Identification of SNPs and Candidate Genes Associated with Growth Using GWAS and Transcriptome Analysis in Portuguese Oyster (Magallana angulata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Growth Phenotyping
2.2. DNA Extraction, Sequencing, and Variant Calling
2.3. Population Genetic Structure and Linkage Disequilibrium Analysis
2.4. Descriptive Statistics and Heritability Estimation of Growth Traits
2.5. Genome-Wide Association Analysis (GWAS)
2.6. RNA Extraction and Transcriptome Analysis
2.7. Candidate Gene Identification
2.8. Variation of Candidate Genes
2.9. Validation of Candidate Genes
3. Result
3.1. Descriptive Statistics of Phenotypes
3.2. Resequencing, Genotyping, Population Structure, and Linkage Disequilibrium Analysis
3.3. Genome-Wide Association Analysis (GWAS)
3.4. Transcriptome Analysis Between Extreme Phenotypes of Growth Traits
3.5. Candidate Gene Identification
3.6. Variation in Candidate Genes in the Population
3.7. Validation of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Botta, R.; Asche, F.; Borsum, J.S.; Camp, E. A review of global oyster aquaculture production and consumption. Mar. Policy 2020, 117, 103952. [Google Scholar] [CrossRef]
- Wirth, F.F.; Minton, T.M. A review of the market structure of the Louisiana oyster industry: A microcosm of the United States oyster industry. J. Shellfish Res. 2004, 23, 841–848. [Google Scholar]
- Calvo, L.M.R.; Calvo, G.W.; Burreson, E.M. Dual disease resistance in a selectively bred eastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture 2003, 220, 69–87. [Google Scholar] [CrossRef]
- De Melo, C.M.R.; Morvezen, R.; Durland, E.; Langdon, C. Genetic by environment interactions for harvest traits of the Pacific oyster Crassostrea gigas (Thunberg) across different environments on the West Coast, USA. J. Shellfish Res. 2018, 37, 49–61. [Google Scholar] [CrossRef]
- Langdon, C.; Evans, F.; Jacobson, D.; Blouin, M. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture 2003, 220, 227–244. [Google Scholar] [CrossRef]
- Proestou, D.A.; Vinyard, B.T.; Corbett, R.J.; Piesz, J.; Allen, S.K., Jr.; Small, J.M.; Li, C.; Liu, M.; DeBrosse, G.; Guo, X. Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. Aquaculture 2016, 464, 17–27. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, C.; Jiang, G.; Chi, Y.; Xu, C.; Kong, L.; Yu, H.; Liu, S.; Li, Q. Genetic improvement of oysters: Current status, challenges, and prospects. Rev. Aquac. 2024, 16, 796–817. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Xu, C.; Han, Z. Response to selection for growth in three selected strains of the Pacific oyster Crassostrea gigas. Aquaculture 2019, 503, 34–39. [Google Scholar] [CrossRef]
- Hao, Y.; Jia, X.; Yuan, L.; Liu, Y.; Gui, L.; Shen, Y.; Li, J.; Xu, X. Genome-wide association study reveals growth-related SNPs and candidate genes in grass carp (Ctenopharyngodon idella). Aquaculture 2023, 577, 739979. [Google Scholar] [CrossRef]
- Yang, B.; Zhai, S.; Zhang, F.; Wang, H.; Ren, L.; Li, Y.; Li, Q.; Liu, S. Genome-wide association study toward efficient selection breeding of resistance to Vibrio alginolyticus in Pacific oyster, Crassostrea gigas. Aquaculture 2022, 548, 737592. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Yáñez, J.M.; Fukui, S.; Swift, B.; Davidson, W.S. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS ONE 2015, 10, e0119730. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, M.; Yin, Z.; Huang, D.; Zhu, L.; Zou, W.; Yu, W.; Shen, Y.; Huang, Z.; You, W.; et al. Development of near-infrared reflectance spectroscopy (NIRS) model and genome-wide association study for glycogen and protein content in Pacific abalone. Aquaculture 2023, 576, 739764. [Google Scholar] [CrossRef]
