Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin–Orbit Coupling
Abstract
:1. Introduction
2. The Linear Response Formula
3. The Hamiltonian of the Dirac–Rashba Model
4. The Solution of the Boltzmann Equation for the Occupation Numbers
5. The Interband Density Matrix and the Evaluation of the Spin Hall Conductivity
5.1. The Geometry-Induced Intrinsic Term
5.2. The Disorder-Induced Term
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Spin–orbit coupling |
LR | Linear response |
TMD | transition-metal dichalcogenides |
Appendix A
Appendix B
References
- Valet, T.; Raimondi, R. Quantum Kinetic Theory of the Linear Response for Weakly Disordered Multiband Systems. arXiv 2024, arXiv:2410.08975. [Google Scholar]
- Valet, T.; Raimondi, R. Semiclassical kinetic theory for systems with non-trivial quantum geometry and the expectation value of physical quantities. EPL (Europhys. Lett.) 2023, 143, 26004. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Geim, A.; Grigorieva, I. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Kochan, D.; Irmer, S.; Fabian, J. Model spin–orbit coupling Hamiltonians for graphene systems. Phys. Rev. B 2017, 95, 165415. [Google Scholar] [CrossRef]
- Soumyanarayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 2016, 539, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Kawakami, R.K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Martelo, L.M.; Ferreira, A. Designer spin–orbit superlattices: Symmetry-protected Dirac cones and spin Berry curvature in two-dimensional van der Waals metamaterials. Commun. Phys. 2024, 7, 308. [Google Scholar] [CrossRef]
- Frank, T.; Faria Junior, P.E.; Zollner, K.; Fabian, J. Emergence of radial Rashba spin–orbit fields in twisted van der Waals heterostructures. Phys. Rev. B 2024, 109, L241403. [Google Scholar] [CrossRef]
- Li, Y.; Koshino, M. Twist-angle dependence of the proximity spin–orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 075438. [Google Scholar] [CrossRef]
- Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; van Wees, B.J.; Vera-Marun, I.J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003. [Google Scholar] [CrossRef]
- David, A.; Rakyta, P.; Kormányos, A.; Burkard, G. Induced spin–orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics. Phys. Rev. B 2019, 100, 085412. [Google Scholar] [CrossRef]
- Ahn, E. 2D materials for spintronic devices. npj 2D Mater. Appl. 2020, 4, 17. [Google Scholar] [CrossRef]
- Sierra, J.F.; Fabian, J.; Kawakami, R.K.; Roche, S.; Valenzuela, S.O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868. [Google Scholar] [CrossRef]
- Peres, N.M.R. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys. 2010, 82, 2673–2700. [Google Scholar] [CrossRef]
- Rashba, E.I. Graphene with structure-induced spin–orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect. Phys. Rev. B 2009, 79, 161409. [Google Scholar] [CrossRef]
- Gmitra, M.; Fabian, J. Graphene on transition-metal dichalcogenides: A platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 2015, 92, 155403. [Google Scholar] [CrossRef]
- Offidani, M.; Milletarì, M.; Raimondi, R.; Ferreira, A. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801. [Google Scholar] [CrossRef]
- Milletarì, M.; Offidani, M.; Ferreira, A.; Raimondi, R. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems. Phys. Rev. Lett. 2017, 119, 246801. [Google Scholar] [CrossRef] [PubMed]
- Offidani, M.; Raimondi, R.; Ferreira, A. Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene. Condens. Matter 2018, 3, 18. [Google Scholar] [CrossRef]
- Offidani, M.; Ferreira, A. Anomalous Hall Effect in 2D Dirac Materials. Phys. Rev. Lett. 2018, 121, 126802. [Google Scholar] [CrossRef]
- Baghran, R.; Tehranchi, M.M.; Phirouznia, A. Pseudo-Edelstein effect in disordered silicene. J. Phys. Condens. Matter 2021, 33, 175302. [Google Scholar] [CrossRef] [PubMed]
- Veneri, A.; Perkins, D.T.S.; Péterfalvi, C.G.; Ferreira, A. Twist angle controlled collinear Edelstein effect in van der Waals heterostructures. Phys. Rev. B 2022, 106, L081406. [Google Scholar] [CrossRef]
- Veneri, A.; Perkins, D.T.S.; Ferreira, A. Nonperturbative approach to interfacial spin–orbit torques induced by the Rashba effect. Phys. Rev. B 2022, 106, 235419. [Google Scholar] [CrossRef]
- Monaco, C.; Ferreira, A.; Raimondi, R. Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin–orbit coupling: A quasi-classical Green’s function approach. Phys. Rev. Res. 2021, 3, 033137. [Google Scholar] [CrossRef]
- Tao, L.L.; Tsymbal, E.Y. Spin-orbit dependence of anisotropic current-induced spin polarization. Phys. Rev. B 2021, 104, 085438. [Google Scholar] [CrossRef]
