The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives
Abstract
:1. Introduction
2. Results
2.1. Simulations
2.2. Experimental Chamber
3. Discussion
3.1. Imaging
3.2. X-ray Spectroscopy
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Computer Tomography |
EuAPS | EuPRAXIA Advanced Photon Sources |
EXAFS | Extended X-ray Absorption Fine Structure |
FLAME | Frascati Laser for Acceleration and Multidisciplinary Experiments |
INFN | Istituto Nazionale di Fisica Nucleare |
LNF | Laboratori Nazionali di Frascati |
LWFA | Laser Wakefield Accelerator |
PCI | Phase Contrast Imaging |
PWFA | Particle Wkefield Accelerator |
XANES | X-ray Absorption Near Edge Spectroscopy |
XAS | X-ray Absorption Spectroscopy |
References
- Assmann, R.; Weikum, M.; Akhter, T.; Alesini, D.; Alexandrova, A.; Anania, M.; Andreev, N.; Andriyash, I.; Artioli, M.; Aschikhin, A.; et al. EuPRAXIA conceptual design report. Eur. Phys. J. Spec. Top. 2020, 229, 3675–4284. [Google Scholar]
- Rakowski, R.; Zhang, P.; Jensen, K.; Kettle, B.; Kawamoto, T.; Banerjee, S.; Fruhling, C.; Golovin, G.; Haden, D.; Robinson, M.S.; et al. Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation. Sci. Rep. 2022, 12, 10855. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, M.; Andriyash, I.; Gautier, J.; Sebban, S.; Smartsev, S.; Jourdain, N.; Chaulagain, U.; Azamoum, Y.; Tafzi, A.; Goddet, J.P.; et al. Hard X Rays from Laser-Wakefield Accelerators in Density Tailored Plasmas. Phys. Rev. X 2020, 10, 011061. [Google Scholar] [CrossRef]
- Lamač, M.; Chaulagain, U.; Jurkovičová, L.; Nejdl, J.; Bulanov, S. Two-color nonlinear resonances in betatron oscillations of laser accelerated relativistic electrons. Phys. Rev. Res. 2021, 3, 033088. [Google Scholar] [CrossRef]
- Zhao, T.; Behm, K.; Dong, C.; Davoine, X.; Kalmykov, S.Y.; Petrov, V.; Chvykov, V.; Cummings, P.; Hou, B.; Maksimchuk, A.; et al. High-flux femtosecond X-ray emission from controlled generation of annular electron beams in a laser wakefield accelerator. Phys. Rev. Lett. 2016, 117, 094801. [Google Scholar] [CrossRef] [PubMed]
- Chaulagain, U.; Lamač, M.; Raclavskỳ, M.; Khakurel, K.; Rao, K.H.; Ta-Phuoc, K.; Bulanov, S.; Nejdl, J. ELI gammatron beamline: A dawn of ultrafast hard X-ray science. Photonics 2022, 9, 853. [Google Scholar] [CrossRef]
- Ju, J.; Svensson, K.; Döpp, A.; Ferrari, H.E.; Cassou, K.; Neveu, O.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes. Appl. Phys. Lett. 2012, 100, 191106. [Google Scholar] [CrossRef]
- Chen, L.; Yan, W.; Li, D.; Hu, Z.; Zhang, L.; Wang, W.; Hafz, N.; Mao, J.; Huang, K.; Ma, Y.; et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 2013, 3, 1912. [Google Scholar] [CrossRef]
- Wang, X.; Zgadzaj, R.; Fazel, N.; Li, Z.; Yi, S.; Zhang, X.; Henderson, W.; Chang, Y.Y.; Korzekwa, R.; Tsai, H.E.; et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 2013, 4, 1988. [Google Scholar] [CrossRef]
- Cole, J.; Wood, J.; Lopes, N.; Poder, K.; Abel, R.; Alatabi, S.; Bryant, J.; Jin, A.; Kneip, S.; Mecseki, K.; et al. Laser-wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015, 5, 13244. [Google Scholar] [CrossRef]
- Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun. 2015, 6, 7568. [Google Scholar] [CrossRef]
- Döpp, A.; Mahieu, B.; Lifschitz, A.; Thaury, C.; Doche, A.; Guillaume, E.; Grittani, G.; Lundh, O.; Hansson, M.; Gautier, J.; et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light. Sci. Appl. 2017, 6, e17086. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.; Chapman, D.; Poder, K.; Lopes, N.; Rutherford, M.; White, T.; Albert, F.; Behm, K.; Booth, N.; Bryant, J.; et al. Ultrafast imaging of laser driven shock waves using betatron X-rays from a laser wakefield accelerator. Sci. Rep. 2018, 8, 11010. [Google Scholar] [CrossRef]
- Fourmaux, S.; Hallin, E.; Arnison, P.; Kieffer, J. Optimization of laser-based synchrotron X-ray for plant imaging. Appl. Phys. B 2019, 125, 34. [Google Scholar] [CrossRef]
- Sims, M. EPAC X-ray Radiography and X-ray Computed Tomography. Available online: https://www.clf.stfc.ac.uk/Pages/EPAC-X-Ray-radiography-and-X-ray-Computed-Tomography.aspx (accessed on 11 July 2024).
