Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logvenov, G.; Bonmassar, N.; Christiani, G.; Campi, G.; Valletta, A.; Bianconi, A. The superconducting dome in artificial high-Tc superlattices tuned at the Fano–Feshbach resonance by quantum design. Condens. Matter 2023, 8, 78. [Google Scholar] [CrossRef]
- Valletta, A.; Bianconi, A.; Perali, A.; Logvenov, G.; Campi, G. High-Tc superconducting dome in artificial heterostructures made of nanoscale quantum building blocks. arXiv 2024, arXiv:2407.19069. [Google Scholar]
- Mazziotti, M.V.; Bianconi, A.; Raimondi, R.; Campi, G.; Valletta, A. Spin–orbit coupling controlling the superconducting dome of artificial superlattices of quantum wells. J. Appl. Phys. 2022, 132, 193908. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Valletta, A.; Raimondi, R.; Bianconi, A. Multigap superconductivity at an unconventional Lifshitz transition in a three-dimensional Rashba heterostructure at the atomic limit. Phys. Rev. B 2021, 103, 024523. [Google Scholar] [CrossRef]
- Mondal, D.; Mahapatra, S.R.; Derrico, A.M.; Rai, R.K.; Paudel, J.R.; Schlueter, C.; Gloskovskii, A.; Banerjee, R.; Hariki, A.; DeGroot, F.M.F.; et al. Modulation-doping a correlated electron insulator. Nat. Commun. 2023, 14, 6210. [Google Scholar] [CrossRef]
- Bianconi, A. On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites. Solid State Commun. 1994, 89, 933–936. [Google Scholar] [CrossRef]
- Bianconi, A.; Valletta, A.; Perali, A.; Saini, N.L. Superconductivity of a striped phase at the atomic limit. Phys. C Supercond. 1998, 296, 269–280. [Google Scholar] [CrossRef]
- Bianconi, A. Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 2005, 18, 625–636. [Google Scholar] [CrossRef]
- Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Miloševic, M.V.; Perali, A. Shape-resonant superconductivity in nanofilms: From weak to strong coupling. J. Supercond. Nov. Magn. 2016, 29, 3081–3086. [Google Scholar] [CrossRef]
- Salasnich, L.; Shanenko, A.A.; Vagov, A.; Aguiar, J.A.; Perali, A. Screening of pair fluctuations in superconductors with coupled shallow and deep bands: A route to higher-temperature superconductivity. Phys. Rev. B 2019, 100, 064510. [Google Scholar] [CrossRef]
- Ochi, K.; Tajima, H.; Iida, K.; Aoki, H. Resonant pair-exchange scattering and BCS-BEC crossover in a system composed of dispersive and heavy incipient bands: A Feshbach analogy. Phys. Rev. Res. 2022, 4, 013032.e26. [Google Scholar] [CrossRef]
- Valentinis, D.; Gariglio, S.; Fête, A.; Triscone, J.M.; Berthod, C.; Van Der Marel, D. Modulation of the superconducting critical temperature due to quantum confinement at the LaAlO3/SrTiO3 interface. Phys. Rev. B 2017, 96, 094518. [Google Scholar] [CrossRef]
- Barišić, N.; Chan, M.K.; Li, Y.; Yu, G.; Zhao, X.; Dressel, M.; Smontara, A.; Greven, M. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc. Natl. Acad. Sci. USA 2013, 110, 12235. [Google Scholar] [CrossRef]
- Pelc, D.; Veit, M.J.; Dorow, C.J.; Ge, Y.; Barišić, N.; Greven, M. Resistivity phase diagram of cuprates revisited. Phys. Rev. B 2020, 102, 075114. [Google Scholar] [CrossRef]
- Helmes, R.W.; Costi, T.A.; Rosch, A. Kondo proximity effect: How does a metal penetrate into a Mott insulator? Phys. Rev. Lett. 2008, 101, 066802. [Google Scholar] [CrossRef]
- Costi, T.A.; Hewson, A.C.; Zlatic, V. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys. Condens. Matter 1994, 6, 2519–2558. [Google Scholar] [CrossRef]
- Goldhaber-Gordon, D.; Göres, J.; Kastner, M.A.; Shtrikman, H.; Mahalu, D.; Meirav, U. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 1998, 81, 5225. [Google Scholar] [CrossRef]
- Lee, M.; Williams, J.R.; Zhang, S.; Frisbie, C.D.; Goldhaber-Gordon, D. Electrolyte gate-controlled Kondo effect in SrTiO3. Phys. Rev. Lett. 2011, 107, 256601. [Google Scholar] [CrossRef]
