Evolution of Charge-Lattice Dynamics across the Kuramoto Synchronization Phase Diagram of Quantum Tunneling Polarons in Cuprate Superconductors
Abstract
:1. Introduction
2. Model and Methods
2.1. The Six-Atom Cluster
2.2. The Kuramoto Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitrano, M.; Husain, A.A.; Vig, S.; Kogar, A.; Rak, M.S.; Rubeck, S.I.; Schmalian, J.; Uchoa, B.; Schneeloch, J.; Zhong, R.; et al. Anomalous density fluctuations in a strange metal. Proc. Natl. Acad. Sci. USA 2018, 115, 5392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozovic, I.; He, S.; Wu, J.; Bollinger, A.T. The Vanishing Superfluid Density in Cuprates-and Why It Matters. J. Supercond. Nov. Magn. 2018, 31, 2683. [Google Scholar] [CrossRef]
- Bishop, A.R.; Mihailovic, D.; de Leon, J.M. Signatures of mesoscopic Jahn-Teller polaron inhomogeneities in high-temperature superconductors. J. Phys.-Condens. Mat. 2003, 15, L169–L175. [Google Scholar] [CrossRef]
- Arai, M.; Yamada, K.; Hidaka, Y.; Itoh, S.; Bowden, Z.A.; Taylor, A.D.; Endoh, Y. Anomaly of phonon state of superconducting YBa2Cu3O7 studied by inelastic neutron-scattering. Phys. Rev. Lett. 1992, 69, 359. [Google Scholar] [CrossRef]
- de Leon, J.M.; Conradson, S.D.; Batistic, I.; Bishop, A.R. Evidence for an axial oxygen-centered lattice fluctuation associated with the superconducting transition in YBa2Cu3O7. Phys. Rev. Lett. 1990, 65, 1675–1678. [Google Scholar] [CrossRef]
- Acosta-Alejandro, M.; de Leon, J.M.; Conradson, S.D.; Bishop, A.R. Evidence for a local structural change in La2CuO4.1 across the superconducting transition. J. Supercond. 2002, 15, 355–360. [Google Scholar] [CrossRef]
- McQueeney, R.J.; Petrov, Y.; Egami, T.; Yethiraj, M.; Shirane, G.; Endoh, Y. Anomalous Dispersion of LO Phonons in La1.85Sr0.15CuO4 at Low Temperatures. Phys. Rev. Lett. 1999, 82, 628. [Google Scholar] [CrossRef]
- D’Astuto, M.; Mang, P.K.; Giura, P.; Shukla, A.; Ghigna, P.; Mirone, A.; Braden, M.; Greven, M.; Krisch, M.; Sette, F. Anomalous Dispersion of Longitudinal Optical Phonons in Nd1.86Ce0.14CuO4+δ Determined by Inelastic X-ray Scattering. Phys. Rev. Lett. 2002, 88, 167002. [Google Scholar] [CrossRef] [Green Version]
- Demsar, J.; Podobnik, B.; Kabanov, V.V.; Wolf, T.; Mihailovic, D. Superconducting Gap Δc, the Pseudogap Δp, and Pair Fluctuations above Tc in Overdoped Y1-xCaxBa2Cu3O7-δ from Femtosecond Time-Domain Spectroscopy. Phys. Rev. Lett. 1999, 82, 4918. [Google Scholar] [CrossRef] [Green Version]
- Misochko, O.V.; Sherman, E.Y.; Umesaki, N.; Sakai, K.; Nakashima, S. Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study. Phys. Rev. B 1999, 59, 11495. [Google Scholar] [CrossRef] [Green Version]
- de Leon, J.M.; Li, G.G.; Conradson, S.D.; Bishop, A.R.; Subramanian, M.A.; Raistrick, I.D. Planar oxygen-centered lattice instabilities in Tl-based high-temperature superconductors. Physica C 1994, 220, 377–382. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T. Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 1996, 76, 3412–3415. [Google Scholar] [CrossRef] [Green Version]
- Pelc, D.; Anderson, Z.; Yu, B.; Leighton, C.; Greven, M. Universal superconducting precursor in three classes of unconventional superconductors. Nat. Commun. 2019, 10, 2729. [Google Scholar] [CrossRef]
- Perali, A.; Innocenti, D.; Valletta, A.; Bianconi, A. Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 2012, 25, 124002. [Google Scholar] [CrossRef] [Green Version]
- Pelc, D.; Spieker, R.J.; Anderson, Z.W.; Krogstad, M.J.; Biniskos, N.; Bielinski, N.G.; Yu, B.; Sasagawa, T.; Chauviere, L.; Dosanjh, P.; et al. Unconventional short-range structural fluctuations in cuprate high-Tc superconductors. arXiv 2021, arXiv:2103.05482. [Google Scholar]
