New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stacked-Foils Irradiations
2.2. Gamma Spectroscopy and Data Analysis
2.3. Radionuclide Yield Calculator
3. Results and Discussion
3.1. Cross-Section Measurements
3.2. Calculated Yield and Production
4. Conclusions and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Subramanian, G.; McAfee, J.G.; Poggenburg, J.K. Ruthenium-97: A preliminary evaluation of a new radionuclide for use in nuclear medicine. J. Nucl. Med. 1970, 11, 365. [Google Scholar]
- Maiti, M.; Lahiri, S. Measurement of yield of residues produced in 12C+natY reaction and subsequent separation of 97Ru from Y target using cation exchange resin. Radiochim. Acta 2015, 103, 7–13. [Google Scholar] [CrossRef]
- Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Ignatyuk, A. Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103Ru. Nucl. Inst. Meth. B 2017, 399, 83–100. [Google Scholar] [CrossRef]
- Zaitseva, N.G.; Stegailov, V.I.; Khalkin, V.A.; Shakun, N.G.; Shishlyannikow, P.T.; Bukow, K.G. Metal Technetium Target and Target Chemistry for the Production of 97Ru via the 99Tc(p,3n)97Ru Reaction. Appl. Radiat. Isot. 1996, 47, 145–151. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Mukhopadhyay, K. Applications of the Carrier Free Radioisotopes of Second Transition Series Elements in the Field of Nuclear Medicine. J. Nucl. Med. Radiat. Ther. 2011, 2, 1000115. [Google Scholar] [CrossRef]
- Shao, H.S.; Meinken, G.E.; Srivastava, S.C.; Slosman, D.; Sacker, D.F.; Sore, P.; Brill, A.B. In vitro and in vivo characterization of ruthenium bleomycin compared to cobalt- and copper-bleomycin. J. Nucl. Med. 1986, 27, 1044. [Google Scholar]
- Clarke, M.J. Ruthenium in Cancer Chemotherapy. Platin. Met. Rev. 1988, 32, 198. [Google Scholar]
- Ku, T.H.; Richards, P.; Srivastava, S.C.; Prach, T.; Stang, L.G., Jr. Production of ruthenium-97 for medical applications. In Proceedings of the 2nd International Congress of the World Federation of Nuclear Medicine and Biology, Washington, DC, USA, 17–21 September 1978. [Google Scholar]
- Lagunas-Solar, M.C.; Avila, M.J.; Navarro, N.L.; Johnson, P.C. Cyclotron Production of No-carrier-added 97Ru by Proton Bombardment of 103Rh Targets. J. Appl. Radiat. Isot. 1983, 34, 915–922. [Google Scholar] [CrossRef]
- Lebowitz, E.; Kinsley, M.; Klotz, P.; Bachsmith, C.; Ansari, A.; Richards, P.; Atkins, H.L. Development of 97Ru and 67Cu for medical use. J. Nucl. Med. 1974, 15, 511. [Google Scholar]
- Zaitseva, N.G.; Rurarz, E.; Vobecký, M.; Hwan, K.H.; Nowak, K.; Téthal, T.; Khalkin, V.A.; Popinenkova, L.M. Excitation function and yield for 97Ru production in 99Tc(p,3n)97Ru reaction in 20–100 MeV proton energy range. Radiochim. Acta 1992, 56, 59–68. [Google Scholar] [CrossRef]
- Dmitriev, S.N.; Zaitseva, N.G.; Starodub, G.Y.; Maslov, O.D.; Shishkin, S.V.; Shishkina, T.V. High-purity radionuclide production: Material, construction, target chemistry for 26Al, 97Ru, 178W, 235Np, 236,237P. Nucl. Inst. Meth. A 1997, 397, 125–130. [Google Scholar] [CrossRef]
- Uddin, M.S.; Hagiwara, M.; Baba, M.; Tarkanyi, F. Experimental studies on excitation functions of the proton-induced activation reactions on silver. Appl. Radiat. Isot. 2005, 62, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ditrói, F.; Tárkányi, F.; Takács, S.; Mahunka, I.; Csikai, J.; Hermanne, A.; Uddin, M.S.; Hagiwara, M.; Baba, M.; Ido, T.; et al. Measurement of activation cross sections of the proton induced nuclear reactions on palladium. J. Radioanal. Nucl. Chem. 2007, 272, 231–235. [Google Scholar] [CrossRef]
