Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Acute Response to Hypercapnia
2.3. Determination of Seawater Acidification Toxicity Levels
2.4. Statistical Analysis
3. Results
3.1. Acute Response to Hypercapnia
3.2. Seawater Acidification Toxicity Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, G.G. Distribution of the abalone (Haliotis midae) and the effect of temperature on productivity. Investig. Rep. Div. Sea Fish. 1969, 74, 1–7. [Google Scholar]
- Geiger, D.L. Distribution and biogeography of the recent Haliotidae (Gastropoda: Vetigastropoda) world-wide. Boll. Malacol. 1999, 35, 57–120. [Google Scholar]
- Rhode, C.; Bester-van der Merwe, A.E.; Roodt-Wilding, R. An assessment of spatio-temporal genetic variation in the South African abalone (Haliotis midae), using SNPs: Implications for conservation management. Conserv. Genet. 2017, 18, 17–31. [Google Scholar] [CrossRef]
- Barkai, A.; Griffiths, C.L. Diet of the South African abalone, Haliotis midae. S. Afr. J. Mar. Sci. 1986, 4, 37–44. [Google Scholar] [CrossRef]
- DFFE (Department of Forestry, Fisheries and the Environment). Status of the South African Marine Fishery Resources 2023; DEFF: Cape Town, South Africa, 2023.
- DEFF (Department of Environment, Forestry and Fisheries). Aquaculture Yearbook; DEFF: Cape Town, South Africa, 2020.
- Lester, N.C. The interaction of acidification and warming on the South African abalone, Haliotis midae, and the potential for mitigation in aquaculture. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2021. [Google Scholar]
- Cooley, S.; Schoeman, D.; Bopp, L.; Boyd, P.; Donner, S.; Ghebrehiwet, D.Y.; Ito, S.-I.; Kiessling, W.; Martinetto, P.; Ojea, E.; et al. Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 379–550. [Google Scholar] [CrossRef]
- Hill, A.E.; Hickey, B.M.; Shillington, F.A.; Strub, P.T.; Brink, K.H.; Barton, E.D.; Thomas, A.C. Eastern ocean boundaries coastal segment. In The Global Coastal Ocean, Regional Studies and Syntheses; Robinson, A.R., Brink, K.H., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; pp. 29–68. [Google Scholar]
- Probyn, T.A.; Pitcher, G.C.; Monteiro, P.M.S.; Boyd, A.J.; Nelson, G. Physical processes contributing to harmful algal blooms in Saldanha Bay, South Africa. S. Afr. J. Mar. Sci. 2000, 22, 285–297. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 2010, 85, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Probyn, T.A. Anoxia in southern Benguela during the autumn of 2009 and its linkage to a bloom of the dinoflagellate Ceratium balechii. Harmful Algae 2011, 11, 23–32. [Google Scholar] [CrossRef]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef]
- Naylor, M.A.; Kaiser, H.; Jones, C.L.W. Water quality in a serial-use raceway and its effect on the growth of South African abalone, Haliotis midae Linneaeus, 1785. Aquac. Res. 2011, 42, 918–930. [Google Scholar] [CrossRef]
- Naylor, M.A.; Kaiser, H.; Jones, C.L.W. The effect of free ammonia nitrogen, pH and supplementation with oxygen on the growth of South African abalone, Haliotis midae L. in an abalone serial-use raceway with three passes. Aquac. Res. 2014, 45, 213–224. [Google Scholar] [CrossRef]
- Reddy-Lopata, K.; Auerswald, L.; Cook, P.A. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus. Aquaculture 2006, 261, 678–687. [Google Scholar] [CrossRef]
- Heath, P.; Moss, G. Is size grading important for farming the abalone Haliotis iris? Aquaculture 2009, 290, 80–86. [Google Scholar] [CrossRef]