- Egami, T.; Toby, B.H.; Billinge, S.J.L.; Rosenfeld, H.D.; Jorgensen, J.D.; Hinks, D.G.; Dabrowski, B.; Subramanian, M.A.; Crawford, M.K.; Farneth, W.E.; et al. Local structural anomaly near Tc observed by pulsed neutron-scattering. Phys. C 1991, 185, 867–868. [Google Scholar] [CrossRef]
- Arai, M.; Yamada, K.; Hosoya, S.; Hannon, A.C.; Hidaka, Y.; Taylor, A.; Endoh, Y. Local structural instability of high-Tc oxide superconductors studied by inelastic neutron-scattering. J. Supercond. 1994, 7, 415–418. [Google Scholar] [CrossRef]
- Conradson, S.D.; Raistrick, I.D.; Bishop, A.R. Axial oxygen centered lattice instabilities and high-temperature superconductivity. Science 1990, 248, 1394–1398. [Google Scholar] [CrossRef]
- Salkola, M.I.; Bishop, A.R.; Trugman, S.A.; de Leon, J.M. Correlation-function analysis of nonlinear and nonadiabatic systems—Polaron tunneling. Phys. Rev. B 1995, 51, 8878–8891. [Google Scholar] [CrossRef]
- de Leon, J.M.; Conradson, S.D.; Tyson, T.; Bishop, A.R.; Salkola, M.; Espinosa, F.J.; Peña, J.L. X-ray absorption fine structure applied to the study of systems with lattice instabilities. In Applications of Synchrotron Radiation Techniques to Materials Science III Vol. 437 Materials Research Society Symposium Proceedings; Terminello, L.J., Mini, S.M., Ade, H., Perry, D.L., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 189–199. [Google Scholar]
- Allen, P.G.; de Leon, J.M.; Conradson, S.D.; Bishop, A.R. Characterization of a split axial-oxygen site in TlBa2Ca3Cu4O11 by extended X-ray-absorption fine-structure spectroscopy. Phys. Rev. B 1991, 44, 9480–9485. [Google Scholar] [CrossRef]
- Bianconi, A.; Missori, M.; Oyanagi, H.; Yamaguchi, H.; Ha, D.H.; Nishiara, Y.; Della Longa, S. The measurement of the polaron size in the metallic phase of cuprate superconductors. Europhys. Lett. 1995, 31, 411–415. [Google Scholar] [CrossRef]
- Booth, C.H.; Bridges, F.; Boyce, J.B.; Claeson, T.; Lairson, B.M.; Liang, R.; Bonn, D.A. Comparison of local structure measurements from c-axis polarized XAFS between a film and a single crystal of YBa2Cu3O7-δ as a function of temperature. Phys. Rev. B 1996, 54, 9542–9554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyanagi, H.; Zhang, C.; Tsukada, A.; Naito, M. Lattice instability in high-temperature superconducting cuprates: Polarons probed by EXAFS. J. Supercond. Nov. Magn. 2009, 22, 165–168. [Google Scholar] [CrossRef]
- Young, C.A.; Dixon, E.; Tucker, M.G.; Keen, D.A.; Hayward, M.A.; Goodwin, A.L. Reverse Monte Carlo study of apical Cu-O bond distortions in YBa2Cu3O6.93. Z. Kristallogr. Cryst. Mater. 2012, 227, 280. [Google Scholar] [CrossRef]
- de Leon, J.M.; Batistic, I.; Bishop, A.R.; Conradson, S.D.; Trugman, S.A. Polaron origin for anharmonicity of the axial oxygen in YBa2Cu3O7. Phys. Rev. Lett. 1992, 68, 3236–3239. [Google Scholar] [CrossRef] [PubMed]
- Conradson, S.D.; Geballe, T.H.; Jin, C.Q.; Cao, L.P.; Gauzzi, A.; Karppinen, M.; Baldinozzi, G.; Li, W.M.; Gilioli, E.; Jiang, J.M.; et al. Nonadiabatic coupling of the dynamical structure to the superconductivity in YSr2Cu2.75Mo0.25O7.54 and Sr2CuO3.3. Proc. Natl. Acad. Sci. USA 2020, 117, 33099–33106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Oyanagi, H. Local lattice instability and superconductivity in La1.85Sr0.15Cu1-xMxO4 (M = Mn, Ni, and Co). Phys. Rev. B 2009, 79, 064521. [Google Scholar] [CrossRef]
