Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond
Abstract
:1. Introduction
2. The SU(N) Hubbard Model: Basic Properties and Some Extensions
3. Mimicking Hund’s Physics via SU(N) Ultracold Atoms
3.1. Competing Correlated Insulators
- For , the system is a Mott insulator (see top panel of Figure 1), whose energy is . Due to the strong interaction U and weak on-site potential , spatial charge fluctuations are forbidden and exactly two fermions occupy each site.
- For , there are two degenerate ground states, such that the high-energy site hosts one fermion, while the low-energy sites host either two or three fermions (see central panel of Figure 1). The associated energy reads .
- For , the large on-site potential wins the Hubbard repulsion U and the system is a charge-disproportionated insulator, where the low-energy sites are completely filled, while the high-energy site is empty (see bottom panel of Figure 1). This configuration, whose energy is , constitutes the atomic version of a band insulator.
3.2. Interaction-Resilient Metallicity
3.3. The Key Role of Local Configurations
4. Present and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MI | Mott insulator |
BI | Band insulator |
SU | Special unitary group of degree N |
Appendix A. Hund’s Metals in a Nutshell
References
- Haule, K.; Kotliar, G. Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J. Phys. 2009, 11, 025021. [Google Scholar] [CrossRef]
- de’ Medici, L.; Mravlje, J.; Georges, A. Janus-Faced Influence of Hund’s Rule Coupling in Strongly Correlated Materials. Phys. Rev. Lett. 2011, 107, 256401. [Google Scholar] [CrossRef] [Green Version]
- de’ Medici, L. Hund’s coupling and its key role in tuning multiorbital correlations. Phys. Rev. B 2011, 83, 205112. [Google Scholar] [CrossRef] [Green Version]
- de’ Medici, L.; Hassan, S.R.; Capone, M.; Dai, X. Orbital-Selective Mott Transition out of Band Degeneracy Lifting. Phys. Rev. Lett. 2009, 102, 126401. [Google Scholar] [CrossRef] [Green Version]
- Vojta, M. Orbital-selective Mott transitions: Heavy fermions and beyond. J. Low Temp. Phys. 2010, 161, 203–232. [Google Scholar] [CrossRef] [Green Version]
- de’Medici, L.; Georges, A.; Biermann, S. Orbital-selective Mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory. Phys. Rev. B 2005, 72, 205124. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, M.; Becca, F.; Fabrizio, M.; Capone, M. Dynamical behavior across the Mott transition of two bands with different bandwidths. Phys. Rev. B 2005, 72, 205126. [Google Scholar] [CrossRef] [Green Version]
- Fanfarillo, L.; Valli, A.; Capone, M. Synergy between Hund-Driven Correlations and Boson-Mediated Superconductivity. Phys. Rev. Lett. 2020, 125, 177001. [Google Scholar] [CrossRef]
- Isidori, A.; Berović, M.; Fanfarillo, L.; de’ Medici, L.; Fabrizio, M.; Capone, M. Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators. Phys. Rev. Lett. 2019, 122, 186401. [Google Scholar] [CrossRef] [Green Version]
- Chatzieleftheriou, M.; Berović, M.; Villar Arribi, P.; Capone, M.; de’ Medici, L. Enhancement of charge instabilities in Hund’s metals by breaking of rotational symmetry. Phys. Rev. B 2020, 102, 205127. [Google Scholar] [CrossRef]
- Richaud, A.; Ferraretto, M.; Capone, M. Interaction-resistant metals in multicomponent Fermi systems. Phys. Rev. B 2021, 103, 205132. [Google Scholar] [CrossRef]