- Mito, A.; Komura, K.; Mitsugashira, T.; Otozai, K. Excitation functions for the (d, p) reactions on 96Ru, 102Ru and 104Ru. Nucl. Phys. A 1969, 129, 165–171. [Google Scholar] [CrossRef]
- Comparetto, G.; Qaim, S. A Comparative Study of the Production of Short-Lived Neutron Deficient Isotopes 94,95,97Ru in α- and 3He-Particle Induced Nuclear Reactions on Natural Molybdenum. Radiochim. Acta 1980, 27, 177–180. [Google Scholar] [CrossRef]
- Maiti, M.; Lahiri, S. Production and separation of 97Ru from 7Li activated natural niobium. Radiochim. Acta 2011, 99, 359–364. [Google Scholar] [CrossRef]
- Maiti, M. Production and separation of 97Ru and coproduced 95Tc from 12C-induced reaction on yttrium target. Radiochim. Acta 2013, 101, 437–444. [Google Scholar] [CrossRef]
- Levkovski, V.N. Cross-Section of Medium Mass Nuclide Activation (A = 40–100) by Medium Energy Protons and Alpha-Particles (E = 10–50 MeV); Inter-Vesi: Moscow, Russia, 1991. [Google Scholar]
- Ditrói, F.; Hermanne, A.; Tárkányi, F.; Takács, S.; Ignatyuk, A.V. Investigation of the α-particle induced nuclear reactions on natural molybdenum. Nucl. Inst. Meth. B 2012, 285, 125–141. [Google Scholar] [CrossRef]
- Poirier, F.; Girault, F.; Auduc, S.; Huet, C.; Mace, E.; Delvaux, J.I.; Haddad, F. The C70 Arronax and beam lines status. In Proceedings of the IPAC2011, San Sebastián, Spain, 4–9 September 2011. [Google Scholar]
- International Atomic Energy Agency, Live Chart of Nuclides. 2018. Available online: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html (accessed on 21 January 2019).
- Haddad, F.; Ferrer, L.; Guertin, A.; Carlier, T.; Michel, N.; Barbet, J.; Chatal, J.F. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Garrido, E.; Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV. Nucl. Inst. Meth. B 2016, 383, 191–212. [Google Scholar] [CrossRef]
- Guertin, A.; Duchemin, C.; Fardin, A.; Guigot, C.; Nigron, E.; Remy, C.; Haddad, F.; Michel, N.; Métivier, V. How nuclear data collected for medical radionuclides production could constrain nuclear codes. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2017; p. 146. [Google Scholar]
- Pupillo, G.; Sounalet, T.; Michel, N.; Mou, L.; Esposito, J.; Haddad, F. New production cross sections for the theranostic radionuclide 67Cu. Nucl. Inst. Meth. B 2018, 415, 41–47. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM Code, Version 2008.04. Available online: http://www.srim.org/ (accessed on 21 January 2019).
- International Atomic Energy Agency. Charged-Particle cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions. 2017. Available online: https://www-nds.iaea.org/medical (accessed on 21 January 2019).
- Koning, A.J.; Rochman, D. Modern Nuclear Data Evaluation with The TALYS Code System. Nucl. Data Sheets 2012, 113, 2841–2934. [Google Scholar] [CrossRef]
- Phelps, M.E. PET: Molecular Imaging and Its Biological Applications; Springer: New York, NY, USA, 2004. [Google Scholar]
- de Lima, J.J.P. Nuclear Medicine Physics; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Python Software Foundation. Python Programming Language, Version 2.7. 2010. Available online: https://www.python.org (accessed on 21 January 2019).