- Venter, L.; Loots, D.T.; Vosloo, A.; Jansen van Rensburg, P.; Lindeque, J.Z. Abalone growth and associated aspects: Now from a metabolic perspective. Rev. Aquac. 2018, 10, 451–473. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Langenbuch, M.; Reipschlager, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 2004, 60, 705–718. [Google Scholar] [CrossRef]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J.C. Impacts of Ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Harvey, B.P.; Gwynn-Jones, D.; Moore, P.J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 2013, 3, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- Hall-Spencer, J.M.; Harvey, B.P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 2019, 3, 197–206. [Google Scholar]
- Avignon, S.; Auzoux-Bordenave, S.; Martin, S.; Dubois, P.; Badou, A.; Coheleach, M.; Richard, N.; Di Giglio, S.; Malet, L.; Servili, A.; et al. An integrated investigation of the effects of ocean acidification on adult abalone (Haliotis tuberculata). ICES J. Mar. Sci. 2020, 77, 757–772. [Google Scholar] [CrossRef]
- Haupt, T.M.; Novak, T.; Naylor, M.; Auerswald, L. The thermal response of adult abalone, Haliotis midae, following exposure to chronic hypercapnia. 2024; in preparation. [Google Scholar]
- Cheng, W.; Liub, C.-H.; Cheng, S.-Y.; Chen, J.-C. Effect of dissolved oxygen on the acid–base balance and ion concentration of Taiwan abalone Haliotis diversicolor supertexta. Aquaculture 2004, 231, 573–586. [Google Scholar] [CrossRef]
- Michaelidis, B.; Ouzounis, C.; Paleras, A.; Pörtner, H.O. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Progr. Ser. 2005, 293, 109–118. [Google Scholar] [CrossRef]
- Melzner, F.; Gutowska, M.A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M.C.; Bleich, M.; Pörtner, H.O. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 2009, 6, 2313–2331. [Google Scholar] [CrossRef]
- Morash, A.J.; Alter, K. Effects of environmental and farm stress on abalone physiology: Perspectives for abalone aquaculture in the face of global climate change. Rev. Aquac. 2015, 7, 1–27. Available online: https://www.researchgate.net/publication/276150674_Effects_of_environmental_and_farm_stress_on_abalone_physiology_Perspectives_for_abalone_aquaculture_in_the_face_of_global_climate_change (accessed on 1 February 2024).
- Knapp, J.L.; Bridges, C.R.; Krohn, J.; Hoffman, L.C.; Auerswald, L. Acid–base balance and changes in haemolymph properties of the South African rock lobsters, Jasus lalandii, a palinurid decapod, during chronic hypercapnia. Biochem. Biophys. Res. Commun. 2015, 461, 475–480. [Google Scholar] [CrossRef]
- Sarazin, G.; Michard, G.; Prevot, F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999, 33, 290–294. [Google Scholar] [CrossRef]
- Pierrot, D.E.; Lewis, E.; Wallace, D.W.R. MS excel program developed for CO2 system calculations. In ORNL/CDIAC-105a; Carbon Dioxide Information Analysis Center, Oak Ridge National Laroratory, US Department of Energy: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Truchot, J.P. Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L): Carbon dioxide solubility coefficient and carbonic acid dissociation constants. J. Exp. Biol. 1976, 64, 45–57. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://www.R-project.org/ (accessed on 1 February 2024).
- Allaire, J.; Xie, Y.; Dervieux, C.; McPherson, J.; Luraschi, J.; Ushey, K.; Atkins, A.; Wickham, H.; Cheng, J.; Chang, W.; et al. Rmarkdown: Dynamic Documents for R. 2024. Available online: https://github.com/rstudio/rmarkdown (accessed on 1 February 2024).
- Letaw, A. Captioner: Numbers Figures and Creates Simple Captions. 2015. Available online: https://github.com/adletaw/captioner (accessed on 1 February 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. 2023. Available online: https://dplyr.tidyverse.org (accessed on 1 February 2024).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; van den Brand, T. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2024. Available online: https://ggplot2.tidyverse.org (accessed on 1 February 2024).
- Wickham, H.; Henry, L. Purrr: Functional Programming Tools. 2023. Available online: https://purrr.tidyverse.org/ (accessed on 1 February 2024).