- Lee, S.; de Sousa, D.J.P.; Kwon, Y.K.; de Juan, F.; Chi, Z.; Casanova, F.; Low, T. Charge-to-spin conversion in twisted graphene/WSe2 heterostructures. Phys. Rev. B 2022, 106, 165420. [Google Scholar] [CrossRef]
- Chi, Z.; Lee, S.; Yang, H.; Dolan, E.; Safeer, C.K.; Ingla-Aynés, J.; Herling, F.; Ontoso, N.; Martín-García, B.; Gobbi, M.; et al. Control of Charge-Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves. Adv. Mater. 2024, 36, 2310768. [Google Scholar] [CrossRef]
- Rassekh, M.; Santos, H.; Latgé, A.; Chico, L.; Farjami Shayesteh, S.; Palacios, J.J. Charge-spin interconversion in graphene-based systems from density functional theory. Phys. Rev. B 2021, 104, 235429. [Google Scholar] [CrossRef]
- Cysne, T.P.; Costa, M.; Canonico, L.M.; Nardelli, M.B.; Muniz, R.B.; Rappoport, T.G. Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides. Phys. Rev. Lett. 2021, 126, 056601. [Google Scholar] [CrossRef] [PubMed]
- Cysne, T.P.; Bhowal, S.; Vignale, G.; Rappoport, T.G. Orbital Hall effect in bilayer transition metal dichalcogenides: From the intra-atomic approximation to the Bloch states orbital magnetic moment approach. Phys. Rev. B 2022, 105, 195421. [Google Scholar] [CrossRef]
- Costa, M.; Focassio, B.; Canonico, L.M.; Cysne, T.P.; Schleder, G.R.; Muniz, R.B.; Fazzio, A.; Rappoport, T.G. Connecting Higher-Order Topology with the Orbital Hall Effect in Monolayers of Transition Metal Dichalcogenides. Phys. Rev. Lett. 2023, 130, 116204. [Google Scholar] [CrossRef]
- Raimondi, R.; Schwab, P. Spin-Hall effect in a disordered two-dimensional electron system. Phys. Rev. B 2005, 71, 033311. [Google Scholar] [CrossRef]
- Mishchenko, E.G.; Shytov, A.V.; Halperin, B.I. Spin Current and Polarization in Impure Two-Dimensional Electron Systems with Spin-Orbit Coupling. Phys. Rev. Lett. 2004, 93, 226602. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.I.; Bauer, G.E.W.; Molenkamp, L.W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 2004, 70, 041303. [Google Scholar] [CrossRef]
- Serima, O.T.; Javanainen, J.; Varro, S. Gauge-independent Wigner functions: General formulation. Phys. Rev. A 1986, 33, 2913–2927. [Google Scholar] [CrossRef] [PubMed]
- Graf, A.; Piéchon, F. Berry curvature and quantum metric in N-band systems: An eigenprojector approach. Phys. Rev. B 2021, 104, 085114. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.; Scully, M.; Wigner, E. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.W.; Shin, D.; Lee, S.H.; Sinova, J.; Park, N.; Jin, H. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat. Commun. 2019, 10, 3965. [Google Scholar] [CrossRef] [PubMed]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405–408. [Google Scholar] [CrossRef]
- Dyrdał, A.; Dugaev, V.K.; Barnaś, J. Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin–orbit interaction. Phys. Rev. B 2009, 80, 155444. [Google Scholar] [CrossRef]
- Streda, P. Theory of quantised Hall conductivity in two dimensions. J. Phys. C 1982, 15, L717. [Google Scholar] [CrossRef]
- Perkins, D.T.S.; Veneri, A.; Ferreira, A. Spin Hall effect: Symmetry breaking, twisting, and giant disorder renormalization. Phys. Rev. B 2024, 109, L241404. [Google Scholar] [CrossRef]
- Naimer, T.; Gmitra, M.; Fabian, J. Tuning proximity spin–orbit coupling in graphene/NbSe2 heterostructures via twist angle. Phys. Rev. B 2024, 109, 205109. [Google Scholar] [CrossRef]
- Medina Dueñas, J.; García, J.H.; Roche, S. Emerging Spin-Orbit Torques in Low-Dimensional Dirac Materials. Phys. Rev. Lett. 2024, 132, 266301. [Google Scholar] [CrossRef]
- Zhumagulov, Y.; Kochan, D.; Fabian, J. Emergent Correlated Phases in Rhombohedral Trilayer Graphene Induced by Proximity Spin-Orbit and Exchange Coupling. Phys. Rev. Lett. 2024, 132, 186401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondi, R.; Valet, T. Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin–Orbit Coupling. Condens. Matter 2025, 10, 4. https://doi.org/10.3390/condmat10010004
Raimondi R, Valet T. Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin–Orbit Coupling. Condensed Matter. 2025; 10(1):4. https://doi.org/10.3390/condmat10010004
Chicago/Turabian StyleRaimondi, Roberto, and Thierry Valet. 2025. "Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin–Orbit Coupling" Condensed Matter 10, no. 1: 4. https://doi.org/10.3390/condmat10010004
APA StyleRaimondi, R., & Valet, T. (2025). Quantum Kinetic Theory of the Spin Hall Effect for Disordered Graphene with Rashba Spin–Orbit Coupling. Condensed Matter, 10(1), 4. https://doi.org/10.3390/condmat10010004