Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques
Abstract
:1. Introduction
2. Advanced Battery Characterisation
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204. [Google Scholar] [CrossRef] [Green Version]
- Assat, G.; Tarascon, J.M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386. [Google Scholar] [CrossRef]
- Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef] [PubMed]
- Mauger, A.; Julien, C.M.; Goodenough, J.B.; Zaghib, K. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries. J. Electrochem. Soc. 2019, 167, 070507. [Google Scholar] [CrossRef]
- Pellegrini, V.; Bodoardo, S.; Brandell, D.; Edström, K. Challenges and perspectives for new material solutions in batteries. Solid State Commun. 2019, 303, 113733. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Quinteros-Condoretty, A.R.; Albareda, L.; Barbiellini, B.; Soyer, A. A Socio-technical transition of sustainable lithium industry in Latin America. Procedia Manuf. 2020, 51, 1737–1747. [Google Scholar] [CrossRef]
- Quinteros-Condoretty, A.R.; Golroudbary, S.R.; Albareda, L.; Barbiellini, B.; Soyer, A. Impact of circular design of lithium-ion batteries on supply of lithium for electric cars towards a sustainable mobility and energy transition. Procedia CIRP 2021, 100, 73–78. [Google Scholar] [CrossRef]
- Hafiz, H.; Suzuki, K.; Barbiellini, B.; Tsuji, N.; Yabuuchi, N.; Yamamoto, K.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H.; et al. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature 2021, 594, 213–216. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, S.; Otsuka, Y.; Tsuji, N.; Jalkanen, K.; Koskinen, J.; Hoshi, K.; Honkanen, A.P.; Hafiz, H.; Sakurai, Y.; et al. Redox oscillations in 18650-type lithium-ion cell revealed by in operando Compton scattering imaging. Appl. Phys. Lett. 2021, 118, 161902. [Google Scholar] [CrossRef]
- Huang, W.; Marcelli, A.; Xia, D. Application of synchrotron radiation technologies to electrode materials for Li-and Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700460. [Google Scholar] [CrossRef]
- Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R. Using in-situ laboratory and synchrotron-based X-ray diffraction for lithium-ion batteries characterization: A review on recent developments. Condens. Matter 2020, 5, 75. [Google Scholar] [CrossRef]
- Mullaliu, A.; Conti, P.; Aquilanti, G.; Plaisier, J.R.; Stievano, L.; Giorgetti, M. Operando XAFS and XRD study of a Prussian blue analogue cathode material: Iron Hexacyanocobaltate. Condens. Matter 2018, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, Q.; Sallis, S.; Zhuo, Z.; Gent, W.E.; Chueh, W.C.; Yan, S.; Chuang, Y.D.; Yang, W. Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering. Condens. Matter 2019, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Y.J.; et al. Extracting the redox orbitals in Li battery materials with high-resolution X-ray Compton scattering spectroscopy. Phys. Rev. Lett. 2015, 114, 087401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbiellini, B.; Suzuki, K.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y.J.; Hafiz, H.; Yamada, R.; Uchimoto, Y.; et al. Identifying a descriptor for d-orbital delocalization in cathodes of Li batteries based on X-ray Compton scattering. Appl. Phys. Lett. 2016, 109, 073102. [Google Scholar] [CrossRef] [Green Version]
- Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 2017, 3, e1700971. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Kanai, R.; Tsuji, N.; Yamashige, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H. Dependency of the charge–discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging. Condens. Matter 2018, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Honkanen, A.P.; Tsuji, N.; Jalkanen, K.; Koskinen, J.; Morimoto, H.; Hiramoto, D.; Terasaka, A.; Hafiz, H.; Sakurai, Y.; et al. High-energy X-ray Compton scattering imaging of 18650-type lithium-ion battery cell. Condens. Matter 2019, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Pussi, K.; Gallo, J.; Ohara, K.; Carbo-Argibay, E.; Kolen’ko, Y.V.; Barbiellini, B.; Bansil, A.; Kamali, S. Structure of manganese oxide nanoparticles extracted via pair distribution functions. Condens. Matter 2020, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Kuriplach, J.; Pulkkinen, A.; Barbiellini, B. First-principles study of the impact of grain boundary formation in the cathode material LiFePO4. Condens. Matter 2019, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, F.; Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 2013, 85, 1583. [Google Scholar] [CrossRef] [Green Version]
- Barbiellini, B.; Kuriplach, J. Advanced characterization of lithium battery materials with positrons. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 791, p. 012016. [Google Scholar]
- Kmječ, T.; Kohout, J.; Dopita, M.; Veverka, M.; Kuriplach, J. Mössbauer spectroscopy of Triphylite (LiFePO4) at Low temperatures. Condens. Matter 2019, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, F.; Kadek, M.; Barbiellini, B.; Bansil, A. Electrochemical potential of the metal organic framework MIL-101 (Fe) as cathode material in Li-ion batteries. Condens. Matter 2021, 6, 22. [Google Scholar] [CrossRef]
- Lane, C.; Cao, D.; Li, H.; Jiao, Y.; Barbiellini, B.; Bansil, A.; Zhu, H. Understanding phase stability of metallic 1T-MoS2 anodes for sodium-ion batteries. Condens. Matter 2019, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.C.; Singh, B.; Mardanya, S.; Nokelainen, J.; Agarwal, A.; Lin, H.; Lane, C.; Pussi, K.; Barbiellini, B.; Bansil, A. Topological Dirac semimetal phase in Bismuth based anode materials for sodium-ion batteries. Condens. Matter 2020, 5, 39. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbiellini, B.; Kuriplach, J.; Saniz, R. Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques. Condens. Matter 2021, 6, 26. https://doi.org/10.3390/condmat6030026
Barbiellini B, Kuriplach J, Saniz R. Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques. Condensed Matter. 2021; 6(3):26. https://doi.org/10.3390/condmat6030026
Chicago/Turabian StyleBarbiellini, Bernardo, Jan Kuriplach, and Rolando Saniz. 2021. "Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques" Condensed Matter 6, no. 3: 26. https://doi.org/10.3390/condmat6030026
APA StyleBarbiellini, B., Kuriplach, J., & Saniz, R. (2021). Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques. Condensed Matter, 6(3), 26. https://doi.org/10.3390/condmat6030026