- Shi, R.; Li, C.; Qi, H.; Liu, S.; Wang, W.; Li, L.; Zhang, G. Construction of a high-resolution genetic map of Crassostrea gigas: QTL mapping and GWAS applications revealed candidate genes controlling nutritional traits. Aquaculture 2020, 527, 735427. [Google Scholar] [CrossRef]
- Lv, L.; Hu, C.; Xu, H.; Ren, J.; Wu, B.; Dong, Y.; Lin, Z. Insight into the genetic basis of ammonia tolerance in razor clam Sinonovacula constricta by genome-wide association study. Aquaculture 2023, 569, 739351. [Google Scholar] [CrossRef]
- Jahan, K.; Nie, H.; Yin, Z.; Zhang, Y.; Li, N.; Yan, X. Comparative transcriptome analysis to reveal the genes and pathways associated with adaptation strategies in two different populations of Manila clam (Ruditapes philippinarum) under acute temperature challenge. Aquaculture 2022, 552, 737999. [Google Scholar] [CrossRef]
- Xu, Z.; Li, T.; Li, E.; Chen, K.; Ding, Z.; Qin, J.G.; Chen, L.; Ye, J. Comparative transcriptome analysis reveals molecular strategies of oriental river prawn Macrobrachium nipponense in response to acute and chronic nitrite stress. Fish Shellfish Immunol. 2016, 48, 254–265. [Google Scholar] [CrossRef]
- Gervais, O.; Barria, A.; Papadopoulou, A.; Gratacap, R.; Hillestad, B.; Tinch, A.; Martin, S.; Robledo, D.; Houston, R. Exploring genetic resistance to infectious salmon anaemia virus in Atlantic salmon by genome-wide association and RNA sequencing. BMC Genom. 2021, 22, 345. [Google Scholar] [CrossRef]
- Ding, J.; Gao, Z.; Wang, J.; Zhang, Y.; Wang, X.; Wu, X.; Zhu, J.; Shen, W. Genome-wide association and transcriptome analysis provide the SNPs and molecular insights into the hypoxia tolerance in large yellow croaker (Larimichthys crocea). Aquaculture 2023, 573, 739547. [Google Scholar] [CrossRef]
- Yu, W.; Gong, S.; Lu, Y.; Shen, Y.; Liu, J.; Huang, Z.; Luo, X.; You, W.; Ke, C. Genome sequence-based genome-wide association study of feed efficiency in Pacific abalone. Aquaculture 2022, 561, 738630. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X.; Hu, J.; Wang, Z.; Wang, Y.; Xu, D.; Guo, H.; Shao, C.; Zhou, L.; Sun, X. Combined ATAC-seq, RNA-seq, and GWAS analysis reveals glycogen metabolism regulatory network in Jinjiang oyster (Crassostrea ariakensis). Zool. Res. 2024, 45, 201. [Google Scholar] [CrossRef]
- Qi, H.; Cong, R.; Wang, Y.; Li, L.; Zhang, G. Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas. GigaScience 2023, 12, giad077. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qian, L.; Liu, X.; Zhang, G.; Guo, X. Classification of a common cupped oyster from southern China. J. Shellfish Res. 2010, 29, 857–866. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, S.; Zhang, H.; Pang, D.; Yang, Q.; Jiang, R.; Lin, Y.; Mu, Y.; Zhu, Y. The oyster fishery in China: Trend, concerns and solutions. Mar. Policy 2021, 129, 104524. [Google Scholar] [CrossRef]
- Wu, Q.; Ning, Y.; Zeng, Z.; Qi, J.; Guo, X.; Jia, Y. Correlation and path analysis of quantitative traits of different-age “Golden Oyster# 1” Crassostrea angulata. J. Xiamen Univ. 2018, 57, 72–78. [Google Scholar] [CrossRef]
