Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer
Abstract
:1. Introduction
2. Description of the System
2.1. Theoretical Framework
2.2. Simulation Settings
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Qiao, F.; Wan, J. Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures. J. Appl. Phys. 2000, 87, 3174. [Google Scholar] [CrossRef]
- Kanzari, M.; Rezig, B. Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures. J. Opt. A Pure Appl. Opt. 2001, 3, S201. [Google Scholar] [CrossRef]
- Peng, R.W.; Huang, X.Q.; Qiu, F.; Wang, M.; Hu, A.; Jiang, S.S.; Mazzer, M. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett. 2002, 80, 3063. [Google Scholar] [CrossRef]
- Wen, D.J.; Peng, H.; Zhou, W.H. Broad Omnidirectional Reflection Band Forming using the Combination of Fibonacci Quasi-Periodic and Periodic One-Dimensional Photonic Crystals. Chin. Phys. Lett. 2003, 20, 1963. [Google Scholar] [CrossRef]
- Peng, R.W.; Liu, Y.M.; Huang, X.Q.; Qiu, F.; Wang, M.; Hu, A.; Jiang, S.S.; Feng, D.; Ouyang, L.Z.; Zou, J. Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. Phys. Rev. B 2004, 69, 165109. [Google Scholar] [CrossRef]
- Maciá Barber, E. Aperiodic Structures in Condensed Matter. Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Maciá, E. Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 2012, 75, 036502. [Google Scholar] [CrossRef]
- Maciá, E. Exploiting quasiperiodic order in the design of optical devices. Phys. Rev. B 2001, 63, 205421. [Google Scholar] [CrossRef]
- Vardeny, Z.; Nahata, A.; Agrawal, A. Optics of photonic quasicrystals. Nat. Photon. 2013, 7, 177. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Mora-Ramos, M.E. Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online 2009, 5, 36. [Google Scholar] [CrossRef]
- Ben Ali, N.; Kanzari, M. Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band. J. Mod. Opt. 2010, 57, 287. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Duque, C.A.; Mora-Ramos, M.E. Optical properties of hybrid periodic/quasiregular dielectric multilayers. Superlattice Microstruct. 2011, 40, 203. [Google Scholar] [CrossRef]
- Ben Ali, N.; Kanzari, M. Designing of stop band filters using hybrid periodic/quasi-periodic one-dimensional photonic crystals in microwave domain. Phys. Status Solidi A 2011, 208, 161. [Google Scholar] [CrossRef]
- Zaghdoudi, J.; Maaloul, N.; Kanzari, M. Studies of optical properties of symmetrical quasi-periodic photonic crystals. Opt. Photon. J. 2012, 2, 270. [Google Scholar] [CrossRef]
- Bouazzi, Y.; Kanzari, M. Optical Fabry–Perot filter based on photonic band gap quasi-periodic one-dimensional multilayer according to the definite Rudin–Shapiro distribution. Opt. Commun. 2012, 285, 2774. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Mora-Ramos, M.E. Propagation and confinement of electric field waves along one-dimensional porous silicon hybrid periodic/quasiperiodic structure. Opt. Photon. J. 2013, 3, 1. [Google Scholar] [CrossRef]
- Baraket, Z.; Zaghdoudi, J.; Kanzari, M. Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals. Prog. Electromagn. Res. M 2016, 46, 29. [Google Scholar] [CrossRef]
- Asmi, R.; Ben Ali, N.; Kanzari, M. Enhancement of light localization in hybrid Thue–Morse/Periodic Photonic crystals. J. Mater. 2016, 2016, 9471312. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Bouazzi, Y.; Benali, N.; Kanzari, M. Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quant. Electron. 2016, 48, 54. [Google Scholar] [CrossRef]
- Vyunishev, A.; Pankin, P.; Svyakhovskiy, S.; Timofeev, I.; Vetrov, S. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps. Opt. Lett. 2017, 42, 3602. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Sharma, A.; Segovia-Chaves, F.; Sabra, W. Multi passbands filter for THz applications based on the one-dimensional photonic crystals heterostructure. Optik 2021, 248, 168056. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Belhadj, W.; Ben Ali, N.; Aly, A.H. Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal. Photonics 2021, 8, 150. [Google Scholar] [CrossRef]
- Segovia-Chaves, F.; Vinck-Posada, H. Tunability of multiple transmission channels in quasiperiodic one-dimensional photonic crystals. Rom. J. Phys. 2022, 67, 201. [Google Scholar]
- Sreekanth, K.V.; Zeng, S.; Yong, K.-T.; Yu, T. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B Chem. 2013, 182, 424. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; Abd El-Gawaad, N.S.; Trabelsi, Y. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 2020, 10, 31765. [Google Scholar] [CrossRef] [PubMed]
- Nouman, W.M.; Abd El-Ghany, S.E.S.; Sallam, S.M.; Dawood, A.-F.B.; Aly, A.H. Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant. Electron. 2020, 52, 287. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A.; Shalaby, A.S.; Ahmed, A.M.; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 2020, 95, 035510. [Google Scholar] [CrossRef]