- Emma, C.; Van Tilborg, J.; Assmann, R.; Barber, S.; Cianchi, A.; Corde, S.; Couprie, M.; D’arcy, R.; Ferrario, M.; Habib, A.; et al. Free electron lasers driven by plasma accelerators: Status and near-term prospects. High Power Laser Sci. Eng. 2021, 9, e57. [Google Scholar] [CrossRef]
- Stellato, F.; Anania, M.P.; Balerna, A.; Botticelli, S.; Coreno, M.; Costa, G.; Galletti, M.; Ferrario, M.; Marcelli, A.; Minicozzi, V.; et al. Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@ SPARC_LAB. Condens. Matter 2022, 7, 23. [Google Scholar] [CrossRef]
- Frazzitta, A.; Bacci, A.; Carbone, A.; Cianchi, A.; Curcio, A.; Drebot, I.; Ferrario, M.; Petrillo, V.; Conti, M.R.; Samsam, S.; et al. First Simulations for the EuAPS Betatron Radiation Source: A Dedicated Radiation Calculation Code. Instruments 2023, 7, 52. [Google Scholar] [CrossRef]
- Lehe, R.; Kirchen, M.; Andriyash, I.A.; Godfrey, B.B.; Vay, J.L. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun. 2016, 203, 66–82. [Google Scholar] [CrossRef]
- Hiraiwa, T.; Soutome, K.; Tanaka, H. Formulation of electron motion in a storage ring with a betatron tune varying with time and a dipole shaker working at a constant frequency. Phys. Rev. Accel. Beams 2021, 24, 114001. [Google Scholar] [CrossRef]
- Fourmaux, S.; Hallin, E.; Chaulagain, U.; Weber, S.; Kieffer, J. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express 2020, 28, 3147–3158. [Google Scholar] [CrossRef]
- Cole, J.M.; Symes, D.R.; Lopes, N.C.; Wood, J.C.; Poder, K.; Alatabi, S.; Botchway, S.W.; Foster, P.S.; Gratton, S.; Johnson, S.; et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source. Proc. Natl. Acad. Sci. USA 2018, 115, 6335–6340. [Google Scholar] [CrossRef] [PubMed]
- Kneip, S.; McGuffey, C.; Dollar, F.; Bloom, M.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S.; Matsuoka, T.; et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 2011, 99, 093701. [Google Scholar] [CrossRef]
- Fourmaux, S.; Corde, S.; Phuoc, K.T.; Lassonde, P.; Lebrun, G.; Payeur, S.; Martin, F.; Sebban, S.; Malka, V.; Rousse, A.; et al. Single shot phase contrast imaging using laser-produced Betatron X-ray beams. Opt. Lett. 2011, 36, 2426–2428. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, X.; Zhang, J.; Hua, J.; Pai, C.H.; Zhang, C.; Chu, H.H.; Mori, W.; Joshi, C.; Wang, J.; et al. High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Sci. Rep. 2019, 9, 7796. [Google Scholar] [CrossRef] [PubMed]
- Elfarnawany, M.; Rohani, S.A.; Ghomashchi, S.; Allen, D.G.; Zhu, N.; Agrawal, S.K.; Ladak, H.M. Improved middle-ear soft-tissue visualization using synchrotron radiation phase-contrast imaging. Hear. Res. 2017, 354, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gruse, J.N.; Streeter, M.; Thornton, C.; Armstrong, C.; Baird, C.; Bourgeois, N.; Cipiccia, S.; Finlay, O.; Gregory, C.; Katzir, Y.; et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 983, 164369. [Google Scholar] [CrossRef]
- van Tilborg, J.; Ostermayr, T.; Tsai, H.E.; Schenkel, T.; Geddes, C.; Schroeder, C.; Esarey, E. Phase-contrast imaging with laser-plasma-accelerator betatron sources. In Proceedings of the XVII International Conference on X-ray Lasers 2020, Online, 8–10 December 2020; Volume 11886, pp. 190–198. [Google Scholar]
- Svendsen, K.; González, I.G.; Hansson, M.; Svensson, J.B.; Ekerfelt, H.; Persson, A.; Lundh, O. Optimization of soft X-ray phase-contrast tomography using a laser wakefield accelerator. Opt. Express 2018, 26, 33930–33941. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Fourmaux, S.; Astolfo, A.; Ziesche, R.; Wood, J.; Finlay, O.; Stolpe, W.; Batey, D.; Manke, I.; Légaré, F.; et al. Femtosecond multimodal imaging with a laser-driven X-ray source. Commun. Phys. 2023, 6, 288. [Google Scholar] [CrossRef] [PubMed]