- Vu, S.V.; Knibb, W.; Nguyen, N.T.; Vu, I.V.; O’connor, W.; Dove, M.; Nguyen, N.H. First breeding program of the Portuguese oyster Crassostrea angulata demonstrated significant selection response in traits of economic importance. Aquaculture 2020, 518, 734664. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Qi, H.; Meng, J.; Wang, W.; Wu, F.; Li, L.; Zhang, G. A genome-wide association study to identify the genes associated with shell growth and shape-related traits in Crassostrea gigas. Aquaculture 2021, 543, 736926. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Teng, W.; Fu, H.; Li, Z.; Zhang, Q.; Xu, C.; Yu, H.; Kong, L.; Liu, S.; Li, Q. Parallel evolution in Crassostrea oysters along the latitudinal gradient is associated with variation in multiple genes involved in adipogenesis. Mol. Ecol. 2023, 32, 5276–5287. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. Available online: http://www.genome.org/cgi/doi/10.1101/gr.107524.110 (accessed on 20 November 2024). [CrossRef] [PubMed]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 2016, 98, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. Available online: http://www.genome.org/cgi/doi/10.1101/gr.094052.109 (accessed on 20 November 2024). [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef]
- Yang, J.; Weedon, M.N.; Purcell, S.; Lettre, G.; Estrada, K.; Willer, C.J.; Smith, A.V.; Ingelsson, E.; O’connell, J.R.; Mangino, M. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 2011, 19, 807–812. [Google Scholar] [CrossRef]
- Leamy, L.J.; Zhang, H.; Li, C.; Chen, C.Y.; Song, B.-H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genom. 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.; Chasman, D.I.; Smith, J.D.; Mora, S.; Ridker, P.M.; Nickerson, D.A.; Krauss, R.M.; Stephens, M. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 2015, 10, e0120758. [Google Scholar] [CrossRef] [PubMed]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Barrett, J.C. Haploview: Visualization and analysis of SNP genotype data. In Genetic Variation; CSHL Press: Cold Spring Harbor, NY, USA, 2007. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Zhang, G. A high-density SNP genetic linkage map and QTL analysis of growth-related traits in a hybrid family of oysters (Crassostrea gigas × Crassostrea angulata) using genotyping-by-sequencing. G3 Genes Genomes Genet. 2016, 6, 1417–1426. [Google Scholar] [CrossRef]
- Kong, N.; Li, Q.; Yu, H.; Kong, L.F. Heritability estimates for growth-related traits in the P acific oyster (Crassostrea gigas) using a molecular pedigree. Aquac. Res. 2015, 46, 499–508. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Song, K.; Meng, J.; Xu, F.; Li, L.; Zhang, G. Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genom. 2018, 19, 626. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, B.; Zhou, L.; Dong, C.; You, W.; Ke, C. Heritability estimates for copper/zinc accumulation capabilities and correlation with growth/quality traits in the Fujian oyster, Crassostrea angulata. Aquaculture 2019, 499, 212–219. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Yu, H.; Kong, L. Estimates of heritability for growth and shell color traits and their genetic correlations in the black shell strain of pacific oyster Crassostrea gigas. Mar. Biotechnol. 2017, 19, 421–429. [Google Scholar] [CrossRef]
- Toro, J.E.; Newkirk, G.F. Divergent selection for growth rate in the European oyster Ostrea edulis: Response to selection and estimation of genetic parameters. In Marine Ecology Progress Series; Inter-Research Science Center: Oldendorf/Luhe, Germany, 1990; pp. 219–227. Available online: http://www.jstor.org/stable/24842150 (accessed on 20 November 2024).
