MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagamatsu, J.; Nakagawa, N.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Fletcher, J.D.; Carrington, A.; Taylor, O.J.; Kazakov, S.M.; Karpinski, J. Temperature-dependent anisotropy of the penetration depth and coherence length of MgB2. Phys. Rev. Lett. 2005, 95, 097005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzea, C.; Yamashita, T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 2001, 14, R115–R146. [Google Scholar] [CrossRef] [Green Version]
- Bugoslavsky, Y.; Perkins, G.K.; Qi, X.; Cohen, L.F.; Caplin, A.D. Vortex dynamics in superconducting MgB2 and prospects for applications. Nature 2001, 410, 563–565. [Google Scholar] [CrossRef]
- Larbalestier, D.; Gurevich, A.; Feldmann, D.M.; Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 2001, 414, 368–377. [Google Scholar] [CrossRef]
- Naito, M.; Ueda, K. MgB2 thin films for superconducting electronics. Supercond. Sci. Technol. 2004, 17, R1–R18. [Google Scholar] [CrossRef]
- Ueda, S.; Naito, M. As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Appl. Phys. Lett. 2001, 79, 2046. [Google Scholar] [CrossRef]
- Kang, W.N.; Kim, H.-J.; Choi, E.-M.; Jung, C.U.; Lee, S.-I. MgB2 superconducting thin films with a transition temperature of 39 kelvin. Science 2001, 292, 1521–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, C.B.; Lee, M.K.; Choi, J.H.; Belenky, L.J.; Song, X.; Cooley, L.D.; Naus, M.T.; Patnaik, S.; Jiang, J.; Rikel, M.; et al. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films. Nature 2001, 411, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Christen, H.M.; Zhai, H.Y.; Cantoni, C.; Paranthaman, M.; Sales, B.C.; Rouleau, C.; Norton, D.P.; Christen, D.K.; Lowndes, D.H. Superconducting magnesium diboride films with Tc ≈ 24 K grown by pulsed laser deposition with in situ anneal. Phys. C 2001, 353, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Blank, D.H.A.; Hilgenkamp, H.; Brinkman, A.; Mijatovic, D.; Rijnders, G.; Rogalla, H. Superconducting MgB2 films by pulsed-laser deposition in an in situ two-step process using multicomponent targets. Appl. Phys. Lett. 2001, 79, 394. [Google Scholar] [CrossRef] [Green Version]
- Komori, K.; Kawagishi, K.; Takano, Y.; Fujii, H.; Arisawa, S.; Kumakura, H.; Fukutomi, M. Approach for the fabrication of MgB2 superconducting tape with large in-field transport critical current density. Appl. Phys. Lett. 2002, 81, 1047. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ionescu, M.; Pan, A.V.; Dou, S.X.; Collings, E.W. In situ annealing of superconducting MgB2 films prepared by pulsed laser deposition. Supercond. Sci. Technol. 2003, 16, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- Badica, P.; Togano, K.; Awaji, S.; Watanabe, K. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd–YAG laser. Supercond. Sci. Technol. 2006, 19, 242–246. [Google Scholar] [CrossRef]
- Matsumoto, A.; Kobayashi, Y.; Takahashi, K.; Kumakura, H.; Kitaguchi, H. MgB2 thin films fabricated by a precursor and post-annealing method have a high Jc in high magnetic fields. Appl. Phys. Express 2008, 1, 021702. [Google Scholar] [CrossRef]
- Kitaguchi, H.; Matsumoto, A.; Kumakura, H.; Doi, T.; Yamamoto, H.; Saitoh, K.; Sosiati, H.; Hata, S. MgB2 films with very high critical current densities due to strong grain boundary pinning. Appl. Phys. Lett. 2004, 85, 2842. [Google Scholar] [CrossRef]
- Horii, S.; Ichinose, A.; Iwanaka, T.; Kusunoki, T.; Doi, T. High infield performance and critical temperatures in post-annealed MgB2 films. Appl. Phys. Express 2018, 11, 093102. [Google Scholar] [CrossRef]
- Kambe, H.; Kawayama, I.; Kitamura, N.; Ichinose, A.; Iwanaka, T.; Kusunoki, T.; Doi, T. Increase in the infield critical current density of MgB2 thin films by high-temperature post-annealing. Appl. Phys. Express 2021, 14, 025504. [Google Scholar] [CrossRef]