- Ono, A. Oxygenation and critical-temperature optimization in M-1212 cuprates (Sr, Ba)2YCu2.8M0.2Oz (M = Ti, Ga, Ge, Al). Jpn. J. Appl. Phys. 1996, 35, L201. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Q.Q.; Li, F.Y.; Jin, C.Q.; Yu, R.C. TEM and EELS studies of Sr2CuO3+δ (nominal δ=0.1-0.4): Effect of apical oxygen ordering on T-c of cuprate superconductors. Phys. C 2007, 467, 59. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Liu, Q.Q.; Li, X.; Feng, S.M.; Yu, R.C.; Uchida, S.; Jin, C.Q. A new modulated structure in Sr2CuO3+δ superconductor synthesized under high pressure. Phys. C 2014, 497, 34. [Google Scholar] [CrossRef] [Green Version]
- Gauzzi, A.; Klein, Y.; Nisula, M.; Karppinen, M.; Biswas, P.K.; Saadaoui, H.; Morenzoni, E.; Manuel, P.; Khalyavin, D.; Marezio, M.; et al. Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates. Phys. Rev. B 2016, 94, 180509. [Google Scholar] [CrossRef] [Green Version]
- Geballe, T.H.; Marezio, M. Enhanced superconductivity in Sr2CuO4-v. Phys. C 2009, 469, 680. [Google Scholar] [CrossRef] [Green Version]
- Conradson, S.D.; Geballe, T.H.; Jin, C.; Cao, L.; Baldinozzi, G.; Jiang, J.M.; Latimer, M.J.; Mueller, O. Local structure of Sr2CuO3.3, a 95 K cuprate superconductor without CuO2 planes. Proc. Natl. Acad. Sci. USA 2020, 117, 4565. [Google Scholar] [CrossRef]
- Li, W.M.; Zhao, J.F.; Cao, L.P.; Hu, Z.; Huang, Q.Z.; Wang, X.C.; Liu, Y.; Zhao, G.Q.; Zhang, J.; Liu, Q.Q.; et al. Superconductivity in a unique type of copper oxide. Proc. Natl. Acad. Sci. USA 2019, 116, 12156. [Google Scholar] [CrossRef] [Green Version]
- Menushenkov, A.P.; Klementev, K.V.; Konarev, P.V.; Meshkov, A.A.; Benazeth, S.; Purans, J. The double-well oscillating potential of oxygen atoms in perovskite system Ba(K)BiO3: EXAFS—Analysis results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2000, 448, 340–344. [Google Scholar] [CrossRef]
- Menushenkov, A.P.; Klementev, K.V. Extended X-ray absorption fine-structure indication of a double-well potential for oxygen vibration in Ba1-xKxBiO3. J. Phys.-Condens. Mat. 2000, 12, 3767–3786. [Google Scholar] [CrossRef]
- Ivanov, V.G.; Ivanov, A.A.; Menushenkov, A.P.; Joseph, B.; Bianconi, A. Fe-As Bond Fluctuations in a Double-Well Potential in LaFeAsO. J. Supercond. Nov. Magn. 2016, 29, 3035–3039. [Google Scholar] [CrossRef] [Green Version]
- Velasco, V.; Silva Neto, M.B.; Perali, A.; Wimberger, S.; Bishop, A.R.; Conradson, S.D. Kuramoto synchronization of quantum tunneling polarons for describing the dynamic structure in cuprate superconductors. arXiv 2021, arXiv:2109.10263. [Google Scholar]
- Haskel, D.; Stern, E.A.; Hinks, D.G.; Mitchell, A.W.; Jorgensen, J.D. Altered Sr environment in La2-xSrxCuO4. Phys. Rev. B 1997, 56, R521. [Google Scholar] [CrossRef]
- Conradson, S.D.; Geballe, T.H.; Gauzzi, A.; Karppinen, M.; Jin, C.; Baldinozzi, G.; Li, W.; Cao, L.; Gilioli, E.; Jiang, J.M.; et al. Local lattice distortions and dynamics in extremely overdoped superconducting YSr2Cu2.75Mo0.25O7.54. Proc. Natl. Acad. Sci. USA 2020, 117, 4559. [Google Scholar] [CrossRef]
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23–29 January 1975; Araki, H., Ed.; Lecture Notes in Physics. Springer: Berlin/Heidelberg, Germany, 1975; Volume 39, p. 420. [Google Scholar]
- de Leon, J.M.; Conradson, S.D.; Batistic, I.; Bishop, A.R. Correlation between axial-oxygen anharmonicity and Tc in YBa2Cu3O7 and related-compounds. Phys. Rev. B 1991, 44, 2422–2425. [Google Scholar] [CrossRef]
- de Leon, J.M.; Conradson, S.D.; Batistić, I.; Bishop, A.R.; Raistrick, I.D.; Aronson, M.C.; Garzon, F.H. Axial oxygen-centered lattice instabilities in YBa2Cu3O7—An application of the analysis of extended X-ray-absorption fine-structure in anharmonic systems. Phys. Rev. B 1992, 45, 2447–2457. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Rossetti, T.; Lanzara, A.; Perali, A.; Missori, M.; Oyanagi, H.; Yamaguchi, H.; Nishihara, Y.; Ha, D.H. Stripe structure in the CuO2 plane of perovskite superconductors. Phys. Rev. B 1996, 54, 12018–12021. [Google Scholar] [CrossRef]