- Baghurst, B.C.; Mitchell, J.G. Sex-specific growth and condition of the Pacific oyster (Crassostrea gigas Thunberg). Aquac. Res. 2002, 33, 1253–1263. [Google Scholar] [CrossRef]
- Sodeland, M.; Gaarder, M.; Moen, T.; Thomassen, M.; Kjøglum, S.; Kent, M.; Lien, S. Genome-wide association testing reveals quantitative trait loci for fillet texture and fat content in Atlantic salmon. Aquaculture 2013, 408, 169–174. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, S.; Zhang, S.; Liu, J.; Sun, A.; Wang, Y.; Zhu, Y.; Gu, S.; Gao, Z. Identification of SNPs and candidate genes associated with growth using GWAS and transcriptome analysis in Coilia nasus. Aquaculture 2024, 586, 740777. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Zhang, Q.; Luo, Z.; Wang, Y.; Zhang, X.; Huang, H.; Xiang, J.; Li, F. Genome scan for genomic regions and genes associated with growth trait in pacific white shrimp Litopeneaus vannamei. Mar. Biotechnol. 2019, 21, 374–383. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Li, Y.; Yu, J.; Liao, H.; Wang, S.; Lv, J.; Liang, J.; Huang, X.; Bao, Z. A genome-wide association study identifies the genomic region associated with shell color in yesso scallop, Patinopecten yessoensis. Mar. Biotechnol. 2017, 19, 301–309. [Google Scholar] [CrossRef]
- Zhu, F.; Sun, H.; Jiang, L.; Zhang, Q.; Liu, J. Genome-wide association study for growth-related traits in golden pompano (Trachinotus ovatus). Aquaculture 2023, 572, 739549. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Wu, X.; Li, B.; Huang, W.; Weng, Z.; Lin, Z.; Song, L.; Guo, Y.; Meng, Z. Identification of candidate growth-related SNPs and genes using GWAS in brown-marbled grouper (Epinephelus fuscoguttatus). Mar. Biotechnol. 2020, 22, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, L.; Shi, R.; Wang, W.; Wu, F.; Zhang, G. Genome-wide association study for desirable traits in the Pacific oyster Crassostrea gigas (Thunberg). Aquac. Res. 2022, 53, 4007–4015. [Google Scholar] [CrossRef]
- Peng, W.; Yu, F.; Wu, Y.; Zhang, Y.; Lu, C.; Wang, Y.; Huang, Z.; Lu, Y.; Chen, N.; Luo, X.; et al. Identification of growth-related SNPs and genes in the genome of the Pacific abalone (Haliotis discus hannai) using GWAS. Aquaculture 2021, 541, 736820. [Google Scholar] [CrossRef]
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef]
- Klein, S.E.; Sheridan, M.A. Somatostatin signaling and the regulation of growth and metabolism in fish. Mol. Cell. Endocrinol. 2008, 286, 148–154. [Google Scholar] [CrossRef]
- Kumar, U.; Grant, M. Somatostatin and somatostatin receptors. In Cellular Peptide Hormone Synthesis Secretory Pathways; Springer: Berlin/Heidelberg, Germany, 2010; pp. 97–120. [Google Scholar] [CrossRef]
- Ramírez, J.L.; Gracia-Navarro, F.; García-Navarro, S.; Torronteras, R.; Malagón, M.M.; Castaño, J.P. Somatostatin stimulates GH secretion in two porcine somatotrope subpopulations through a cAMP-dependent pathway. Endocrinology 2002, 143, 889–897. [Google Scholar] [CrossRef]
- Ramírez, J.L.; Torronteras, R.; Castaño, J.P.; Sánchez-Hormigo, A.; Garrido, J.C.; García-Navarro, S.; Gracia-Navarro, F. Somatostatin plays a dual, stimulatory/inhibitory role in the control of growth hormone secretion by two somatotrope subpopulations from porcine pituitary. J. Neuroendocrinol. 1997, 9, 841–848. [Google Scholar] [CrossRef]
- Cordoba-Chacon, J.; Gahete, M.; Culler, M.; Castaño, J.; Kineman, R.; Luque, R. Somatostatin dramatically stimulates growth hormone release from primate somatotrophs acting at low doses via somatostatin receptor 5 and cyclic AMP. J. Neuroendocrinol. 2012, 24, 453–463. [Google Scholar] [CrossRef]