- Xie, Y. Knitr: A General-Purpose Package for Dynamic Report Generation in R. 2024. Available online: https://yihui.org/knitr/ (accessed on 1 February 2024).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. 2024. Available online: https://github.com/lme4/lme4/ (accessed on 1 February 2024).
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2024. Available online: https://github.com/rvlenth/emmeans (accessed on 1 February 2024).
- Pinheiro, J.; Bates, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. 2023. Available online: https://svn.r-project.org/R-packages/trunk/nlme/ (accessed on 1 February 2024).
- Tarr, R.J.Q.; Williams, P.V.G.; Mackenzie, A.J. Abalone, sea urchins and rock lobster: A possible ecological shift that may affect traditional fisheries. S. Afr. J. Mar. Sci. 1996, 17, 319–323. [Google Scholar] [CrossRef]
- Auzoux-Bordenave, S.; Chevret, S.; Badou, A.; Martin, S.; Di Giglio, S.; Dubois, P. Acid–base balance in the haemolymph of European abalone (Haliotis tuberculata) exposed to CO2-induced ocean acidification. Comp. Biochem. Physiol. Part A 2021, 259, 110996. [Google Scholar] [CrossRef]
- Knapp, J.L.; Bridges, C.R.; Krohn, J.; Hoffman, L.C.; Auerswald, L. The effects of hypercapnia on the West Coast rock lobster (Jasus lalandii) through acute exposure to decreased seawater pH-Physiological and biochemical responses. J. Exp. Mar. Biol. Ecol. 2016, 476, 58–64. [Google Scholar] [CrossRef]
- Brix, O. The adaptive significance of the reversed Bohr and Root shifts in blood from the marine gastropod, Buccinum undatum. J. Exp. Zool. 1982, 221, 27–36. [Google Scholar] [CrossRef]
- Wells, R.M.G.; Baldwin, J.; Speed, S.R.; Weber, R.E. Haemocyanin function in the New Zealand abalones Haliotis iris and H. australis: Relationships between oxygen-binding properties, muscle metabolism and habitat. Mar. Freshw. Res. 1998, 49, 143–149. [Google Scholar] [CrossRef]
- Brix, O.; Lykkeboe, G.; Johansen, K. Reversed Bohr and Root shifts in hemocyanin of the marine prosobranch, Buccinum undatum: Adaptations to a periodically hypoxic habitat. J. Comp. Physiol. 1979, 129, 97–103. [Google Scholar] [CrossRef]
- Mangum, C.P.; Burnett, L.E., Jr. The CO2 Sensitivity of the Hemocyanins and its relationship to Cl− sensitivity. Biol. Bull. 1986, 171, 248–263. [Google Scholar] [CrossRef]
- Bridges, C.R.; Morris, S. Respiratory pigments: Interactions between oxygen and carbon dioxide transport. Can. J. Zool. 1989, 67, 2971–2985. [Google Scholar] [CrossRef]
- Donovan, D.; Baldwin, J.; Carefoot, T. The contribution of anaerobic energy to gastropod crawling and a re-estimation of minimum cost of transport in the abalone, Haliotis kamtschatkana (Jonas). J. Exp. Mar. Biol. Ecol. 1999, 235, 273–284. [Google Scholar] [CrossRef]