- Stadler, K.M.; Kotliar, G.; Lee, S.S.B.; Weichselbaum, A.; von Delft, J. Differentiating Hund from Mott physics in a three-band Hubbard-Hund model: Temperature dependence of spectral, transport, and thermodynamic properties. Phys. Rev. B 2021, 104, 115107. [Google Scholar] [CrossRef]
- de’ Medici, L.; Hassan, S.R.; Capone, M. Genesis of Coexisting Itinerant and Localized Electrons in Iron Pnictides. J. Supercond. Nov. Magn. 2009, 22, 535–538. [Google Scholar] [CrossRef] [Green Version]
- de’ Medici, L.; Giovannetti, G.; Capone, M. Selective Mott Physics as a Key to Iron Superconductors. Phys. Rev. Lett. 2014, 112, 177001. [Google Scholar] [CrossRef]
- Kugler, F.B.; Zingl, M.; Strand, H.U.R.; Lee, S.S.B.; von Delft, J.; Georges, A. Strongly Correlated Materials from a Numerical Renormalization Group Perspective: How the Fermi-Liquid State of Sr2RuO4 Emerges. Phys. Rev. Lett. 2020, 124, 016401. [Google Scholar] [CrossRef] [Green Version]
- Merkel, M.E.; Ederer, C. Charge disproportionation and Hund’s insulating behavior in a five-orbital Hubbard model applicable to d4 perovskites. Phys. Rev. B 2021, 104, 165135. [Google Scholar] [CrossRef]
- Zhang, X.; Bishof, M.; Bromley, S.L.; Kraus, C.V.; Safronova, M.S.; Zoller, P.; Rey, A.M.; Ye, J. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 2014, 345, 1467. [Google Scholar] [CrossRef] [Green Version]
- Taie, S.; Yamazaki, R.; Sugawa, S.; Takahashi, Y. An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys. 2012, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Ottenstein, T.B.; Lompe, T.; Kohnen, M.; Wenz, A.N.; Jochim, S. Collisional Stability of a Three-Component Degenerate Fermi Gas. Phys. Rev. Lett. 2008, 101, 203202. [Google Scholar] [CrossRef] [Green Version]
- Huckans, J.H.; Williams, J.R.; Hazlett, E.L.; Stites, R.W.; O’Hara, K.M. Three-Body Recombination in a Three-State Fermi Gas with Widely Tunable Interactions. Phys. Rev. Lett. 2009, 102, 165302. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, A.V.; Hermele, M.; Gurarie, V.; Xu, C.; Julienne, P.S.; Ye, J.; Zoller, P.; Demler, E.; Lukin, M.D.; Rey, A. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 2010, 6, 289. [Google Scholar] [CrossRef]
- Cazalilla, M.A.; Ho, A.; Ueda, M. Ultracold gases of ytterbium: Ferromagnetism and Mott states in an SU(6) Fermi system. New J. Phys. 2009, 11, 103033. [Google Scholar] [CrossRef]
- Pagano, G.; Mancini, M.; Cappellini, G.; Lombardi, P.; Schäfer, F.; Hu, H.; Liu, X.J.; Catani, J.; Sias, C.; Inguscio, M.; et al. A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 2014, 10, 198. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Y.; Zhai, H.; Zhang, P. Orbital Feshbach resonance in alkali-earth atoms. Phys. Rev. Lett. 2015, 115, 135301. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Mancini, M.; Cappellini, G.; Livi, L.; Sias, C.; Catani, J.; Inguscio, M.; Fallani, L. Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 2015, 115, 265301. [Google Scholar] [CrossRef] [Green Version]
- Höfer, M.; Riegger, L.; Scazza, F.; Hofrichter, C.; Fernandes, D.; Parish, M.; Levinsen, J.; Bloch, I.; Fölling, S. Observation of an orbital interaction-induced Feshbach resonance in Yb 173. Phys. Rev. Lett. 2015, 115, 265302. [Google Scholar] [CrossRef] [Green Version]
- Cappellini, G.; Mancini, M.; Pagano, G.; Lombardi, P.; Livi, L.; de Cumis, M.S.; Cancio, P.; Pizzocaro, M.; Calonico, D.; Levi, F.; et al. Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett. 2014, 113, 120402. [Google Scholar] [CrossRef] [Green Version]