- Zeng, X.; Pogrebnyakov, A.V.; Kotcharov, A.; Jones, J.E.; Xi, X.X.; Lysczek, E.M.; Redwing, J.M.; Xu, S.; Li, Q.; Lettieri, J.; et al. In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 2002, 1, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogrebnyakov, A.V.; Redwing, J.M.; Jones, J.E.; Xi, X.X.; Xu, S.Y.; Qi, L.; Vaithyanathan, V.; Schlom, D.G. Thickness dependence of the properties of epitaxial thin films grown by hybrid physical-chemical vapor deposition. Appl. Phys. Lett. 2003, 82, 4319. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, C.G.; Meng, S.; Zhang, C.Y.; Feng, Q.R.; Gan, Z.Z.; Yang, H.; Jia, Y.; Wen, H.H.; Xi, X.X. Ultrahigh current-carrying capability in clean MgB2 films. J. Appl. Phys. 2008, 104, 013924. [Google Scholar] [CrossRef]
- Moeckly, B.H.; Ruby, W.S. Growth of high-quality large-area MgB2 thin films by reactive evaporation. Supercond. Sci. Technol. 2006, 19, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.-R.; Lee, S.-G.; Hwang, Y.; Sung, G.Y.; Kim, D.K. Fabrication of MgB2 thin film by rf magnetron sputtering. Phys. C 2003, 388–389, 127–128. [Google Scholar] [CrossRef]
- Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Horii, S.; Kishio, K. Synthesis of high Jc MgB2 bulks with high reproducibility by a modified powder-in-tube method. Supercond. Sci. Technol. 2004, 17, 921–925. [Google Scholar] [CrossRef]
- Yamamoto, A.; Ishihara, A.; Tomita, M.; Kishio, K. Permanent magnet with MgB2 bulk superconductor. Appl. Phys. Lett. 2014, 105, 032601. [Google Scholar] [CrossRef] [Green Version]
- Sugino, S.; Yamamoto, A.; Shimoyama, J.; Kishio, K. Enhanced trapped field in MgB2 bulk magnets by tuning grain boundary pinning through milling. Supercond. Sci. Technol. 2015, 28, 055016. [Google Scholar] [CrossRef]
- Jung, C.U.; Kim, H.-J.; Park, M.-S.; Kim, M.-S.; Kim, J.Y.; Du, Z.; Lee, S.-I.; Kim, K.H.; Betts, J.B.; Jaime, M.; et al. Effects of unreacted Mg impurities on the transport properties of MgB2. Phys. C 2002, 377, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Berenov, A.; Lockman, Z.; Qi, X.; MacManus-Driscoll, J.L.; Bugoslavsky, Y.; Cohen, L.F.; Jo, M.-H.; Stelmashenko, N.A.; Tsaneva, V.N.; Kambara, M.; et al. Growth of strongly biaxially aligned MgB2 thin films on sapphire by postannealing of amorphous precursors. Appl. Phys. Lett. 2001, 79, 4001. [Google Scholar] [CrossRef] [Green Version]
- Bean, C.P. Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962, 8, 250. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of High-Field Superconductors. Rev. Mod. Phys. 1964, 36, 31. [Google Scholar] [CrossRef]
- Doua, S.X.; Wanga, X.L.; Horvat, J.; Milliken, D.; Li, A.H.; Konstantinov, K.; Collings, E.W.; Sumption, M.D.; Liu, H.K. Flux jumping and a bulk-to-granular transition in the magnetization of a compacted and sintered MgB2 superconductor. Phys. C 2001, 361, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Johansen, T.H.; Baziljevich, M.; Shantsev, D.V.; Goa, P.E.; Galperin, Y.M.; Kang, W.N.; Kim, H.J.; Choi, E.M.; Kim, M.-S.; Lee, S.I. Dendritic flux patterns in MgB2 films. Supercond. Sci. Technol. 2001, 14, 726–728. [Google Scholar] [CrossRef] [Green Version]
- Kovác, P.; Hušek, I.; Pérez, N.; Rosová, A.; Berek, D.; Gelušiaková, B.; Kopera, L.; Melišek, T.; Nielsch, K. Structure and properties of barrier-free MgB2 composite wires made by internal magnesium diffusion process. J. Alloys Compd. 2020, 829, 154543. [Google Scholar] [CrossRef]
- Kitaguchi, H.; Doi, T.; Kobayashi, Y.; Matsumoto, A.; Sosiati, H.; Hata, S.; Fukutomi, M.; Kumakura, H. Properties of MgB2 films with very high transport critical current densities. IEEE Trans. Appl. Supercond. 2005, 15, 3313–3316. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, T.; Kikukawa, S.; Tanaka, R.; Yamamoto, A.; Tsuruta, A.; Tsuchiya, Y. MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process. Condens. Matter 2022, 7, 48. https://doi.org/10.3390/condmat7030048
Ozaki T, Kikukawa S, Tanaka R, Yamamoto A, Tsuruta A, Tsuchiya Y. MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process. Condensed Matter. 2022; 7(3):48. https://doi.org/10.3390/condmat7030048
Chicago/Turabian StyleOzaki, Toshinori, Satoshi Kikukawa, Rika Tanaka, Akiyasu Yamamoto, Akihiro Tsuruta, and Yuji Tsuchiya. 2022. "MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process" Condensed Matter 7, no. 3: 48. https://doi.org/10.3390/condmat7030048
APA StyleOzaki, T., Kikukawa, S., Tanaka, R., Yamamoto, A., Tsuruta, A., & Tsuchiya, Y. (2022). MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process. Condensed Matter, 7(3), 48. https://doi.org/10.3390/condmat7030048