- Hickey, A.J.; Wells, R.M. Thermal constraints on glycolytic metabolism in the New Zealand abalone, Haliotis iris: The role of tauropine dehydrogenase. N. Z. J. Mar. Freshw. Res. 2003, 37, 723–731. [Google Scholar] [CrossRef]
- O’Omolo, S.; Gäde, G.; Cook, P.A.; Brown, A.C. Can the end products of anaerobic metabolism, tauropine and D-lactate, be used as metabolic stress indicators during transport of live South African abalone Haliotis midae? Afr. J. Mar. Sci. 2003, 25, 301–309. [Google Scholar] [CrossRef]
- Venter, L.; Loots, D.T.; Mienie, L.J.; van Rensburg, P.J.J.; Mason, S.; Vosloo, A.; Lindeque, J.Z. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics 2018, 14, 49. [Google Scholar] [CrossRef]
- Lee, S.-M. Utilization of dietary protein, lipid, and carbohydrate by abalone Haliotis discus hannai: A review. J. Shellfish Res. 2004, 23, 1027–1030. [Google Scholar]
- Durazo, E.; Viana, M.T. Fatty acid profile of cultured green abalone (Haliotis fulgens) exposed to lipid restriction and long-term starvation. Cienc. Mar. 2013, 39, 363–370. [Google Scholar] [CrossRef]
- Carroll, S.L.; Coyne, V.E. A proteomic analysis of the effect of ocean acidification on the haemocyte proteome of the South African abalone Haliotis midae. Fish Shellfish Immunol. 2021, 117, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Fallu, R. Abalone Farming. In Fishing News Books; Blackwell Scient. Publisher: Oxford, UK, 1991; pp. 37–43. [Google Scholar]
- Naylor, M.A.; Kaiser, H.; Jones, C.L.W. The effect of dosing with sodium hydroxide (NaOH) on water pH and growth of Haliotis midae in an abalone serial-use raceway. Aquac. Int. 2013, 21, 467–479. [Google Scholar] [CrossRef]
- De Prisco, J.A. An Investigation of Some Key Physico-Chemical Water Quality Parameters of an Integrated Multi-Trophic Aquaculture (IMTA) System Operating Recirculation Methodology in the Western Cape of South Africa. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2020. [Google Scholar]
- White, H.; Hecht, T.; Potgieter, B. The effect of four anesthetics on Haliotis midae and their suitability for application in commercial abalone culture. Aquaculture 1996, 140, 145–151. [Google Scholar] [CrossRef]
- Van der Merwe, E. Toward best management practices for the growth of the abalone Haliotis midae Linnaeus on a commercial South African abalone farm. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2009. [Google Scholar]
- Fanni, N.A.; Soeprijanto, F.R. Abalone (Haliotis sqaumata) anesthesia with ethanol on grading process. Russ. J. Agric. Socio-Econ. Sci. 2018, 2, 239–242. [Google Scholar]
- Fanni, N.A.; Shaleh, F.R.; Santanumurti, M.B. The role of clove (Sygnium aromaticum) oil as anaesthetics compound for abalone (Haliotis squamata). Iraqi J. Vet. Sci. 2021, 35, 335–342. [Google Scholar] [CrossRef]
