Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production
Abstract
:1. Introduction
2. Sample Preparation
2.1. Preparation of CuFe2O4 and ZnFe2O4 Films on Stainless Steel Sheets
2.2. Preparation of CuFe2O4/ZnFe2O4 P–N Junction
2.3. Characterization Techniques
3. Results and Discussion
3.1. X-ray Diffraction Measurements
3.2. Optical Absorption and Photoluminescence
3.3. Electrochemical Impedance Spectroscopy
3.4. Linear Sweep Voltammetry (LSV) Measurements
3.5. Evaluation of Hydrogen Production Rate
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tolod, K.R.; Hernández, S.; Russo, N. Recent Advances in the bivo4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts 2016, 7, 13. [Google Scholar] [CrossRef]
- Ho-Kimura, S.; Moniz, S.J.A.; Handoko, A.D.; Tang, J. Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes. J. Mater. Chem. A 2014, 2, 3948–3953. [Google Scholar] [CrossRef]
- Gholipour, M.R.; Dinh, C.-T.; Béland, F.; Do, T.-O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187–8208. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, G.L.; Selli, E. Photocatalytic hydrogen production. Recent Patents Eng. 2010, 4, 155–169. [Google Scholar] [CrossRef]
- Liao, C.-H.; Huang, C.-W.; Wu, J.C.S. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W. A sono-chemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Environ. Sci. 2006, 24, 449–457. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhang, Q.; Wang, H. Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 2013, 15, 5986–5993. [Google Scholar] [CrossRef]
- Mallesh, S.; Srinivas, V. A comprehensive study on thermal stability and magnetic properties of MnZn-ferrite nanoparticles. J. Magn. Magn. Mater. 2018, 475, 290–303. [Google Scholar] [CrossRef]
- Bastianello, M.; Gross, S.; Elm, M.T. Thermal stability, electrochemical and structural characterization of hydrothermally synthesised cobalt ferrite (CoFe2O4). RSC Adv. 2019, 9, 33282–33289. [Google Scholar] [CrossRef]
- Hammad, T.M.; Salem, J.K.; Abu Amsha, A.; Hejazy, N.K. Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloy. Compd. 2018, 741, 123–130. [Google Scholar] [CrossRef]
- Joshi, G.P.; Saxena, N.S.; Mangal, R.; Mishra, A.; Sharma, T.P. Band gap determination of Ni-Zn ferrites. Bull. Mater. Sci. 2003, 26, 387–389. [Google Scholar] [CrossRef]
- Azab, A.A.; Mansour, A.M.; Turky, G.M. Structural, Magnetic, and Dielectric properties of Sr4Fe6O13 ferrite prepared of small crystallites. Sci. Rep. 2020, 10, 4955. [Google Scholar] [CrossRef]
- Ismael, M. Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review. Sol. Energy Mater. Sol. Cells 2020, 219, 110786. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Yun, Y.-S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90–111. [Google Scholar] [CrossRef]
- ElNahrawy, A.M.; Mansour, A.M.; ElAttar, H.A.; Sakr, E.M.M.; Soliman, A.A.; Hammad, A.B.A. Impact of Mn-substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications. J. Mater. Sci. Mater. Electron. 2020, 31, 6224–6232. [Google Scholar] [CrossRef]
- Jang, Y.J.; Bin Park, Y.; Kim, H.E.; Choi, Y.H.; Choi, S.H.; Lee, J.S. Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production. Chem. Mater. 2016, 28, 6054–6061. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, W.; Zhang, X.; Bai, H.; Liu, Y.; Huang, S.; Mao, B.; Yuan, S.; Liu, C.; Shi, W. Rod-in-tube nanostructure of MgFe2O4: Electrospinning synthesis and photocatalytic activities of tetracycline. New J. Chem. 2016, 40, 538–544. [Google Scholar] [CrossRef]
- Guijarro, N.; Bornoz, P.; Prévot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain. Energy Fuels 2018, 2, 103–117. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, Y.J.; Kim, J.H.; Jang, J.-W.; Choi, S.H.; Lee, J.S. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 2015, 7, 19144–19151. [Google Scholar] [CrossRef]
- Karim, K.M.R.; Ong, H.R.; Abdullah, H.; Yousuf, A.; Cheng, C.K.; Khan, M.R. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation. Int. J. Hydrogen Energy 2018, 43, 18185–18193. [Google Scholar] [CrossRef]
- Tarek, M.; Karim, K.M.R.; Sarkar, S.M.; Deb, A.; Ong, H.R.; Abdullah, H.; Cheng, C.K.; Khan, M.R. Hetero-structure CdS–CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol. Int. J. Hydrogen Energy 2019, 44, 26271–26284. [Google Scholar] [CrossRef]
- Duan, K.; Que, T.; Koppala, S.; Balan, R.; Lokesh, B.; Pillai, R.; David, S.; Karthikeyan, P.; Ramamoorthy, S.; Lekshmi, I.C.; et al. A facile route to synthesize n-SnO2/p-CuFe2O4 to rapidly degrade toxic methylene blue dye under natural sunlight. RSC Adv. 2022, 12, 16544–16553. [Google Scholar] [CrossRef] [PubMed]