- de Leon, J.M.; Acosta-Alejandro, M.; Conradson, S.D.; Bishop, A.R. Change of the in-plane Cu-O bond distribution in La2CuO4.1 across Tc. J. Phys. Chem. Solids 2008, 69, 2288–2291. [Google Scholar] [CrossRef]
- Huang, E.W.; Mendl, C.B.; Liu, S.; Johnston, S.; Jiang, H.-C.; Moritz, B.; Devereaux, T.P. Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors. Science 2017, 358, 1161–1164. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chen, X.; Fitzhugh, W.; Li, X. Apical Charge Flux-Modulated In-Plane Transport Properties of Cuprate Superconductors. Phys. Rev. Lett. 2018, 121, 157001. [Google Scholar] [CrossRef] [Green Version]
- Acebron, J.A.; Bonilla, L.L.; Vicente, C.J.P.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef] [Green Version]
- Pelc, D.; Popcevic, P.; Pozek, M.; Greven, M.; Barisic, N. Unusual behavior of cuprates explained by heterogeneous charge localization. Sci. Adv. 2019, 5, eaau4538. [Google Scholar] [CrossRef] [Green Version]
- Tass, P. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 2003, 89, 81–88. [Google Scholar] [CrossRef]
- Pantaleone, J. Synchronization of metronomes. Am. J. Phys. 2002, 70, 992. [Google Scholar] [CrossRef] [Green Version]
- Jongen, G.; Anemüller, J.; Bollé, D.; Coolen, A.C.C.; Pérez-Vicente, C. Coupled dynamics of fast spins and slow exchange interactions in the XY spin glass. J. Phys. A Math. Gen. 2001, 34, 3957. [Google Scholar] [CrossRef] [Green Version]
- Wiesenfeld, K.; Colet, P.; Strogatz, S.H. Frequency locking in Josephson arrays: Connection with the Kuramoto model. Phys. Rev. E 1998, 57, 1563. [Google Scholar] [CrossRef] [Green Version]
- Velasco, V.; Silva Neto, M.B. Unconventional superconductivity as a quantum Kuramoto synchronization problem in random elasto-nuclear oscillator networks. J. Phys. Commun. 2021, 5, 015003. [Google Scholar] [CrossRef]
- Witthaut, D.; Wimberger, S.; Burioni, R.; Timme, M. Classical synchronization indicates persistent entanglement in isolated quantum systems. Nat. Comm. 2017, 8, 14829. [Google Scholar] [CrossRef]
- Sakaguchi, H. Cooperative Phenomena in Coupled Oscillator Systems under External Fields. Prog. Theor. Phys. 1988, 79, 39–46. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, V.; Silva Neto, M.B.; Perali, A.; Wimberger, S.; Bishop, A.R.; Conradson, S.D. Evolution of Charge-Lattice Dynamics across the Kuramoto Synchronization Phase Diagram of Quantum Tunneling Polarons in Cuprate Superconductors. Condens. Matter 2021, 6, 52. https://doi.org/10.3390/condmat6040052
Velasco V, Silva Neto MB, Perali A, Wimberger S, Bishop AR, Conradson SD. Evolution of Charge-Lattice Dynamics across the Kuramoto Synchronization Phase Diagram of Quantum Tunneling Polarons in Cuprate Superconductors. Condensed Matter. 2021; 6(4):52. https://doi.org/10.3390/condmat6040052
Chicago/Turabian StyleVelasco, Victor, Marcello B. Silva Neto, Andrea Perali, Sandro Wimberger, Alan R. Bishop, and Steven D. Conradson. 2021. "Evolution of Charge-Lattice Dynamics across the Kuramoto Synchronization Phase Diagram of Quantum Tunneling Polarons in Cuprate Superconductors" Condensed Matter 6, no. 4: 52. https://doi.org/10.3390/condmat6040052
APA StyleVelasco, V., Silva Neto, M. B., Perali, A., Wimberger, S., Bishop, A. R., & Conradson, S. D. (2021). Evolution of Charge-Lattice Dynamics across the Kuramoto Synchronization Phase Diagram of Quantum Tunneling Polarons in Cuprate Superconductors. Condensed Matter, 6(4), 52. https://doi.org/10.3390/condmat6040052