression among cyprinids and conservation issues. Fishes 2024, 9, 4. [Google Scholar] [CrossRef]
- Muhlfeld, C.C.; Kovach, R.P.; Al-Chokhachy, R.; Amish, S.J.; Kershner, J.L.; Leary, R.F.; Lowe, W.H.; Luikart, G.; Matson, P.; Schmetterling, D.A.; et al. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 2017, 23, 4663–4674. [Google Scholar] [CrossRef]
- Neville, H.M.; Dunham, J.B. Patterns of hybridization of nonnative cutthroat trout and hatchery rainbow trout with native redband trout in the Boise River, Idaho. N. Am. J. Fish. Manag. 2011, 31, 1163–1176. [Google Scholar] [CrossRef]
- Laskar, B.A.; Banerjee, D.; Chung, S.; Kim, H.W.; Kim, A.R.; Kundu, S. Integrative taxonomy clarifies the historical flaws in the systematics and distributions of two Osteobrama fishes (Cypriniformes: Cyprinidae) in India. Fishes 2024, 9, 87. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Rose, K.A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 1992, 49, 2196–2218. [Google Scholar] [CrossRef]
- Schindler, D.E.; Armstrong, J.B.; Reed, T.E. The portfolio concept in ecology and evolution. Front. Ecol. Evol. 2015, 13, 257–263. [Google Scholar] [CrossRef]
- Krebs, J.; Hassell, M.; Godfray, C. Lord Robert May of Oxford OM. 8 January 1936–28 April 2020. Biogr. Mem. Fellows R. Soc. 2021, 71, 375–398. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef]
- Spence, B.C.; Lomnicky, G.A.; Hughes, R.M.; Novitzki, R.P. An Ecosystem Approach to Salmonid Conservation; TR-4501-96-6057; National Marine Fisheries Service: Portland, OR, USA, 1996; 356p. [Google Scholar]
- Maas-Hebner, K.G.; Schreck, C.B.; Hughes, R.M.; Yeakley, J.A.; Molina, N. Scientifically defensible fish conservation and recovery plans: Addressing diffuse threats and developing rigorous adaptive management plans. Fisheries 2016, 41, 276–285. [Google Scholar] [CrossRef]
- Karr, J.R.; Dionne, M. Designing surveys to assess biological integrity in lakes and reservoirs. In Biological Criteria: Research and Regulation; Office of Water, EPA-440/5-91-005; U.S. Environmental Protection Agency, Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 1991; pp. 62–72. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=00001OUI.TXT (accessed on 10 November 2024).
- Vadas, R.L., Jr.; Vadas, R.L., Sr. Toward a unified ecology (book review). Maine Nat. 1995, 2, 55–57. [Google Scholar] [CrossRef]
- Schlosser, I.J. Environmental variation, life history attributes, and community structure in stream fishes: Implications for environmental management and assessment. Environ. Manag. 1990, 14, 621–628. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadas, R.L., Jr.; Hughes, R.M. Monitoring and Conservation of Freshwater and Marine Fishes: Synopsis. Fishes 2024, 9, 470. https://doi.org/10.3390/fishes9120470
Vadas RL Jr., Hughes RM. Monitoring and Conservation of Freshwater and Marine Fishes: Synopsis. Fishes. 2024; 9(12):470. https://doi.org/10.3390/fishes9120470
Chicago/Turabian StyleVadas, Robert L., Jr., and Robert M. Hughes. 2024. "Monitoring and Conservation of Freshwater and Marine Fishes: Synopsis" Fishes 9, no. 12: 470. https://doi.org/10.3390/fishes9120470
APA StyleVadas, R. L., Jr., & Hughes, R. M. (2024). Monitoring and Conservation of Freshwater and Marine Fishes: Synopsis. Fishes, 9(12), 470. https://doi.org/10.3390/fishes9120470