- Liu, B.; Li, P.; He, S.; Xing, S.; Chen, C.; Liu, L.; Li, Z.-H. Chronic exposure to tralopyril induced abnormal growth and calcium regulation of turbot (Scophthalmus maximus). Chemosphere 2022, 299, 134405. [Google Scholar] [CrossRef]
- Mascaro, M.; Lages, I.; Meroni, G. Microtubular TRIM36 E3 ubiquitin ligase in embryonic development and spermatogenesis. Cells 2022, 11, 246. [Google Scholar] [CrossRef]
- Cuykendall, T.N.; Houston, D.W. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Dev. Comp. Immunol. 2009, 136, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, Y.; Wei, Z.; Zheng, W.; Dong, Z.; Gao, F.; Shao, C.; Wen, H.; Chen, S. Cloning and expression analysis of trim36 gene in half-smooth tongue sole (Cynoglossus semilaevis). J. Agric. Biotechnol. 2016, 24, 968–979. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; López-Olmeda, J.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I. Cortisol and finfish welfare. Fish Physiol. Biochem. 2012, 38, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Balasch, J.C.; Tort, L. Netting the stress responses in fish. Front. Endocrinol. 2019, 10, 435714. [Google Scholar] [CrossRef]
- Pfalzgraff, T.; Lund, I.; Skov, P.V. Cortisol affects feed utilization, digestion and performance in juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 536, 736472. [Google Scholar] [CrossRef]
- Gardner, J.; Rothwell, N.; Luheshi, G. Leptin affects food intake via CRF-receptor-mediated pathways. Nat. Neurosci. 1998, 1, 103. [Google Scholar] [CrossRef]
- Bernier, N.J.; Peter, R.E. The hypothalamic–pituitary–interrenal axis and the control of food intake in teleost fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2001, 129, 639–644. [Google Scholar] [CrossRef]
- Qi, J.; Tang, N.; Wu, Y.; Chen, H.; Wang, S.; Wang, B.; Xu, S.; Wang, M.; Zhang, X.; Chen, D. The transcripts of CRF and CRF receptors under fasting stress in Dabry’s sturgeon (Acipenser dabryanus Dumeril). Gen. Comp. Endocrinol. 2019, 280, 200–208. [Google Scholar] [CrossRef]
- Yadawa, A.K.; Chaturvedi, C.M. Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation. Gen. Comp. Endocrinol. 2016, 239, 13–20. [Google Scholar] [CrossRef]
- Morimoto, N.; Hashimoto, K.; Okada, R.; Mochida, H.; Uchiyama, M.; Kikuyama, S.; Matsuda, K. Inhibitory effect of corticotropin-releasing factor on food intake in the bullfrog, Aquarana catesbeiana. Peptides 2011, 32, 1872–1875. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Wang, F.; Lv, X.; Li, F. An invertebrate gene encoding a Mab21-containing protein involves in antiviral response through regulating the STING pathway. Dev. Comp. Immunol. 2021, 121, 104101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Miao, Y.; Shen, Q.; Liu, X.; Chen, M.; Du, J.; Ning, M.; Bi, J.; Gu, W.; Wang, L. Eriocheir sinensis vesicle-associated membrane protein can enhance host cell phagocytosis to resist Spiroplasma eriocheiris infection. Fish Shellfish Immunol. 2022, 128, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, Y.; Zhang, Q.; Zheng, G.; Geng, Q.; Tan, Z. Immune and physiological responses of Mytilus unguiculatus to Alexandrium spp. with varying paralytic shellfish toxin profiles. Sci. Total Environ. 2024, 935, 173483. [Google Scholar] [CrossRef]
- Sun, H.; Mao, J.; Wang, Y.; Fan, Z.; Yuan, C.; Wang, X.; Tian, Y.; Han, B.; Hao, Z.; Ding, J. Quantitative proteomic analysis reveals the molecular mechanism of the Yesso scallop (Patinopecten yessoensis) in response to Polydora infection. Comput. Struct. Biotechnol. J. 2022, 20, 5966–5977. [Google Scholar] [CrossRef] [PubMed]