- Mozaffari, S.; Guchhait, S.; Markert, J.T. Spin–orbit interaction ad Kondo scattering at the PrAlO3/SrTiO3 interface: Effects of oxygen content. J. Phys. Condens. Matter 2017, 29, 395002. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Liu, Y.; Yang, S.; Yu, Z.; An, Q.; Ding, Z.; Meng, F.; Cao, Y.; Zhang, Q.; et al. Engineered Kondo screening and nonzero Berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures. Phys. Rev. B 2022, 106, 165421. [Google Scholar] [CrossRef]
- Zhuravlev, A.K.; Anokhin, A.O.; Irkhin, V.Y. One- and two-channel Kondo model with logarithmic Van Hove singularity: A numerical renormalization group solution. Phys. Lett. A 2018, 382, 528–533. [Google Scholar] [CrossRef]
- Kourris, C.; Vojta, M. Kondo screening and coherence in kagome local-moment metals: Energy scales of in the presence of flat bands. Phys. Rev. B 2023, 108, 235106. [Google Scholar] [CrossRef]
- Shankar, A.S.; Oriekhov, D.O.; Mitchell, A.K.; Fritz, L. Kondo effect in twisted bilayer graphene. Phys. Rev. B 2023, 107, 245102. [Google Scholar] [CrossRef]
- Miura, N.; Nakagawa, H.; Sekitani, T.; Naito, M.; Sato, H.; Enomoto, Y. High-magnetic-field study of high-Tc cuprates. Phys. B Condens. Matter 2002, 319, 310–320. [Google Scholar] [CrossRef]
- Sekitani, T.; Naito, M.; Miura, N. Kondo effect in underdoped n-type superconductors. Phys. Rev. B 2003, 67, 174503. [Google Scholar] [CrossRef]
- Yin, H.T.; Liu, X.J.; Feng, L.F.; Lü, T.Q.; Li, H. Spin-dependent Kondo effect induced by Rashba spin–orbit interaction in parallel coupled double quantum dots. Phys. Lett. A 2010, 374, 2865–2873. [Google Scholar] [CrossRef]
- Bułka, B.R.; Stefański, P.; Tagliacozzo, A. Interplay of Kondo and Fano resonance in electronic transport in nanostructures. Acta Phys. Pol. A 2005, 108, 555–569. [Google Scholar] [CrossRef]
- Fang, T.F.; Luo, H.G. Tuning the Kondo and Fano effects in double quantum dots. Phys. Rev. B 2010, 81, 113402. [Google Scholar] [CrossRef]
- Stefański, P. Interplay between quantum interference and electron interactions in a Rashba system. J. Phys. Condens. Matter 2010, 22, 505303. [Google Scholar] [CrossRef]
- Misawa, T.; Nomura, Y.; Biermann, S.; Imada, M. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces. Sci. Adv. 2016, 2, e1600664. [Google Scholar] [CrossRef]
- Tadano, T.; Nomura, Y.; Imada, M. Ab initio derivation of an effective Hamiltonian for the La2CuO4/La1.55Sr0.45CuO4 heterostructure. Phys. Rev. B 2019, 99, 155148. [Google Scholar] [CrossRef]
- Phillips, J.C. Reconciliation of normal-state and superconductive specific-heat, optical, tunneling, and transport data on Y-Ba-Cu-O. Phys. Rev. B 1989, 40, 7348–7349. [Google Scholar] [CrossRef]
- Varma, C.M.; Littlewood, P.B.; Schmitt-Rink, S.; Abrahams, E.; Ruckenstein, A.E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 1989, 63, 1996. [Google Scholar] [CrossRef]
- Martin, S.; Fiory, A.T.; Fleming, R.M.; Schneemeyer, L.F.; Waszczak, J.V. Normal-state transport properties of Bi2+xSr2−yCuO6+δ crystals. Phys. Rev. B 1990, 41, 846–849. [Google Scholar] [CrossRef]
- Zaanen, J. Why the temperature is high. Nature 2004, 430, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Wang, Y.; Vignolle, B.; Lipscombe, O.J.; Hayden, S.M.; Tanabe, Y.; Adachi, T.; Koike, Y.; Nohara, M.; Takagi, H.; et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 2009, 323, 603–607. [Google Scholar] [CrossRef]
- Bruin, J.A.N.; Sakai, H.; Perry, R.S.; Mackenzie, A.P. Similarity of scattering rates in metals showing T-linear resistivity. Science 2013, 339, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Haldane, F.D.M. Fermi-surface geometry and “Planckian dissipation”. arXiv 2018, arXiv:1811.12120. [Google Scholar]
- Shaginyan, V.R.; Amusia, M.Y.; Msezane, A.Z.; Stephanovich, V.A.; Japaridze, G.S.; Artamonov, S.A. Fermion condensation, T-linear resistivity, and Planckian limit. JETP Lett. 2019, 110, 290–295. [Google Scholar] [CrossRef]
- Amusia, M.; Shaginyan, V. Quantum Criticality, T-linear Resistivity, and Planckian Limit. In Strongly Correlated Fermi Systems; Springer Tracts in Modern Physics; Springer: Cham, Switzerland, 2020; Volume 283. [Google Scholar] [CrossRef]
- Patel, A.A.; Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 2019, 123, 066601. [Google Scholar] [CrossRef]