- Scazza, F.; Hofrichter, C.; Höfer, M.; De Groot, P.; Bloch, I.; Fölling, S. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys. 2014, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Del Re, L.; Capone, M. Selective insulators and anomalous responses in three-component fermionic gases with broken SU(3) symmetry. Phys. Rev. A 2018, 98, 063628. [Google Scholar] [CrossRef] [Green Version]
- Cazalilla, M.A.; Rey, A.M. Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Prog. Phys. 2014, 77, 124401. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 2015, 349, 1510–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Romero, A.; Franco, R.; Silva-Valencia, J. Phase diagram of the SU(3) Fermi–Hubbard model with next-neighbor interactions. Eur. Phys. J. B 2021, 94, 229. [Google Scholar] [CrossRef]
- Tusi, D.; Franchi, L.; Livi, L.F.; Baumann, K.; Orenes, D.B.; Del Re, L.; Barfknecht, R.E.; Zhou, T.; Inguscio, M.; Cappellini, G.; et al. Flavour-selective localization in interacting lattice fermions via SU(N) symmetry breaking. arXiv 2021, arXiv:2104.13338. [Google Scholar]
- Messer, M.; Desbuquois, R.; Uehlinger, T.; Jotzu, G.; Huber, S.; Greif, D.; Esslinger, T. Exploring Competing Density Order in the Ionic Hubbard Model with Ultracold Fermions. Phys. Rev. Lett. 2015, 115, 115303. [Google Scholar] [CrossRef] [Green Version]
- Sebby-Strabley, J.; Anderlini, M.; Jessen, P.S.; Porto, J.V. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 2006, 73, 033605. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, S.; Mondal, S.; Singh, M.; Mishra, T. Mott insulator phases of nonlocally coupled bosons in bilayer optical superlattices. Phys. Rev. A 2020, 101, 063624. [Google Scholar] [CrossRef]
- Becker, C.; Soltan-Panahi, P.; Kronjaeger, J.; Dörscher, S.; Bongs, K.; Sengstock, K. Ultracold quantum gases in triangular optical lattices. New J. Phys. 2010, 12, 065025. [Google Scholar] [CrossRef] [Green Version]
- Jo, G.B.; Guzman, J.; Thomas, C.K.; Hosur, P.; Vishwanath, A.; Stamper-Kurn, D.M. Ultracold Atoms in a Tunable Optical Kagome Lattice. Phys. Rev. Lett. 2012, 108, 045305. [Google Scholar] [CrossRef] [Green Version]
- Fabrizio, M.; Gogolin, A.O.; Nersesyan, A.A. From Band Insulator to Mott Insulator in One Dimension. Phys. Rev. Lett. 1999, 83, 2014–2017. [Google Scholar] [CrossRef] [Green Version]
- Wilkens, T.; Martin, R.M. Quantum Monte Carlo study of the one-dimensional ionic Hubbard model. Phys. Rev. B 2001, 63, 235108. [Google Scholar] [CrossRef] [Green Version]
- Kampf, A.P.; Sekania, M.; Japaridze, G.I.; Brune, P. Nature of the insulating phases in the half-filled ionic Hubbard model. J. Phys. Condens. Matter 2003, 15, 5895. [Google Scholar] [CrossRef] [Green Version]
- Manmana, S.R.; Meden, V.; Noack, R.M.; Schönhammer, K. Quantum critical behavior of the one-dimensional ionic Hubbard model. Phys. Rev. B 2004, 70, 155115. [Google Scholar] [CrossRef] [Green Version]
- Batista, C.D.; Aligia, A.A. Exact Bond Ordered Ground State for the Transition between the Band and the Mott Insulator. Phys. Rev. Lett. 2004, 92, 246405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torio, M.E.; Aligia, A.A.; Japaridze, G.I.; Normand, B. Quantum phase diagram of the generalized ionic Hubbard model for ABn chains. Phys. Rev. B 2006, 73, 115109. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Bag, S.; Krishnamurthy, H.R.; Garg, A. Phase diagram of the half-filled ionic Hubbard model in the limit of strong correlations. Phys. Rev. B 2019, 99, 155127. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Krishnamurthy, H.R.; Randeria, M. Can Correlations Drive a Band Insulator Metallic? Phys. Rev. Lett. 2006, 97, 046403. [Google Scholar] [CrossRef] [Green Version]