- Bukreeva, I.; Mittone, A.; Bravin, A.; Festa, G.; Alessandrelli, M.; Coan, P.; Formoso, V.; Agostino, R.; Giocondo, M.; Ciuchi, F.; et al. Enhanced X-ray-phase-contrast-tomography brings new clarity to the 2000-year-old’voice’of Epicurean philosopher Philodemus. arXiv 2016, arXiv:1602.08071. [Google Scholar]
- Bukreeva, I.; Mittone, A.; Bravin, A.; Festa, G.; Alessandrelli, M.; Coan, P.; Formoso, V.; Agostino, R.G.; Giocondo, M.; Ciuchi, F.; et al. Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography. Sci. Rep. 2016, 6, 27227. [Google Scholar] [CrossRef]
- Zanette, I.; Zdora, M.C.; Zhou, T.; Burvall, A.; Larsson, D.H.; Thibault, P.; Hertz, H.M.; Pfeiffer, F. X-ray microtomography using correlation of near-field speckles for material characterization. Proc. Natl. Acad. Sci. USA 2015, 112, 12569–12573. [Google Scholar] [CrossRef] [PubMed]
- Olivo, A. Edge-illumination X-ray phase-contrast imaging. J. Phys. Condens. Matter 2021, 33, 363002. [Google Scholar] [CrossRef] [PubMed]
- Arfelli, F.; Barbiellini, G.; Bonvicini, V.; Bravin, A.; Cantatore, G.; Castelli, E.; Di Michiel, M.; Longo, R.; Olivo, A.; Pani, S.; et al. An “edge-on” silicon strip detector for X-ray imaging. IEEE Trans. Nucl. Sci. 1997, 44, 874–880. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 2007, 91, 074106. [Google Scholar] [CrossRef]
- Stutman, D.; Safca, N.; Tomassini, P.; Anghel, E.; Ur, C. Towards high-sensitivity and low-dose medical imaging with laser X-ray sources. In Proceedings of the Compact Radiation Sources from EUV to Gamma-Rays: Development and Applications, Prague, Czech Republic, 24–28 April 2023; Volume 12582, pp. 35–46. [Google Scholar]
- Guénot, D.; Svendsen, K.; Lehnert, B.; Ulrich, H.; Persson, A.; Permogorov, A.; Zigan, L.; Wensing, M.; Lundh, O.; Berrocal, E. Distribution of liquid mass in transient sprays measured using laser-plasma-driven X-ray tomography. Phys. Rev. Appl. 2022, 17, 064056. [Google Scholar] [CrossRef]
- Albert, F.; Lemos, N.; Shaw, J.; King, P.; Pollock, B.; Goyon, C.; Schumaker, W.; Saunders, A.; Marsh, K.; Pak, A.; et al. Betatron X-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities. Nucl. Fusion 2018, 59, 032003. [Google Scholar] [CrossRef]
- Mahieu, B.; Jourdain, N.; Ta Phuoc, K.; Dorchies, F.; Goddet, J.P.; Lifschitz, A.; Renaudin, P.; Lecherbourg, L. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 2018, 9, 3276. [Google Scholar] [CrossRef] [PubMed]
- Dorchies, F.; Ta Phuoc, K.; Lecherbourg, L. Nonequilibrium warm dense matter investigated with laser–plasma-based XANES down to the femtosecond. Struct. Dyn. 2023, 10, 054301. [Google Scholar] [CrossRef]
- Grolleau, A.; Dorchies, F.; Jourdain, N.; Phuoc, K.T.; Gautier, J.; Mahieu, B.; Renaudin, P.; Recoules, V.; Martinez, P.; Lecherbourg, L. Femtosecond Resolution of the Nonballistic Electron Energy Transport in Warm Dense Copper. Phys. Rev. Lett. 2021, 127, 275901. [Google Scholar] [CrossRef]
- Principi, E.; Giangrisostomi, E.; Mincigrucci, R.; Beye, M.; Kurdi, G.; Cucini, R.; Gessini, A.; Bencivenga, F.; Masciovecchio, C. Extreme ultraviolet probing of nonequilibrium dynamics in high energy density germanium. Phys. Rev. B 2018, 97, 174107. [Google Scholar] [CrossRef]