- Rojas-Figueroa, A.; Angulo, C.; Araya, R.; Granados-Amores, A.; Guardiola, F.A.; Saucedo, P.E. Comparative analysis of anesthetic agents used in pre-operative therapy for pearl culture in the red abalone Haliotis rufescens (Swainson, 1822). Aquaculture 2023, 574, 739623. [Google Scholar] [CrossRef]
- Grieshaber, M.; Hardewig, I.; Kreutzer, U.; Pörtner, H.-O. Physiological and metabolic responses to hypoxia in invertebrates. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin/Heidelberg, Germany, 1993; Volume 125, pp. 43–147. [Google Scholar]
- Venter, L.; Loots, D.T.; Mienie, L.J.; van Rensburg, P.J.J.; Mason, S.; Vosloo, A.; Lindeque, J.Z. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia. Biol. Open 2018, 7, bio031070. [Google Scholar] [CrossRef]
- Lutier, M.; Pernet, F.; Di Poi, C. Pacific oysters do not compensate growth retardation following extreme acidification events. Biol. Lett. 2023, 19, 20230185. [Google Scholar] [CrossRef]
Treatment | TA °C | pH | AT µmol kg −1 | O2 % | Salinity ‰ | Ca2+ mmol L−1 | Mg2+ mmol L−1 | pCO2 Torr (µatm) | HCO3− mmol L−1 | CO32− mmol L−1 |
---|---|---|---|---|---|---|---|---|---|---|
Acclimation | 19.3 ± 0.2 | 8.22 ± 0.08 | 2039 ± 6 | 98.7 ± 0.1 | 35.0 ± 0.0 | 10.3 ± 0.4 | 52.0 ± 1.1 | 0.2 ± 0.0 (209 ± 0) | 1.5 ± 0.0 | 0.2 ± 0.0 |
Normocapnia | 19.4 ± 0.7 | 8.28 ± 0.04 | 2048 ± 12 | 97.8 ± 0.3 | 34.9 ± 0.0 | 10.3 ± 0.5 | 52.5 ± 1.1 | 0.2 ± 0.0 (176 ± 0) | 1.4 ± 0.0 | 0.2 ± 0.0 |
Hypercapnia | 19.5 ± 0.8 | 7.33 ± 0.05 | 2044 ± 21 | 94.9 ± 0.0 | 34.9 ± 0.0 | 10.4 ± 0.3 | 51.5 ± 1.6 | 1.6 ± 0.2 (2142 ± 2) | 1.9 ± 0.0 | 0.0 ± 0.0 |
5 min dip | 19.4 ± 0.1 | 5.02 ± 0.06 | 2019 ± 5 | 89.4 ± 6.7 | 34.9 ± 0.0 | 10.2 ± 0.1 | 52.5 ± 0.9 | 346 ± 46 (457,568 ± 60,582) | 2.0 ± 0.0 | 0.0 ± 0.0 |
Recovery | 19.6 ± 0.2 | 8.27 ± 0.01 | 2031 ± 8 | 92.3 ± 0.2 | 34.9 ± 0.0 | 10.3 ± 0.8 | 52.4 ± 1.6 | 0.2 ± 0.0 (180 ± 0) | 1.4 ± 0.0 | 0.2 ± 0.0 |
Treatment (pH) | TA °C | pH | AT µmol kg −1 | O2 % | Salinity ‰ | Ca2+ mmol L−1 | Mg2+ mmol L−1 | pCO2 Torr (µatm) | HCO3− mmol L−1 | CO32− mmol L−1 |
---|---|---|---|---|---|---|---|---|---|---|
Acclimation | 20.7 ± 0.4 | 8.05 ± 0.09 | 2011 ± 11 | 97.6 ± 1.1 | 34.9 ± 0.1 | 10.6 ± 0.5 | 52.1 ± 1.0 | 0.2 ± 0.1 (338 ± 81) | 1.6 ± 0.1 | 0.2 ± 0.0 |
7.2 | 20.3 ± 0.0 | 7.20 ± 0.02 | 2051 ± 4 | 97.4 ± 0.1 | 34.2 ± 0.0 | 10.1 ± 0.4 | 53.1 ± 2.3 | 2.3 ± 0.0 (2960 ± 3) | 2.0 ± 0.0 | 0.0 ± 0.0 |
6.8 | 20.8 ± 1.0 | 6.79 ± 0.02 | 2036 ± 8 | 94.5 ± 0.2 | 34.2 ± 0.0 | 11.0 ± 0.4 | 52.5 ± 1.1 | 5.9 ± 0.0 (7732 ± 9) | 2.0 ± 0.0 | 0.0 ± 0.0 |
6.4 | 21.2 ± 1.1 | 6.39 ± 0.01 | 2046 ± 22 | 89.0 ± 0.1 | 34.2 ± 0.0 | 10.6 ± 0.1 | 51.3 ± 1.0 | 15.0 ± 0.2 (19,677 ± 193) | 2.0 ± 0.0 | 0.0 ± 0.0 |
6.0 | 21.3 ± 0.2 | 6.00 ± 0.00 | 2031 ± 16 | 88.6 ± 0.3 | 34.3 ± 0.0 | 10.7 ± 1.0 | 51.0 ± 1.3 | 36.6 ± 0.3 (48,182 ± 381) | 2.0 ± 0.0 | 0.0 ± 0.0 |
