Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors
Abstract
:1. Introduction
2. Description of the System
2.1. Theoretical Framework
2.2. Simulation Settings
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.-L.; Zhang, H.-F.; Chen, Y.-Q. Enlarged the omnidirectional Bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary Thue-Morse aperiodic structure. Optik 2013, 124, 5811. [Google Scholar] [CrossRef]
- Rahimi, H. Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin-Shapiro quasirregular structures made of high temperature superconductors in visible range. Opt. Mater. 2016, 57, 264. [Google Scholar] [CrossRef]
- Gómez-Urrea, H.A.; Escorcia-García, J.; Duque, C.A.; Mora-Ramos, M.E. Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers. Photonics Nanostruct. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Trabelsi, Y. Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor. Photonics Nanostruct. 2019, 100, 724. [Google Scholar] [CrossRef]
- Raymond Ooi, C.H.; Au Yeung, T.C.; Lim, T.-K.; Kam, C.H. Two-dimensional superconductor-dielectric photonic crystal. Proc. SPIE 1999, 3899, 278. [Google Scholar] [CrossRef]
- Chen, Y.-B.; Zhang, C.; Zhu, Y.-Y.; Zhu, S.-N.; Ming, N.-B. Tunable photonic crystals with superconductor constituents. Mater. Lett. 2002, 55, 12. [Google Scholar] [CrossRef]
- Takeda, H.; Yoshino, K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors. Phys. Rev. B 2003, 67, 245109. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, C.; Zhou, T.; Zhang, X.-F.; Xu, Y. Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors. J. Phys. Condens. Matter 2008, 20, 275203. [Google Scholar] [CrossRef]
- Berman, O.L.; Boyko, V.S.; Kezerashvili, R.Y.; Lozovik, Y.E. Monochromatic infrared wave propagation in 2D superconductor-dielectric photonic crystal. Laser Phys. 2009, 19, 2035–2040. [Google Scholar] [CrossRef]
- Barvestani, J.; Rezaei, E.; Soltani Vala, A. Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials. Opt. Commun. 2013, 297, 74. [Google Scholar] [CrossRef]
- El-Naggar, S.A.; Elsayed, H.A.; Aly, A.H. Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals. J. Supercond. Nov. Magn. 2014, 27, 1615. [Google Scholar] [CrossRef]
- Hashemi, R.; Barvestani, J. Superconducting Point Defect in a Two-Dimensional Photonic Crystal. J. Supercond. Nov. Magn. 2014, 27, 371. [Google Scholar] [CrossRef]
- Liu, W.-G.; Pan, F.-M.; Cai, L.-W. Photonic band gap of superconductor-medium structure: Two-dimensional triangular lattice. Phys. C 2014, 500, 4. [Google Scholar] [CrossRef]
- Aly, A.H.; Elsayed, H.A.; El-Naggar, S.A. The properties of cutoff frequency in two-dimensional superconductor photonic crystals. J. Mod. Opt. 2014, 61, 1064. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.F.; Calero, J.M. Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C 2014, 505, 74. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S. The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor Constituents. IEEE J. Sel. Top. Quantum Electron. 2015, 21. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.F.; Calero, J.M. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods. J. Low Temp. Phys. 2017, 186, 275. [Google Scholar] [CrossRef]
- Zhang, H.-F. The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure. Phys. C 2018, 550, 65. [Google Scholar] [CrossRef]
- Elsayed, H.A. Photonic band gaps properties of two-dimensional ternary superconductor photonic crystals. Surf. Rev. Lett. 2019, 26, 1850152. [Google Scholar] [CrossRef]
- Hao, J.J.; Ju, L.; Liu, Y.J.; Du, W.-C.; Gu, K.-D.; Yang, H.-W. Research on Transmission Characteristics of Two-Dimensional Superconducting Photonic Crystal in THz-Waves. Plasmonics 2020, 15, 1083. [Google Scholar] [CrossRef]
- Fan, S.; Villeneuve, P.R.; Joannopoulos, J.D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 1996, 54, 11245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halevi, P.; Ramos-Mendieta, F. Tunable Photonic Crystals with Semiconducting Constituents. Phys. Rev. Lett. 2000, 85, 1875. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings. Europhys. Lett. 2006, 74, 261. [Google Scholar] [CrossRef]
- Iliew, R.; Etrich, C.; Pertsch, T.; Lederer, F. Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals. Phys. Rev. B 2008, 77, 115124. [Google Scholar] [CrossRef]
- Olivier, S.; Smith, C.; Rattier, M.; Benisty, H.; Weisbuch, C.; Krauss, T.; Houdre, R.; Oesterle, U. Miniband transmission in a photonic crystal coupled-resonator optical waveguide. Opt. Lett. 2001, 26, 1019. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Urrea, H.A.; Cardona, J.G.; Caro-Lopera, F.J.; Mora-Ramos, M.E. Photonic band gaps and waveguide slow-light propagation in Bravais–Moiré two-dimensional photonic crystals. J. Opt. 2023, 25, 025101. [Google Scholar] [CrossRef]
