Josephson Critical Currents and Related Effects in Ultracold Atomic Superfluid Sytems
Abstract
:1. Introduction
2. Theoretical Approach
2.1. The NLPDA Approach
2.2. The LPDA Approach
2.3. The mLPDA Approach
3. Results
3.1. Case of Study: Homogeneous Superfluid
3.2. Case of Study: Trapped Ultracold Atoms
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCS | Bardeen–Cooper–Schrieffer |
BdG | Bogoliubov–de Gennes |
BEC | Bose–Einstein condensation |
LPDA | Local Phase Density Approximation |
mLPDA | Local Phase Density Approximation |
NLPDA | Non-local Phase Density Approximation |
References
- de Gennes, P.G. Superconductivity of Metals and Alloys; Benjamin: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Gor’kov, L.P. Microscopic derivation of the Ginzburg-Landau equations in the theory of Superconductivity. Sov. Phys. JETP 1959, 36, 1364. [Google Scholar]
- Gor’kov, L.P. On the energy spectrum of superconductors. J. Exp. Theor. Phys. (USSR) 1958, 34, 735–739. [Google Scholar]
- Usadel, K.D. Generalized Diffusion Equation for Superconducting Alloys. Phys. Rev. Lett. 1970, 25, 507–509. [Google Scholar] [CrossRef]
- Rammer, J. Quantum Field Theory of Non-Equilibrium States; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Eilenberger, G. Transformation of Gorkov’s equation for type II superconductors into transport-like equations. Z. Physik Hadron. Nucl. 1968, 214, 195. [Google Scholar] [CrossRef]
- Simonucci, S.; Strinati, G.C. Equation for the superfluid gap obtained by coarse graining the Bogoliubov–de Gennes equations throughout the BCS-BEC crossover. Phys. Rev. B 2014, 89, 054511. [Google Scholar] [CrossRef]
- Pieri, P.; Strinati, G.C. Derivation of the Gross-Pitaevskii Equation for Condensed Bosons from the Bogoliubov–de Gennes Equations for Superfluid Fermions. Phys. Rev. Lett. 2003, 91, 030401. [Google Scholar] [CrossRef]
- Piselli, V.; Simonucci, S.; Strinati, G.C. Optimizing the proximity effect along the BCS side of the BCS-BEC crossover. Phys. Rev. B 2018, 98, 144508. [Google Scholar] [CrossRef]
- Simonucci, S.; Strinati, G.C. Nonlocal equation for the superconducting gap parameter. Phys. Rev. B 2017, 96, 054502. [Google Scholar] [CrossRef]
- Taruishi, K.; Schuck, P. Wigner Kirkwood ℏ-expansion of the density matrix in inhomogeneous superfluid Fermi systems. Z. Phys. Hadron. Nucl. 1992, 342, 397–401. [Google Scholar] [CrossRef]
- Schuck, P.; Urban, M.; Viñas, X. Corrections to local-density approximation for superfluid trapped fermionic atoms from the Wigner-Kirkwood ℏ expansion. Eur. Phys. J. A 2023, 59, 164. [Google Scholar] [CrossRef]
- Pei, J.C.; Fei, N.; Zhang, Y.N.; Schuck, P. Generalized second-order Thomas-Fermi method for superfluid Fermi systems. Phys. Rev. C 2015, 92, 064316. [Google Scholar] [CrossRef]
- Fetter, A.L.; Walecka, D.J. Quantum Theory of Many-Particle Systems; Dover Publications: Mineola, NY, USA, 2014. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Pisani, L.; Piselli, V.; Strinati, G.C. Inclusion of pairing fluctuations in the differential equation for the gap parameter for superfluid fermions in the presence of nontrivial spatial constraints. Phys. Rev. B 2023, 108, 214503. [Google Scholar] [CrossRef]
- Pieri, P.; Pisani, L.; Strinati, G.C. BCS-BEC crossover at finite temperature in the broken-symmetry phase. Phys. Rev. B 2004, 70, 094508. [Google Scholar] [CrossRef]
- Perali, A.; Pieri, P.; Pisani, L.; Strinati, G.C. BCS-BEC Crossover at Finite Temperature for Superfluid Trapped Fermi Atoms. Phys. Rev. Lett. 2004, 92, 220404. [Google Scholar] [CrossRef]
- Piselli, V.; Pisani, L.; Strinati, G.C. Josephson current flowing through a nontrivial geometry: Role of pairing fluctuations across the BCS-BEC crossover. Phys. Rev. B 2023, 108, 214504. [Google Scholar] [CrossRef]
- Kwon, W.J.; Pace, G.D.; Panza, R.; Inguscio, M.; Zwerger, W.; Zaccanti, M.; Scazza, F.; Roati, G. Strongly correlated superfluid order parameters from dc Josephson supercurrents. Science 2020, 369, 84–88. [Google Scholar] [CrossRef]
- Del Pace, G.; Kwon, W.J.; Zaccanti, M.; Roati, G.; Scazza, F. Tunneling Transport of Unitary Fermions across the Superfluid Transition. Phys. Rev. Lett. 2021, 126, 055301. [Google Scholar] [CrossRef]
- Maggio-Aprile, I.; Renner, C.; Erb, A.; Walker, E.; Fischer, Ø. Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O7-δ. Nature 1997, 390, 487–490. [Google Scholar] [CrossRef]
- Kunchur, M.N. Current-induced pair breaking in magnesium diboride. J. Phys. Condens. Matter 2004, 16, R1183. [Google Scholar] [CrossRef]
- Bergeal, N.; Lesueur, J.; Aprili, M.; Faini, G.; Contour, J.P.; Leridon, B. Pairing fluctuations in the pseudogap state of copper-oxide superconductors probed by the Josephson effect. Nat. Phys. 2008, 4, 608–611. [Google Scholar] [CrossRef]