- Paris, N.; Bouadim, K.; Hebert, F.; Batrouni, G.G.; Scalettar, R.T. Quantum Monte Carlo Study of an Interaction-Driven Band-Insulator–to–Metal Transition. Phys. Rev. Lett. 2007, 98, 046403. [Google Scholar] [CrossRef] [Green Version]
- Bouadim, K.; Paris, N.; Hébert, F.; Batrouni, G.G.; Scalettar, R.T. Metallic phase in the two-dimensional ionic Hubbard model. Phys. Rev. B 2007, 76, 085112. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, P.; Sandvik, A.W.; Campbell, D.K. Bond-order-wave phase and quantum phase transitions in the one-dimensional extended Hubbard model. Phys. Rev. B 2002, 65, 155113. [Google Scholar] [CrossRef] [Green Version]
- Sénéchal, D.; Perez, D.; Plouffe, D. Cluster perturbation theory for Hubbard models. Phys. Rev. B 2002, 66, 075129. [Google Scholar] [CrossRef] [Green Version]
- Potthoff, M. Self-energy-functional approach: Analytical results and the Mott-Hubbard transition. Eur. Phys. J. B-Condens. Matter Complex Syst. 2003, 36, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Kotliar, G.; Savrasov, S.Y.; Pálsson, G.; Biroli, G. Cellular Dynamical Mean Field Approach to Strongly Correlated Systems. Phys. Rev. Lett. 2001, 87, 186401. [Google Scholar] [CrossRef] [Green Version]
- Maier, T.; Jarrell, M.; Pruschke, T.; Hettler, M.H. Quantum cluster theories. Rev. Mod. Phys. 2005, 77, 1027–1080. [Google Scholar] [CrossRef] [Green Version]
- Shiba, H.; Pincus, P.A. Thermodynamic Properties of the One-Dimensional Half-Filled-Band Hubbard Model. Phys. Rev. B 1972, 5, 1966–1980. [Google Scholar] [CrossRef]
- Ullrich, C.A. (Spin-)density-functional theory for open-shell systems: Exact magnetization density functional for the half-filled Hubbard trimer. Phys. Rev. A 2019, 100, 012516. [Google Scholar] [CrossRef] [Green Version]
- Schilling, C. Hubbard model: Pinning of occupation numbers and role of symmetries. Phys. Rev. B 2015, 92, 155149. [Google Scholar] [CrossRef] [Green Version]
- Aligia, A.A. Effective Kondo Model for a Trimer on a Metallic Surface. Phys. Rev. Lett. 2006, 96, 096804. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Foerster, A.; Santos, L. Interacting bosons in a triple well: Preface of many-body quantum chaos. arXiv 2021, arXiv:2111.13714. [Google Scholar]
- Richaud, A.; Penna, V. Pathway toward the formation of supermixed states in ultracold boson mixtures loaded in ring lattices. Phys. Rev. A 2019, 100, 013609. [Google Scholar] [CrossRef] [Green Version]
- Penna, V.; Richaud, A. The phase-separation mechanism of a binary mixture in a ring trimer. Sci. Rep. 2018, 8, 10242. [Google Scholar] [CrossRef]
- Richaud, A.; Zenesini, A.; Penna, V. The mixing-demixing phase diagram of ultracold heteronuclear mixtures in a ring trimer. Sci. Rep. 2019, 9, 6908. [Google Scholar] [CrossRef] [Green Version]
- Richaud, A.; Penna, V. Phase separation can be stronger than chaos. New J. Phys. 2018, 20, 105008. [Google Scholar] [CrossRef]
- Penna, V.; Richaud, A. Spatial Phase Separation of a Binary Mixture in a Ring Trimer. J. Phys. Conf. Ser. 2019, 1206, 012011. [Google Scholar] [CrossRef]
