Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights
Abstract
:1. Introduction
2. Results
2.1. X-ray Powder Diffraction
2.2. X-ray Absorption Spectroscopy
2.3. Electrochemical Testing
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Manthiram, A. A perspective on electrical energy storage. MRS Commun. 2014, 4, 135–142. [Google Scholar] [CrossRef]
- Oishi, M.; Yamanaka, K.; Watanabe, I.; Shimoda, K.; Matsunaga, T.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z.; Ohta, T. Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 2016, 4, 9293–9302. [Google Scholar] [CrossRef] [Green Version]
- Saubanère, M.; McCalla, E.; Tarascon, J.M.; Doublet, M.L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 2016, 9, 984–991. [Google Scholar] [CrossRef]
- House, R.A.; Marie, J.-J.; Pérez-Osorio, M.A.; Rees, G.J.; Boivin, E.; Bruce, P.G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 1–9. [Google Scholar] [CrossRef]
- Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K. A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. A 2017, 5, 18919–18932. [Google Scholar] [CrossRef]
- Qian, J.; Wu, C.; Cao, Y.; Ma, Z.-F.; Huang, Y.; Ai, X.; Yang, H. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. Adv. Energy Mater. 2018, 8, 1–24. [Google Scholar] [CrossRef]
- Choi, D.; Lim, S.; Han, D. Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries. J. Energy Chem. 2021, 53, 396–406. [Google Scholar] [CrossRef]
- Reguera, L.; Avila, Y.; Reguera, E. Transition metal nitroprussides: Crystal and electronic structure, and related properties. Co-ord. Chem. Rev. 2021, 434, 213764. [Google Scholar] [CrossRef]
- Mullaliu, A.; Sougrati, M.-T.; Louvain, N.; Aquilanti, G.; Doublet, M.-L.; Stievano, L.; Giorgetti, M. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: A new possible redox mechanism for lithium battery electrode materials? Electrochim. Acta 2017, 257, 364–371. [Google Scholar] [CrossRef]
- Mullaliu, A.; Aquilanti, G.; Stievano, L.; Conti, P.; Plaisier, J.; Cristol, S.; Giorgetti, M. Beyond the Oxygen Redox Strategy in Designing Cathode Material for Batteries: Dynamics of a Prussian Blue-like Cathode Revealed by Operando X-ray Diffraction and X-ray Absorption Fine Structure and by a Theoretical Approach. J. Phys. Chem. C 2019, 123, 8588–8598. [Google Scholar] [CrossRef]
- Mullaliu, A.; Stievano, L.; Aquilanti, G.; Plaisier, J.R.; Cristol, S.; Giorgetti, M. The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiat. Phys. Chem. 2020, 175, 108336. [Google Scholar] [CrossRef]
- Gómez, A.; Rodríguez-Hernández, J.; Reguera, E. Unique coordination in metal nitroprussides: The structure of Cu[Fe(CN)5NO]·2H2O and Cu[Fe(CN)5NO]. J. Chem. Crystallogr. 2004, 34, 893–903. [Google Scholar] [CrossRef]
- Musella, E.; Mullaliu, A.; Ruf, T.; Huth, P.; Tonelli, D.; Aquilanti, G.; Denecke, R.; Giorgetti, M. Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue. Energies 2020, 13, 4027. [Google Scholar] [CrossRef]
- Giorgetti, M.; Berrettoni, M.; Filipponi, A.; Kulesza, P.J.; Marassi, R. Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem. Phys. Lett. 1997, 275, 108–112. [Google Scholar] [CrossRef]