- Bozovic, I.; Logvenov, G.; Verhoeven, M.A.J.; Caputo, P.; Goldobin, E.; Beasley, M.R. Giant Proximity Effect in Cuprate Superconductors. Phys. Rev. Lett. 2004, 93, 157002. [Google Scholar] [CrossRef] [PubMed]
- Kirzhner, T.; Koren, G. Pairing and the phase diagram of the normal coherence length ξN(T, x) above Tc of La2−xSrxCuO4 thin films probed by the Josephson effect. Sci. Rep. 2014, 4, 6244. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, G.; de Gennes, P. Superconductivity; Parks, R.D., Ed.; Dekker: New York, NY, USA, 1969; Volume 2, Chapter 17. [Google Scholar]
- Polturak, E.; Koren, G.; Coher, D.; Aharoni, E.; Deutscher, G. Proximity Effect in YBa2Cu3O7/Y0.6Pr0.4Ba2Cu3O7/YBa2Cu3O7 Junctions. Phys. Rev. Lett. 1991, 67, 3038. [Google Scholar] [CrossRef] [PubMed]
- Golubov, A.A.; Kupriyanov, M.Y.; Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 2004, 76, 411–469. [Google Scholar] [CrossRef]
- Piselli, V.; Simonucci, S.; Strinati, G.C. Josephson effect at finite temperature along the BCS-BEC crossover. Phys. Rev. B 2020, 102, 144517. [Google Scholar] [CrossRef]
- Kogan, V.G. Coherence length of a normal metal in a proximity system. Phys. Rev. B 1982, 26, 88–98. [Google Scholar] [CrossRef]
- Fink, H.J. Supercurrents through superconducting-normal-superconducting proximity layers. I. Analytic solution. Phys. Rev. B 1976, 14, 1028–1038. [Google Scholar] [CrossRef]
- Fink, H.J.; Poulsen, R.S. Supercurrents through proximity layers. II. Numerical solution of superconducting-normal-superconducting and superconducting-superconducting-superconducting weak links. Phys. Rev. B 1979, 19, 5716–5724. [Google Scholar] [CrossRef]
- Fink, H.J. Supercurrents through SNS proximity-induced junctions. Phys. Rev. B 1997, 56, 2732–2737. [Google Scholar] [CrossRef]
- Spuntarelli, A.; Pieri, P.; Strinati, G.C. Solution of the Bogoliubov–de Gennes equations at zero temperature throughout the BCS–BEC crossover: Josephson and related effects. Phys. Rep. 2010, 488, 111–167. [Google Scholar] [CrossRef]
- Likharev, K.K. Superconducting weak links. Rev. Mod. Phys. 1979, 51, 101–159. [Google Scholar] [CrossRef]
- Courtois, H.; Gandit, P.; Pannetier, B. Proximity-induced superconductivity in a narrow metallic wire. Phys. Rev. B 1995, 52, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Missert, N.; Vale, L.; Ono, R.; Reintsema, C.; Rudman, D.; Thomson, R.; Berkowitz, S. Temperature dependence and magnetic field modulation of critical currents in step-edge SNS YBCO/Au junctions. IEEE Trans. Appl. Superconduct. 1995, 5, 2969–2972. [Google Scholar] [CrossRef]
- Josephson, B. Possible new effects in superconductive tunnelling. Phys. Lett. 1962, 1, 251–253. [Google Scholar] [CrossRef]
- Varoquaux, E. Anderson’s considerations on the flow of superfluid helium: Some offshoots. Rev. Mod. Phys. 2015, 87, 803–854. [Google Scholar] [CrossRef]
- Sidorenkov, L.A.; Tey, M.K.; Grimm, R.; Hou, Y.H.; Pitaevskii, L.; Stringari, S. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 2013, 498, 78–81. [Google Scholar] [CrossRef]
- Kuhn, C.C.N.; Hoinka, S.; Herrera, I.; Dyke, P.; Kinnunen, J.J.; Bruun, G.M.; Vale, C.J. High-Frequency Sound in a Unitary Fermi Gas. Phys. Rev. Lett. 2020, 124, 150401. [Google Scholar] [CrossRef]
- Pini, M.; Pieri, P.; Strinati, G.C. Fermi gas throughout the BCS-BEC crossover: Comparative study of t-matrix approaches with various degrees of self-consistency. Phys. Rev. B 2019, 99, 094502. [Google Scholar] [CrossRef]
- Pisani, L.; Piselli, V.; Strinati, G.C. Critical current throughout the BCS-BEC crossover with the inclusion of pairing fluctuations. Phys. Rev. A 2024, 109, 033306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piselli, V.; Pisani, L.; Strinati, G.C. Josephson Critical Currents and Related Effects in Ultracold Atomic Superfluid Sytems. Condens. Matter 2024, 9, 41. https://doi.org/10.3390/condmat9040041
Piselli V, Pisani L, Strinati GC. Josephson Critical Currents and Related Effects in Ultracold Atomic Superfluid Sytems. Condensed Matter. 2024; 9(4):41. https://doi.org/10.3390/condmat9040041
Chicago/Turabian StylePiselli, Verdiana, Leonardo Pisani, and Giancarlo Calvanese Strinati. 2024. "Josephson Critical Currents and Related Effects in Ultracold Atomic Superfluid Sytems" Condensed Matter 9, no. 4: 41. https://doi.org/10.3390/condmat9040041
APA StylePiselli, V., Pisani, L., & Strinati, G. C. (2024). Josephson Critical Currents and Related Effects in Ultracold Atomic Superfluid Sytems. Condensed Matter, 9(4), 41. https://doi.org/10.3390/condmat9040041