- Legros, A.; Benhabib, S.; Tabis, W.; Laliberté, F.; Dion, M.; Lizaire, M.; Vignolle, B.; Vignolles, D.; Raffy, H.; Li, Z.Z.; et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 2019, 15, 142–147. [Google Scholar] [CrossRef]
- Balm, F.; Chagnet, N.; Arend, S.; Aretz, J.; Grosvenor, K.; Janse, M.; Zaanen, J. T-linear resistivity, optical conductivity, and Planckian transport for a holographic local quantum critical metal in a periodic potential. Phys. Rev. B 2023, 108, 125145. [Google Scholar] [CrossRef]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef]
- Bianconi, A. Shape resonances in superstripes. Nat. Phys. 2013, 9, 536–537. [Google Scholar] [CrossRef]
- Jarlborg, T.; Bianconi, A. Fermi surface reconstruction of superoxygenated La2CuO4 superconductors with ordered oxygen interstitials. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 054514. [Google Scholar] [CrossRef]
- Uemura, Y.J. Bose-Einstein to BCS crossover picture for high-Tc cuprates. Phys. C Supercond. 1997, 282, 194–197. [Google Scholar] [CrossRef]
- Li, Y.; Sapkota, A.; Lozano, P.M.; Du, Z.; Li, H.; Wu, Z.; Kundu, A.K.; Koch, R.J.; Wu, L.; Winn, B.L.; et al. Strongly overdoped La2−xSrxCuO4: Evidence for Josephson-coupled grains of strongly correlated superconductor. Phys. Rev. B 2022, 106, 224515. [Google Scholar] [CrossRef]
- Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H.C.; Beasley, M.R.; Geballe, T.; Kramer, M.; Fisher, I.R. Stripe-like nanoscale structural phase separation in superconducting BaPb1−x BixO3. Nat. Commun. 2015, 6, 8231. [Google Scholar] [CrossRef]
- Kondo, J. Superconductivity in transition metals. Prog. Theor. Phys. 1963, 29, 1–9. [Google Scholar] [CrossRef]
- Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 1964, 32, 37–49. [Google Scholar] [CrossRef]
- Anderson, P.W. Localized magnetic states in metals. Phys. Rev. 1961, 124, 41. [Google Scholar] [CrossRef]
- Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866. [Google Scholar] [CrossRef]
- Tajima, H.; Aoki, H.; Perali, A.; Bianconi, A. Emergent Fano-Feshbach resonance in two-band superconductors with an incipient quasiflat band: Enhanced critical temperature evading particle-hole fluctuations. Phys. Rev. B 2024, 109, L140504. [Google Scholar] [CrossRef]
- Tajima, H.; Perali, A.; Pieri, P. BCS-BEC crossover and pairing fluctuations in a two band superfluid/superconductor: AT matrix approach. Condens. Matter 2020, 5, 10. [Google Scholar] [CrossRef]
- Tajima, H.; Yerin, Y.; Perali, A.; Pieri, P. Enhanced critical temperature, pairing fluctuation effects, and BCS-BEC crossover in a two-band Fermi gas. Phys. Rev. B 2019, 99, 180503. [Google Scholar] [CrossRef]
- Paramasivam, S.K.; Gangadharan, S.P.; Milošević, M.V.; Perali, A. High-Tc Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconducting systems with coupled deep and quasiflat electronic bands with Van Hove singularities. Phys. Rev. B 2024, 110, 024507. [Google Scholar] [CrossRef]
- Tajima, H.; Yerin, Y.; Pieri, P.; Perali, A. Mechanisms of screening or enhancing the pseudogap throughout the two-band Bardeen-Cooper-Schrieffer to Bose-Einstein condensate crossover. Phys. Rev. B 2020, 102, 220504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campi, G.; Logvenov, G.; Caprara, S.; Valletta, A.; Bianconi, A. Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures. Condens. Matter 2024, 9, 43. https://doi.org/10.3390/condmat9040043
Campi G, Logvenov G, Caprara S, Valletta A, Bianconi A. Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures. Condensed Matter. 2024; 9(4):43. https://doi.org/10.3390/condmat9040043
Chicago/Turabian StyleCampi, Gaetano, Gennady Logvenov, Sergio Caprara, Antonio Valletta, and Antonio Bianconi. 2024. "Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures" Condensed Matter 9, no. 4: 43. https://doi.org/10.3390/condmat9040043
APA StyleCampi, G., Logvenov, G., Caprara, S., Valletta, A., & Bianconi, A. (2024). Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures. Condensed Matter, 9(4), 43. https://doi.org/10.3390/condmat9040043