- Surdo, S.; Barillaro, G. Impact of Fabrication and Bioassay Surface Roughness on the Performance of Label-Free Resonant Biosensors Based on One-Dimensional Photonic Crystal Microcavities. ACS Sens. 2020, 5, 2894. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Ayyanar, N.; Nguyen, T.K. Investigation of transmission properties in defective one dimensional superconductive photonic crystal for ultralow level bioethanol detection. Optik 2021, 245, 167733. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Alamri, S.; Mohamed, D.; Aly, A.H.; Awasthi, S.K.; Matar, Z.S.; Tammam, M.T. Theoretical study of one-dimensional defect photonic crystal as a high-performance sensor for water-borne bacteria. Opt. Quant. Electron. 2021, 53, 660. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Moustafa, B.; Aly, A.H. Plasma cell sensor using photonic crystal cavity. Opt. Quant. Electron. 2021, 53, 591. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Sharma, A.; Alamri, S.; Aly, A.H. Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals. Appl. Nanosci. 2021, 11, 2261. [Google Scholar] [CrossRef]
- Malek, C.; Al-Dossari, M.; Awasthi, S.K.; Matar, Z.S.; Abd El-Gawaad, N.S.; Sabra, W.; Aly, A.H. Employing the Defective Photonic Crystal Composed of Nanocomposite Superconducting Material in Detection of Cancerous Brain Tumors Biosensor: Computational Study. Crystals 2022, 12, 540. [Google Scholar] [CrossRef]
- Matar, Z.S.; Al-Dossari, M.; Awasthi, S.K.; Mohamed, D.; Abd El-Gawaad, N.S.; Aly, A.H. Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals 2022, 12, 650. [Google Scholar] [CrossRef]
- Taya, S.A.; Alhamss, D.N.; Colak, I.; Patel, S.K. Sensitivity enhancement of an optical sensor based on a binary photonic crystal for the detection of Escherichia coli by controlling the central wavelength and the angle of incidence. Opt. Quant. Electron. 2022, 54, 127. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- DeVore, J.R. Refractive Indices of Rutile and Sphalerite. J. Opt. Soc. Am. 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Refractive index of cubic zirconia stabilized with yttria. Appl. Opt. 1982, 21, 2978–2981. [Google Scholar] [CrossRef]
- COMSOL Multiphysics, v. 5.6, COMSOL AB: Stockholm, Sweden, 2021.
- COMSOL Multiphysics Reference Guide; COMSOL AB: Stockholm, Sweden, 2012.
- COMSOL Multiphysics Users Guide; COMSOL AB: Stockholm, Sweden, 2012.
- Waikar, S.S.; Betensky, R.A.; Bonventre, J.V. Creatinine as the gold standard for kidney injury biomarker studies. Nephrol. Dial. Transplant. 2009, 24, 3263. [Google Scholar] [CrossRef]
- Parvesh, M.; Ohlsson, P.; BjOrkhem, I. Combined enzymic- Jaffe method for determination of creatinine in serum. Clin. Chem. 1981, 27, 8–21. [Google Scholar]
- Awad, M.A.; Aly, A.H. Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceram. Int. 2015, 45, 19036–19043. [Google Scholar] [CrossRef]
- ElBeheiry, M.; Liu, V.; Fan, S.; Levi, O. Sensitivity enhancement in photonic crystal slab biosensors. Opt. Express 2010, 18, 22702–22714. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, C.; Wang, C.; Ji, Y.; Quan, Q. High figure of merit fano resonance in 2-D defect-free pillar array photonic crystal for refractive index sensing. IEEE Photonics J. 2016, 8, 4502414. [Google Scholar] [CrossRef]
- Gandhi, S.; Awasthi, S.K.; Aly, A.H. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021, 11, 26655–26665. [Google Scholar] [CrossRef] [PubMed]
n | Creatinine Concentration (μmolL) |
---|---|
2.661 | 80.9 |
2.655 | 81.43 |
2.639 | 82.3 |
2.610 | 83.3 |
2.589 | 84.07 |
2.565 | 85.28 |
n | (μm) | Q | FOM × 10 (RIU) |
---|---|---|---|
2.661 | 0.92469 | 2.1 | 2.6 |
2.655 | 0.92283 | 1.9 | 2.4 |
2.639 | 0.92204 | 1.4 | 1.8 |
2.610 | 0.91857 | 1.7 | 2.2 |
2.589 | 0.91607 | 1.8 | 1.4 |
2.565 | 0.91324 | 1.5 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-García, W.; Gómez-Urrea, H.A.; Mora-Ramos, M.E.; Duque, C.A. Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condens. Matter 2023, 8, 50. https://doi.org/10.3390/condmat8020050
Murillo-García W, Gómez-Urrea HA, Mora-Ramos ME, Duque CA. Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condensed Matter. 2023; 8(2):50. https://doi.org/10.3390/condmat8020050
Chicago/Turabian StyleMurillo-García, Waira, Hernán A. Gómez-Urrea, Miguel E. Mora-Ramos, and Carlos A. Duque. 2023. "Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer" Condensed Matter 8, no. 2: 50. https://doi.org/10.3390/condmat8020050
APA StyleMurillo-García, W., Gómez-Urrea, H. A., Mora-Ramos, M. E., & Duque, C. A. (2023). Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condensed Matter, 8(2), 50. https://doi.org/10.3390/condmat8020050