5.6 | 20.2 ± 0.3 | 5.61 ± 0.01 | 2028 ± 13 | 83.7 ± 0.4 | 34.2 ± 0.0 | 10.9 ± 0.9 | 52.5 ± 1.6 | 89.7 ± 0.7 (117,984 ± 879) | 2.0 ± 0.0 | 0.0 ± 0.0 |
Exposure Time | pH | cCO2 mmol L−1 | pCO2 Torr | [HCO3− + CO32−] mmol L−1 | Ca2+ mmol L−1 | Mg2+ mmol L−1 | Haemocyanin mg mL−1 |
---|---|---|---|---|---|---|---|
Normocapnia (h) | |||||||
0 | 7.35 ± 0.13 | 3.6 ± 0.4 | 3.5 ± 0.1 | 3.4 ± 0.5 | 11.9 ± 0.9 | 21.9 ± 0.5 | 12.4 ± 2.5 |
1.5 | 7.51 ± 0.14 * | 3.6 ± 0.4 | 2.4 ± 0.2 # | 3.5 ± 0.6 | 12.0 ± 0.8 | 22.0 ± 0.7 | 12.5 ± 1.9 |
3 | 7.57 ± 0.13 * | 3.4 ± 0.4 | 2.0 ± 0.2 # | 3.3 ± 0.5 | 11.7 ± 1.4 | 21.9 ± 0.7 | 12.8 ± 3.0 |
5 | 7.43 ± 0.05 | 2.7 ± 0.1 | 2.2 ± 0.0 *# | 2.6 ± 0.2 | 11.9 ± 0.7 | 21.8 ± 0.6 | 12.8 ± 2.7 |
8 | 7.56 ± 0.07 * | 2.9 ± 0.1 | 1.7 ± 0.1 *# | 2.8 ± 0.2 | 11.6 ± 0.9 | 21.8 ± 1.6 | 12.6 ± 2.2 |
24 | 7.51 ± 0.07 * | 3.1 ± 0.5 | 2.1 ± 0.2 # | 3.0 ± 0.6 | 11.1 ± 1.5 | 21.4 ± 1.8 | 12.5 ± 1.8 |
32 (Recovery) | 7.56 ± 0.08 * | 2.8 ± 0.2 | 1.7 ± 0.1 * | 2.7 ± 0.4 | 11.7 ± 1.1 | 21.7 ± 1.6 | 12.8 ± 1.6 |
Hypercapnia (h) | |||||||
0 | 7.40 ± 0.04 | 4.0 ± 0.4 | 3.5 ± 0.1 | 3.8 ± 0.5 | 11.5 ± 1.2 | 21.7 ± 0.4 | 12.3 ± 1.9 |
1.5 | 7.19 ± 0.10 *# | 4.4 ± 1.1 | 6.1 ± 0.2 *# | 4.2 ± 1.2 | 11.0 ± 0.7 | 21.2 ± 1.2 | 12.5 ± 1.9 |
3 | 7.20 ± 0.08 *# | 4.4 ± 1.1 | 5.9 ± 0.2 *# | 4.1 ± 1.1 | 11.2 ± 0.1 | 21.3 ± 1.2 | 12.6 ± 1.7 |
5 | 7.12 ± 0.05 *# | 3.5 ± 0.7 | 5.6 ± 0.1 *# | 3.3± 0.8 | 11.0 ± 0.1 | 21.1 ± 0.7 | 12.7 ± 1.8 |
8 | 7.12 ± 0.03 *# | 3.0 ± 0.7 | 4.8 ± 0.1 # | 2.8 ± 0.8 | 11.3 ± 1.2 | 21.0 ± 1.6 | 12.9 ± 2.0 |
24 | 7.10 ± 0.05 *# | 3.3 ± 0.7 | 5.5 ± 0.1 *# | 3.1 ± 0.8 | 11.2 ± 2.3 | 20.8 ± 1.6 | 13.0 ± 1.7 |
32 (Recovery) | 7.55 ± 0.07 * | 2.8 ± 0.2 | 1.8 ± 0.1 * | 2.7 ± 0.3 | 12.0 ± 0.6 | 20.9 ± 1.3 | 12.7 ± 1.6 |
Anaesthesia | |||||||
0 | 7.40 ± 0.03 | 3.5 ± 0.1 | 3.0 ± 0.2 | 3.3 ± 0.1 | 11.8 ± 1.2 | 22.5 ± 1.0 | 12.7 ± 2.2 |
5 min | 6.74 ± 0.10 * | 8.3 ± 0.5 * | 29.6 ± 6.5 * | 7.0 ± 0.3 * | 10.8 ± 1.1 | 22.1 ± 1.7 | 12.7 ± 1.9 |
1.5 (Recovery) | 7.47 ± 0.08 | 4.9 ± 0.7 * | 3.7 ± 0.7 | 4.7 ± 0.7 * | 11.1 ± 0.6 | 21.8 ± 0.9 | 13.4 ± 1.8 |
5 (Recovery) | 7.61 ± 0.08 * | 3.7 ± 0.5 | 2.1 ± 0.5 | 3.6 ± 0.5 | 11.2 ± 0.7 | 22.2 ± 0.8 | 12.8 ± 1.6 |
24 (Recovery) | 7.59 ± 0.03 * | 3.3 ± 0.1 | 1.9 ± 0.2 | 3.2 ± 0.1 | 11.6 ± 0.5 | 22.4 ± 0.8 | 13.0 ± 3.3 |
pH | Number of Dead Abalone after | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | 10 h | 12 h | 24 h | 36 h | 48 h | |||||||||||
a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | ||
7.20 ± 0.02 (7.19–7.22) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.80 ± 0.02 (6.77–6.80) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.39 ± 0.01 (6.39–6.40) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | |
6.00 ± 0.0 (6.00–6.01) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 6 | 6 | 9 | 10 | |