- Henryon, M.; Jokumsen, A.; Berg, P.; Lund, I.; Pedersen, P.B.; Olesen, N.J.; Slierendrecht, W.J. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 2002, 209, 59–76. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Lhorente, J.P.; Bassini, L.N.; Oyarzún, M.; Neira, R.; Newman, S. Genetic co-variation between resistance against both Caligus rogercresseyi and Piscirickettsia salmonis, and body weight in Atlantic salmon (Salmo salar). Aquaculture 2014, 433, 295–298. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Bangera, R.; Lhorente, J.P.; Barría, A.; Oyarzún, M.; Neira, R.; Newman, S. Negative genetic correlation between resistance against Piscirickettsia salmonis and harvest weight in coho salmon (Oncorhynchus kisutch). Aquaculture 2016, 459, 8–13. [Google Scholar] [CrossRef]
- Barría, A.; Doeschl-Wilson, A.B.; Lhorente, J.P.; Houston, R.D.; Yáñez, J.M. Novel insights into the genetic relationship between growth and disease resistance in an aquaculture strain of Coho salmon (Oncorhynchus kisutch). Aquaculture 2019, 511, 734207. [Google Scholar] [CrossRef]
- Vehviläinen, H.; Kause, A.; Kuukka-Anttila, H.; Koskinen, H.; Paananen, T. Untangling the positive genetic correlation between rainbow trout growth and survival. Evol. Appl. 2012, 5, 732–745. [Google Scholar] [CrossRef]
- Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018, 25, 4–12. [Google Scholar] [CrossRef]
- Stevens, R.C.; Cherezov, V.; Katritch, V.; Abagyan, R.; Kuhn, P.; Rosen, H.; Wüthrich, K. The GPCR Network: A large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov. 2013, 12, 25–34. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Matika, O.; Bean, T.P.; Houston, R.D. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction. Front. Genet. 2018, 9, 391. [Google Scholar] [CrossRef]
SH | SL | SW | WW | STW | |
---|---|---|---|---|---|
Mean | 77.20 | 43.03 | 31.82 | 52.96 | 9.55 |
Median | 77.42 | 43.20 | 31.19 | 52.29 | 9.35 |
Min | 56.63 | 27.91 | 20.31 | 28.30 | 3.76 |
Max | 117.25 | 52.48 | 50.64 | 95.34 | 20.24 |
SD | 11.27 | 4.17 | 5.89 | 13.87 | 2.94 |
CV | 14.60% | 9.69% | 18.50% | 26.19% | 30.77% |
Heritability (h2) | 0.690 | 0.118 | 0.072 | 0.695 | 0.071 |
Traits | Chr | Position | p-Value | PVE (%) | Location | Gene |
---|---|---|---|---|---|---|
SH | 1 | 33,653,680 | 7.56 × 108 | 14.27 | intergenic | - |
4 | 11,938,717 | 3.09 × 108 | 15.1 | intergenic | - | |
7 | 52,563,485 | 5.05 × 108 | 14.64 | intronic | gapr1 | |
10 | 13,473,040 | 7.78 × 108 | 14.24 | intronic | ppa1 | |
10 | 13,563,505 | 3.90 × 108 | 14.88 | intronic | nwd1 | |
SL | 4 | 11,516,450 | 8.56 × 108 | 14.13 | exon * | mab21l |
4 | 11,516,476 | 7.20 × 1010 * | 18.56 | exon | mab21l | |
5 | 26,098,444 | 4.15 × 108 | 14.81 | intronic | dspp | |
STW | 9 | 12,305,944 | 1.77 × 108 | 15.58 | intronic | lac25b |
Traits | Lead SNP | Gene ID | Gene Symbol | Description |
---|---|---|---|---|
SH | 10-13473040 | LOC128167546 | sstr2 | somatostatin receptor type 2-like |
10-13473040 | LOC128165816 | v-SNARE | v-SNARE-like, coiled-coil homology domain | |
SL | 4-11516450 | LOC128181972 | mab21l | MAB21L/Cyclic GMP-AMP synthase-like receptor |
STW | 9-12305944 | LOC128162734 | lac25a | laccase-25 |
9-12305944 | LOC128162736 | crfr2 | corticotropin-releasing factor receptor 2-like | |
9-12305944 | LOC128163477 | trim36 | E3 ubiquitin-protein ligase TRIM36-like | |
9-12305944 | LOC128163983 | hgsnat | Heparan-alpha-glucosaminide N-acetyltransferase-like |