- David, S.; Chelnokov, A.; Lourtioz, J. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings. Opt. Lett. 2000, 25, 1001. [Google Scholar] [CrossRef]
- Ueda, K.; Dotera, T.; Gemma, T. Photonic band structure calculations of two- dimensional Archimedean tiling patterns. Phys. Rev. B 2007, 75, 195122. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, Đ.; Gajić, R.; Hingerl, K. Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices. Opt. Express 2008, 16, 4048. [Google Scholar] [CrossRef]
- Balci, S.; Karabiyik, M.; Kocabas, A.; Kocabas, C.; Aydinli, A. Coupled plasmonic cavities on Moiré surfaces. Plasmonics 2010, 5, 429. [Google Scholar] [CrossRef]
- Balci, S.; Kocabas, A.; Kocabas, C.; Aydinli, A. Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities. Appl. Phys. Lett. 2011, 98, 031101. [Google Scholar] [CrossRef]
- Lubin, S.M.; Hryn, A.J.; Huntington, M.D.; Engel, C.J.; Odom, T.W. Quasiperiodic Moiré plasmonic crystals. ACS Nano 2013, 7, 11035. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Urrea, H.A.; Bareño-Silva, J.; Caro-Lopera, F.J.; Mora-Ramos, M.E. The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices. Photonics Nanostruct. 2020, 42, 100845. [Google Scholar] [CrossRef]
- Gómez-Urrea, H.A.; Ospina-Medina, M.C.; Correa-Abad, J.D.; Mora-Ramos, M.E.; Caro-Lopera, F.J. Tunable band structure in 2D Bravais-Moiré photonic crystal lattices. Opt. Commun. 2020, 459, 125081. [Google Scholar] [CrossRef]
- Nasidi, I.; Hao, R.; Chen, J.; Li, E.; Jin, S. Photonic Moiré lattice waveguide with a large slow light bandwidth and delay-bandwidth product. Appl. Opt. 2022, 61, 5776. [Google Scholar] [CrossRef] [PubMed]
- Nasidi, I.; Hao, R.; Jin, S.; Li, E. Flat bands and quasi-bound states in the continuum in a photonic Moiré lattice. J. Opt. Soc. Am. B 2022, 40, 260. [Google Scholar] [CrossRef]
- Nasidi, I.; Hao, R.; Jin, S.; Li, E. Inverse design of a photonic Moiré lattice waveguide towards improved slow light performances. Appl. Opt. 2023, 62, 2651. [Google Scholar] [CrossRef]
- Lou, B.; Zhao, N.; Minkov, M.; Guo, C.; Orenstein, M.; Fan, S. Theory for Twisted Bilayer Photonic Crystal Slabs. Phys. Rev. Lett. 2021, 126, 136101. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, T.; Li, J.; Wang, Q.; Yang, F.; Rho, Y. Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists. Phys. Rev. Lett. 2021, 126, 223601. [Google Scholar] [CrossRef]
- John SG, J.; Joannopoulos, D.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University of Press: Princeton, NJ, USA, 2008. [Google Scholar]
- COMSOL. Multiphysics, v. 5.6; COMSOL AB: Stockholm, Sweden, 2021. [Google Scholar]
- COMSOL. Multiphysics Reference Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Users Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- Norman, M.R.; Chubukov, A.V. High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 2006, 73, 140501. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.M.; Hui, P.M.; Stroud, D. Propagating photonic modes below the gap in a superconducting composite. Phys. Rev. B 1995, 51, 8634. [Google Scholar] [CrossRef] [PubMed]
System | (mm) | (mm) | | The Mid-Gap Frequency of PBG | PBG Width | Gap Mid-Gap Ratio | PBG Percentatge (%) |
---|---|---|---|---|---|---|---|
1 | 2.01–2.26 | 2.14 | 0.25 | 0.1168 | 11.68 | ||
2 | 1.68–2.07 | 1.875 | 0.39 | 0.208 | 20.8 | ||
3 | 1.83–2.09 | 1.96 | 0.26 | 0.132 | 13.2 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0069 | |
45 | 0.0063 | |
75 | 0.0058 | |
107 | 0.0054 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0092 | |
15 | 0.0058 | |
45 | 0.0096 | |
45 | 0.0043 | |
75 | 0.0098 | |
75 | 0.0027 | |
107 | 0.0098 | |
107 | 0.0013 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0668 | |
15 | 0.0733 | |
45 | 0.0628 | |
45 | 0.0643 | |
75 | 0.0579 | |
75 | 0.0571 | |
107 | 0.0321 | |
107 | 0.0242 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0248 | |
15 | 0.0686 | |
45 | 0.0167 | |
45 | 0.0842 | |
75 | 0.0150 | |
75 | 0.0917 | |
107 | 0.0094 | |
107 | 0.0958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Urrea, H.A.; Cardona, J.G.; Mora-Ramos, M.E.; Duque, C.A. Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condens. Matter 2023, 8, 51. https://doi.org/10.3390/condmat8020051
Gómez-Urrea HA, Cardona JG, Mora-Ramos ME, Duque CA. Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condensed Matter. 2023; 8(2):51. https://doi.org/10.3390/condmat8020051
Chicago/Turabian StyleGómez-Urrea, Hernán A., José G. Cardona, Miguel E. Mora-Ramos, and Carlos A. Duque. 2023. "Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors" Condensed Matter 8, no. 2: 51. https://doi.org/10.3390/condmat8020051
APA StyleGómez-Urrea, H. A., Cardona, J. G., Mora-Ramos, M. E., & Duque, C. A. (2023). Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condensed Matter, 8(2), 51. https://doi.org/10.3390/condmat8020051