5.61 ± 0.01 (5.60–5.61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 4 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | |
5.2 (5.18–5.21) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 6 | 6 | 8 | 9 | 10 | 10 | 10 | 10 | |
LC50 pH: | 6.27 | ||||||||||||||||||
95% confidence limits: | 6.18–6.4 |
pH | Number of Dead Abalone after | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | 10 h | 12 h | 24 h | 36 h | 48 h | |||||||||||
a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | ||
7.20 ± 0.02 (7.19–7.22) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.80 ± 0.02 (6.77–6.80) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.39 ± 0.01 (6.39–6.40) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | |
6.00 ± 0.0 (6.00–6.01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 6 | 8 | 9 | 8 | |
5.61 ± 0.01 (5.60–5.61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 10 | 10 | 10 | 10 | 10 | 10 | |
5.2 (5.18–5.21) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 5 | 5 | 8 | 9 | 10 | 10 | 10 | 10 | |
LC50 pH: | 6.18 | ||||||||||||||||||
95% confidence limits: | 6.03–6.32 |
pH | Number of Dead Abalone after | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 8 h | 10 h | 12 h | 24 h | 36 h | 48 h | |||||||||||
a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | ||
7.20 ± 0.02 (7.19–7.22) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.80 ± 0.02 (6.77–6.80) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.39 ± 0.01 (6.39–6.40) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6.00 ± 0.0 (6.00–6.01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 6 | 6 | |
5.61 ± 0.01 (5.60–5.61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 2 | 10 | 10 | 10 | 10 | |
5.2 ± 0.01 (5.18–5.21) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 5 | 6 | 6 | 8 | 7 | 10 | 10 | 10 | 10 | |
LC50 pH: | 6.02 | ||||||||||||||||||
95% confidence limits: | 5.98–6.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, T.; Bridges, C.R.; Naylor, M.; Yemane, D.; Auerswald, L. Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences. Fishes 2024, 9, 313. https://doi.org/10.3390/fishes9080313
Novak T, Bridges CR, Naylor M, Yemane D, Auerswald L. Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences. Fishes. 2024; 9(8):313. https://doi.org/10.3390/fishes9080313
Chicago/Turabian StyleNovak, Tanja, Christopher R. Bridges, Matt Naylor, Dawit Yemane, and Lutz Auerswald. 2024. "Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences" Fishes 9, no. 8: 313. https://doi.org/10.3390/fishes9080313
APA StyleNovak, T., Bridges, C. R., Naylor, M., Yemane, D., & Auerswald, L. (2024). Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences. Fishes, 9(8), 313. https://doi.org/10.3390/fishes9080313