- Balatskiy, D.; Budnikova, Y.; Bratskaya, S.; Vasilyeva, M. TiO2-CoFe2O4 and TiO2-CuFe2O4 Composite Films: A New Approach to Synthesis, Characterization, and Optical and Photocatalytic Properties. J. Compos. Sci. 2023, 7, 295. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.-G.; Miyauchi, M. Efficient Visible Light Active CaFe2O4/WO3 Based Composite Photocatalysts: Effect of Interfacial Modification. J. Phys. Chem. C 2009, 113, 17132–17137. [Google Scholar] [CrossRef]
- Kim, E.S.; Kang, H.J.; Magesh, G.; Kim, J.Y.; Jang, J.-W.; Lee, J.S. Improved Photoelectrochemical Activity of CaFe2O4/BiVO4 Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation. ACS Appl. Mater. Interfaces 2014, 6, 17762–17769. [Google Scholar] [CrossRef] [PubMed]
- Elzwawy, A.; Mansour, A.; Magar, H.S.; Hammad, A.B.A.; Hassan, R.Y.; El Nahrawy, A.M. Exploring the structural and electrochemical sensing of wide bandgap calcium phosphate/CuxFe3-xO4 core-shell nanoceramics for H2O2 detection. Mater. Today Commun. 2022, 33, 104574. [Google Scholar] [CrossRef]
- Ahmed, M.G.; Kandiel, T.A.; Ahmed, A.Y.; Kretschmer, I.; Rashwan, F.; Bahnemann, D. Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-CaFe2O4/n-Fe2O3 Heterojunction Formation. J. Phys. Chem. C 2015, 119, 5864–5871. [Google Scholar] [CrossRef]
- Lee, S.Y.; Huang, E.-W.; Woo, W.; Yoon, C.; Chae, H.; Yoon, S.-G. Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions. Metals 2015, 5, 2109–2118. [Google Scholar] [CrossRef]
- Najmoddin, N.; Beitollahi, A.; Kavas, H.; Mohseni, S.M.; Rezaie, H.; Åkerman, J.; Toprak, M.S. XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 2014, 40, 3619–3625. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Bououdina, M.; Macyk, W.; Shyichuk, O.; Paliychuk, N.; Yaremiy, I.; Al-Najar, B.; Pacia, M. Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles. Nanoscale Res. Lett. 2017, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Somnath; Batoo, K.M.; Raslan, E.H.; Adil, S.F.; Sharma, I.; Kumar, G. Correction to: Investigation of electrical, magnetic, and optical properties of silver-substituted magnesium–manganese ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 10939. [Google Scholar] [CrossRef]
- Karnaji; Nurhasanah, I. Photodegradation of Rhodamine B by using ZnFe2O4 Nanoparticles Synthesized through Precipitation Method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012044. [Google Scholar] [CrossRef]
- Park, S.; Baek, J.H.; Zhang, L.; Lee, J.M.; Stone, K.H.; Cho, I.S.; Guo, J.; Jung, H.S.; Zheng, X. Rapid Flame-Annealed CuFe2O4 as Efficient Photocathode for Photoelectrochemical Hydrogen Production. ACS Sustain. Chem. Eng. 2019, 7, 5867–5874. [Google Scholar] [CrossRef]
- Kumar, K.V. Tunable Optical Bandgap of Gadolinium Substituted Nickel-Zinc Ferrite Nanoparticles-Effect of Calcination Temperature on Its Optical Parameters. Adv. Mater. Phys. Chem. 2022, 12, 33–45. [Google Scholar] [CrossRef]
- Shetty, K.; Renuka, L.; Nagaswarupa, H.P.; Nagabhushana, H.; Anantharaju, K.S.; Rangappa, D.; Prashantha, S.C.; Ashwini, K. A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: Morphology, Impedance and Photocatalytic studies. Mater. Today Proc. 2017, 4, 11806–11815. [Google Scholar] [CrossRef]
- Belhadj, H.; Messaoudi, Y.; Khelladi, M.R.; Azizi, A. A facile synthesis of metal ferrites (MFe2O4, M = Co, Ni, Zn, Cu) as effective electrocatalysts toward electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 20129–20137. [Google Scholar] [CrossRef]
- Preethi, S.; Vivek, S.; Priya, R.; Balakumar, S.; Babu, K.S. Enhanced photocatalytic performance of CuFeO2-ZnO heterostructures for methylene blue degradation under sunlight. J. Mater. Sci. Mater. Electron. 2021, 32, 22256–22269. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, X.; Si, Y.; Gao, J.; Du, H.; Pei, S.; Zhang, X.; Yan, Q. Enhanced photocatalytic performance of ZnFe2O4/BiOI hybrid for the degradation of methyl orange. J. Mater. Sci. Mater. Electron. 2019, 30, 8055–8063. [Google Scholar] [CrossRef]
Sample | Lattice Parameter (Å) | Crystallite Size (nm) | Microstrain |
---|---|---|---|
ZnFe2O4 | 8.425 | 23 | 0.005 |
CuFe2O4 | 8.384 | 39 | 0.002 |
CuFe2O4/ZnFe2O4 | 8.416 | 47 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Turkestani, M.K. Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production. Condens. Matter 2024, 9, 31. https://doi.org/10.3390/condmat9030031
Al Turkestani MK. Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production. Condensed Matter. 2024; 9(3):31. https://doi.org/10.3390/condmat9030031
Chicago/Turabian StyleAl Turkestani, M. K. 2024. "Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production" Condensed Matter 9, no. 3: 31. https://doi.org/10.3390/condmat9030031
APA StyleAl Turkestani, M. K. (2024). Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production. Condensed Matter, 9(3), 31. https://doi.org/10.3390/condmat9030031