- Richaud, A.; Penna, V. Quantum dynamics of bosons in a two-ring ladder: Dynamical algebra, vortexlike excitations, and currents. Phys. Rev. A 2017, 96, 013620. [Google Scholar] [CrossRef] [Green Version]
- Penna, V.; Richaud, A. Two-species boson mixture on a ring: A group-theoretic approach to the quantum dynamics of low-energy excitations. Phys. Rev. A 2017, 96, 053631. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W. Theory of the Insulating State. Phys. Rev. 1964, 133, A171–A181. [Google Scholar] [CrossRef]
- Fye, R.M.; Martins, M.J.; Scalapino, D.J.; Wagner, J.; Hanke, W. Drude weight, optical conductivity, and flux properties of one-dimensional Hubbard rings. Phys. Rev. B 1991, 44, 6909–6915. [Google Scholar] [CrossRef] [PubMed]
- Giamarchi, T.; Shastry, B.S. Persistent currents in a one-dimensional ring for a disordered Hubbard model. Phys. Rev. B 1995, 51, 10915–10922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalapino, D.J.; White, S.R.; Zhang, S.C. Superfluid density and the Drude weight of the Hubbard model. Phys. Rev. Lett. 1992, 68, 2830–2833. [Google Scholar] [CrossRef] [PubMed]
- Arwas, G.; Vardi, A.; Cohen, D. Superfluidity and Chaos in low dimensional circuits. Sci. Rep. 2015, 5, 13433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetcuti, W.J.; Polo, J.; Osterloh, A.; Castorina, P.; Amico, L. Probe for bound states of SU(3) fermions and colour deconfinement. arXiv 2021, arXiv:2112.06950. [Google Scholar]
- Morales-Molina, L.; Reyes, S.; Arévalo, E. Harnessing currents of particles for spectroscopy in small-ring lattices with binary mixtures. Europhys. Lett. 2020, 131, 36001. [Google Scholar] [CrossRef]
- Chetcuti, W.J.; Haug, T.; Kwek, L.C.; Amico, L. Persistent Current of SU(N) Fermions. SciPost Phys. 2022, 12, 033. [Google Scholar] [CrossRef]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17–85. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761. [Google Scholar] [CrossRef] [Green Version]
- Barbarino, S.; Taddia, L.; Rossini, D.; Mazza, L.; Fazio, R. Magnetic crystals and helical liquids in alkaline-earth fermionic gases. Nat. Commun. 2015, 6, 8134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M.J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 1996, 68, 13–125. [Google Scholar] [CrossRef] [Green Version]
- de’ Medici, L.; Capone, M. The Iron Pnictide Superconductors: An Introduction and Overview; Springer International: Cham, Germany, 2017; pp. 115–185. [Google Scholar]
- Lechermann, F.; Georges, A.; Kotliar, G.; Parcollet, O. Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight. Phys. Rev. B 2007, 76, 155102. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richaud, A.; Ferraretto, M.; Capone, M. Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond. Condens. Matter 2022, 7, 18. https://doi.org/10.3390/condmat7010018
Richaud A, Ferraretto M, Capone M. Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond. Condensed Matter. 2022; 7(1):18. https://doi.org/10.3390/condmat7010018
Chicago/Turabian StyleRichaud, Andrea, Matteo Ferraretto, and Massimo Capone. 2022. "Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond" Condensed Matter 7, no. 1: 18. https://doi.org/10.3390/condmat7010018
APA StyleRichaud, A., Ferraretto, M., & Capone, M. (2022). Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond. Condensed Matter, 7(1), 18. https://doi.org/10.3390/condmat7010018