Trait | Gene | Hap ID | Haplotype | Count | Beta | SE | p |
---|---|---|---|---|---|---|---|
SH | sstr2 | Hap.1 | CT | 172 | −4.15 | 1.58 | 9.00 × 103 |
TT | 11 | 4.57 | 3.56 | 2.02 × 101 | |||
TG | 42 | 4.26 | 1.94 | 3.00 × 102 | |||
SL | mab21l | Hap.2 | GCAT | 206 | 4.47 | 0.90 | 2.47 × 106 |
TAGG | 17 | −5.51 | 0.97 | 1.07 × 107 | |||
Hap.3 | AGCAG | 209 | 4.61 | 0.89 | 1.01 × 106 | ||
TAAGA | 14 | −5.80 | 1.06 | 2.88 × 107 | |||
STW | lac25a | Hap.4 | TGG | 205 | −1.86 | 0.57 | 1.00 × 103 |
CAT | 20 | 2.14 | 0.62 | 7.75 × 104 | |||
Hap.5 | AT | 180 | −1.98 | 0.46 | 3.11 × 105 | ||
GT | 7 | 0.06 | 1.15 | 9.59 × 101 | |||
GC | 39 | 2.41 | 0.49 | 3.40 × 106 | |||
crfr2 | Hap.6 | GAC | 180 | −1.95 | 0.41 | 5.02 × 106 | |
GAT | 26 | 1.39 | 0.52 | 8.00 × 103 | |||
ACT | 21 | 1.84 | 0.62 | 3.00 × 103 | |||
Hap.7 | GTA | 200 | −1.72 | 0.54 | 2.00 × 103 | ||
ACG | 26 | 1.83 | 0.60 | 3.00 × 103 | |||
Hap.8 | TA | 208 | −2.07 | 0.70 | 3.00 × 103 | ||
AC | 20 | 2.07 | 0.70 | 3.00 × 103 | |||
Hap.9 | GC | 145 | −1.57 | 0.36 | 3.29 × 105 | ||
GT | 41 | −0.22 | 0.49 | 6.48 × 101 | |||
AT | 41 | 2.34 | 0.41 | 8.52 × 108 | |||
Hap.10 | CA | 206 | −1.80 | 0.58 | 2.00 × 103 | ||
AG | 22 | 1.80 | 0.58 | 2.00 × 103 | |||
Hap.11 | GTT | 182 | −1.48 | 0.49 | 3.00 × 103 | ||
TGG | 46 | 1.48 | 0.49 | 3.00 × 103 | |||
trim36 | Hap.12 | CT | 207 | −2.08 | 0.69 | 2.00 × 103 | |
TA | 21 | 2.08 | 0.69 | 2.00 × 103 | |||
Hap.13 | AA | 206 | −1.60 | 0.65 | 1.40 × 102 | ||
CT | 22 | 1.60 | 0.65 | 1.40 × 102 | |||
hgsnat | Hap.14 | CT | 210 | −2.32 | 0.64 | 4.23 × 104 | |
TC | 18 | 2.32 | 0.64 | 4.23 × 104 | |||
Hap.15 | CG | 205 | −1.90 | 0.57 | 1.00 × 103 | ||
TT | 23 | 1.90 | 0.57 | 1.00 × 103 | |||
Hap.16 | TA | 192 | −1.11 | 0.52 | 3.50 × 102 | ||
GG | 34 | 1.07 | 0.55 | 5.50 × 102 |
Traits | Gene | Chr | Pos | REF | ALT | p |
---|---|---|---|---|---|---|
SH | sstr2 | 10 | 13,403,077 | C | T | 7.97 × 103 |
v-SNARE | 10 | 13,378,409 | A | G | 1.61 × 102 | |
SL | mab21l | 4 | 11,516,890 | T | A | 1.64 × 102 |
STW | lac25a | 9 | 12,223,193 | C | T | 7.98 × 103 |
crfr2 | 9 | 12,197,864 | A | T | 5.15 × 103 | |
trim36 | 9 | 12,328,176 | A | T | 1.75 × 103 | |
hgsnat | 9 | 12,363,518 | A | T | 1.66 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Ning, Y.; Han, Y.; Su, C.; Zhou, X.; Wu, Q.; Guo, X.; Qi, J.; Ge, H.; Ke, Y.; et al. Identification of SNPs and Candidate Genes Associated with Growth Using GWAS and Transcriptome Analysis in Portuguese Oyster (Magallana angulata). Fishes 2024, 9, 471. https://doi.org/10.3390/fishes9120471
Xie J, Ning Y, Han Y, Su C, Zhou X, Wu Q, Guo X, Qi J, Ge H, Ke Y, et al. Identification of SNPs and Candidate Genes Associated with Growth Using GWAS and Transcriptome Analysis in Portuguese Oyster (Magallana angulata). Fishes. 2024; 9(12):471. https://doi.org/10.3390/fishes9120471
Chicago/Turabian StyleXie, Jingyi, Yue Ning, Yi Han, Caiyuan Su, Xiaoyan Zhou, Qisheng Wu, Xiang Guo, Jianfei Qi, Hui Ge, Yizou Ke, and et al. 2024. "Identification of SNPs and Candidate Genes Associated with Growth Using GWAS and Transcriptome Analysis in Portuguese Oyster (Magallana angulata)" Fishes 9, no. 12: 471. https://doi.org/10.3390/fishes9120471
APA StyleXie, J., Ning, Y., Han, Y., Su, C., Zhou, X., Wu, Q., Guo, X., Qi, J., Ge, H., Ke, Y., & Cai, M. (2024). Identification of SNPs and Candidate Genes Associated with Growth Using GWAS and Transcriptome Analysis in Portuguese Oyster (Magallana angulata). Fishes, 9(12), 471. https://doi.org/10.3390/fishes9120471