- Principi, E.; Krylow, S.; Garcia, M.; Simoncig, A.; Foglia, L.; Mincigrucci, R.; Kurdi, G.; Gessini, A.; Bencivenga, F.; Giglia, A.; et al. Atomic and electronic structure of solid-density liquid carbon. Phys. Rev. Lett. 2020, 125, 155703. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, L.; Eschenlohr, A.; Beye, M.; Schlotter, W.; Döring, F.; Carinan, C.; Hickin, D.; Agarwal, N.; Boeglin, C.; Bovensiepen, U.; et al. Photon-shot-noise-limited transient absorption soft X-ray spectroscopy at the European XFEL. J. Synchrotron Radiat. 2023, 30, 284–300. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.C.; Tsui, Y.; Ng, A.; et al. Measurements of ionization states in warm dense aluminum with betatron radiation. Phys. Rev. E 2017, 95, 053208. [Google Scholar] [CrossRef] [PubMed]
- Kettle, B.; Gerstmayr, E.; Streeter, M.; Albert, F.; Baggott, R.; Bourgeois, N.; Cole, J.; Dann, S.; Falk, K.; González, I.G.; et al. Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source. Phys. Rev. Lett. 2019, 123, 254801. [Google Scholar] [CrossRef] [PubMed]
- Kettle, B.; Colgan, C.; Los, E.; Gerstmayr, E.; Streeter, M.; Albert, F.; Astbury, S.; Baggott, R.; Cavanagh, N.; Falk, K.; et al. X-ray absorption spectroscopy using an ultrafast laboratory-scale laser-plasma accelerator source. arXiv 2023, arXiv:2305.10123. [Google Scholar]
- Raclavskỳ, M.; Khakurel, K.P.; Chaulagain, U.; Lamač, M.; Nejdl, J. Multi-lane mirror for broadband applications of the betatron X-ray source. Photonics 2021, 8, 579. [Google Scholar] [CrossRef]
- Zeraouli, G.; Gatti, G.; Longman, A.; Pérez-Hernández, J.; Arana, D.; Batani, D.; Jakubowska, K.; Volpe, L.; Roso, L.; Fedosejevs, R. Development of an adjustable Kirkpatrick-Baez microscope for laser driven X-ray sources. Rev. Sci. Instrum. 2019, 90, 063704. [Google Scholar] [CrossRef] [PubMed]
- Gurman, S. Interpretation of EXAFS data. J. Synchrotron Radiat. 1995, 2, 56–63. [Google Scholar] [CrossRef]
- Henderson, G.S.; De Groot, F.M.; Moulton, B.J. X-ray absorption near-edge structure (XANES) spectroscopy. Rev. Mineral. Geochem. 2014, 78, 75–138. [Google Scholar] [CrossRef]
Laser Energy [J] | 2.5 |
Plasma Density [cm−3] | 1.7 × 1018 |
Beam Energy [MeV] | 395 |
Transverse beam size RMS [μm] | 1.5 |
Charge [pC] | 144 |
Pulse Duration [fs] | 25 |
Photons @ energy per pulse > 1 keV | 1.7 × 109 |
Priority | Technique | Samples |
---|---|---|
1 | Static CT and PCI | Leaves, wood, insects, animal tissues, ancient papers |
2 | Static XAS | Metal foils |
3 | Time-resolved XAS | Metal foils, nanoparticles |
4 | Time-resolved imaging | Bulk materials, liquid jets, plasmas, sprays |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galdenzi, F.; Anania, M.P.; Balerna, A.; Bean, R.J.; Biagioni, A.; Bortolin, C.; Brombal, L.; Brun, F.; Coreno, M.; Costa, G.; et al. The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives. Condens. Matter 2024, 9, 30. https://doi.org/10.3390/condmat9030030
Galdenzi F, Anania MP, Balerna A, Bean RJ, Biagioni A, Bortolin C, Brombal L, Brun F, Coreno M, Costa G, et al. The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives. Condensed Matter. 2024; 9(3):30. https://doi.org/10.3390/condmat9030030
Chicago/Turabian StyleGaldenzi, Federico, Maria Pia Anania, Antonella Balerna, Richard J. Bean, Angelo Biagioni, Claudio Bortolin, Luca Brombal, Francesco Brun, Marcello Coreno, Gemma Costa, and et al. 2024. "The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives" Condensed Matter 9, no. 3: 30. https://doi.org/10.3390/condmat9030030
APA StyleGaldenzi, F., Anania, M. P., Balerna, A., Bean, R. J., Biagioni, A., Bortolin, C., Brombal, L., Brun, F., Coreno, M., Costa, G., Crincoli, L., Curcio, A., Del Giorno, M., Di Pasquale, E., di Raddo, G., Dompè, V., Donato, S., Ebrahimpour, Z., Falone, A., ... Ferrario, M. (2024). The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives. Condensed Matter, 9(3), 30. https://doi.org/10.3390/condmat9030030