- Berrettoni, M.; Mullaliu, A.; Giorgetti, M. Metal Hexacyanoferrate Absorbents for Heavy Metal Removal. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Springer: Cham, Switzerland, 2021; pp. 171–194. [Google Scholar]
- Rebuffi, L.; Plaisier, J.R.; Abdellatief, M.; Lausi, A.; Scardi, P. MCX: A Synchrotron Radiation Beamline for X-ray Diffraction Line Profile Analysis. Z. Anorg. Und Allg. Chem. 2014, 640, 3100–3106. [Google Scholar] [CrossRef]
- Toby, B.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Von Dreele, R. Stochastic and Deterministic Crystal Structure Solution Methods in GSAS-II: Monte Carlo/Simulated Annealing Versus Charge Flipping. Crystals 2017, 7, 264. [Google Scholar] [CrossRef] [Green Version]
- Aquilanti, G.; Giorgetti, M.; Dominko, R.; Stievano, L.; Arčon, I.; Novello, N.; Olivi, L. Operando characterization of batteries using X-ray absorption spectroscopy: Advances at the beamline XAFS at synchrotron Elettra. J. Phys. D Appl. Phys. 2017, 50, 074001. [Google Scholar] [CrossRef]
- Filipponi, A.; Di Cicco, A. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys. Rev. B 1995, 52, 15135–15149. [Google Scholar] [CrossRef]
- Filipponi, A.; Di Cicco, A.; Natoli, C.R. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys. Rev. B 1995, 52, 15122–15134. [Google Scholar] [CrossRef] [PubMed]
- Hedin, L.; Lundqvist, B.I.; Lundqvist, S. Local exchange-correlation potentials. Solid State Commun. 1971, 9, 537–541. [Google Scholar] [CrossRef]
- Krause, M.O.; Oliver, J.H. Natural widths of atomic K and L levels, K α X-ray lines and several K L L Auger lines. J. Phys. Chem. Ref. Data 1979, 8, 329–338. [Google Scholar] [CrossRef] [Green Version]
Anhydrous CuNP | Hydrated CuNP | |
---|---|---|
Fe-C (x5)/Å | 1.916(3) | 1.913(4) |
σ2 Fe-C/Å2 | 0.0021(8) | 0.0023(7) |
C≡N (x5)/Å | 1.154(3) | 1.150(5) |
σ2 C≡N/Å2 | 0.012(1) | 0.008(1) |
Cu-N (x4)/Å | 1.973(5) | 1.969(7) |
σ2 Cu-N/Å2 | 0.0038(6) | 0.004(1) |
Cu-N/O (x1/x2)/Å | 2.13(2) | 2.48(2) * |
σ2 Cu-N (O)/Å2 | 0.018(3) | 0.034(3) |
Fe-N (x1)/Å | 1.68 ** | 1.68 ** |
σ2 Fe-N/Å2 | 0.0024 ** | 0.0015 ** |
N-O/Å | 1.12 ** | 1.11 ** |
σ2 N-O/Å2 | 0.001 ** | 0.001 ** |
θ Fe-C-N/deg | 180 FIX | 180 FIX |
σ2 Fe-C-N/deg2 | 4(3) | 4(3) |
σ2 Cu-N-C/deg2 | 9(6) | 9(4) |
σ2 Fe-N-O/deg2 | 63(40) | 59(40) |
θ Fe-N-O/deg | 180 FIX | 180 FIX |
E0 Fe | 7119.6(5) | 7119.1(4) |
E0 Cu | 8992.0(6) | 8989.6(6) |
S02 Fe | 0.77(6) | 0.75(5) |
S02 Cu | 0.89(5) | 0.89(5) |
χ2-like residual/(10−6) | 1.66 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mullaliu, A.; Aquilanti, G.; Plaisier, J.R.; Giorgetti, M. Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condens. Matter 2021, 6, 27. https://doi.org/10.3390/condmat6030027
Mullaliu A, Aquilanti G, Plaisier JR, Giorgetti M. Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condensed Matter. 2021; 6(3):27. https://doi.org/10.3390/condmat6030027
Chicago/Turabian StyleMullaliu, Angelo, Giuliana Aquilanti, Jasper Rikkert Plaisier, and Marco Giorgetti. 2021. "Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights" Condensed Matter 6, no. 3: 27. https://doi.org/10.3390/condmat6030027
APA StyleMullaliu, A., Aquilanti, G., Plaisier, J. R., & Giorgetti, M. (2021). Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condensed Matter, 6(3), 27. https://doi.org/10.3390/condmat6030027