- Cortesi, D. PyInstaller Documentation, Release 3.4. 2018. Available online: https://www.pyinstaller.org/documentation.html (accessed on 21 January 2019).
- ARRONAX, Radionuclide Yield Calculator. 2018. Available online: http://www.cyclotron-nantes.fr/spip.php?article373 (accessed on 21 January 2019).
- International Atomic Energy Agency. Cross Section Database for Medical Radioisotope Production: Production of Therapeutic Radionuclides. 2011. Available online: https://www-nds.iaea.org/radionuclides (accessed on 21 January 2019).
- Kim, G.; Chun, K.; Park, S.H.; Kim, B. Production of α-particle emitting 211At using 45 MeV α-beam. Phys. Med. Biol. 2014, 59, 2849. [Google Scholar] [CrossRef] [PubMed]
- Szkliniarz, K.; Sitarz, M.; Walczak, R.; Jastrzębski, J.; Bilewicz, A.; Choiński, J.; Jakubowski, A.; Majkowska, A.; Stolarz, A.; Trzcińska, A.; et al. Production of medical Sc radioisotopes with an alpha particle beam. Appl. Radiat. Isot. 2016, 118, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Zanzi, I.; Srivastava, S.C.; Meinken, G.E.; Robeson, W.; Mausner, L.F.; Fairchild, R.G.; Margouleff, D. A New Cholescintigraphic Agent: Ruthenium-97-DISIDA. Nucl. Med. Biol. 1989, 16, 397–403. [Google Scholar] [CrossRef]
Radionuclide | T1/2 | Decay Mode (%) | γ-Lines [keV] and Intensities** (%) | Contributing Reactions*** | Q-Value [MeV] |
---|---|---|---|---|---|
97Ru | 2.83 d | EC (100) | 215.7 (85.8) 324.5 (10.8) | 94Mo(α,n)97Ru | −7.9 |
95Mo(α,2n)97Ru | −15.3 | ||||
96Mo(α,3n)97Ru | −24.5 | ||||
97Mo(α,4n)97Ru | −31.3 | ||||
98Mo(α,5n)97Ru | −41.6 | ||||
100Mo(α,7n)97Ru | −54.1 | ||||
89gZr | 78.4 h | β+ (23), EC (77) | 908.96 (100) | 92Mo(α,x)89totZr | −16.7 |
94Mo(α,x)89totZr | −14.0 | ||||
95Mo(α,x)89totZr | −21.4 | ||||
96Mo(α,x)89totZr | −30.6 | ||||
97Mo(α,x)89totZr | −37.4 | ||||
98Mo(α,x)89totZr | −46.0 | ||||
100Mo(α,x)89totZr | −60.2 | ||||
92Mo(α,x)89totNb→89totZr | −21.1 | ||||
94Mo(α,x)89totNb→89totZr | −38.9 | ||||
95Mo(α,x)89totNb→89totZr | −46.2 | ||||
96Mo(α,x)89totNb→89totZr | −55.4 | ||||
97Mo(α,x)89totNb→89totZr | −62.2 | ||||
98Mo(α,x)89totNb→89totZr | −70.9 | ||||
100Mo(α,x)89totNb→89totZr | −85.1 | ||||
96gTc | 4.28 d | EC (100) | 778.22 (100) 812.58 (82) 849.93 (98) 1126.97 (15.2) | 94Mo(α,x)96totTc | −13.3 |
95Mo(α,x)96totTc | −14.4 | ||||
96Mo(α,x)96totTc | −23.7 | ||||
97Mo(α,x)96totTc | −30.4 | ||||
98Mo(α,x)96totTc | −39.0 | ||||
100Mo(α,x)96totTc | −53.3 | ||||
99Mo | 65.9 h | β− (100) | 140.51 (89.43) 739.50 (12.13) | 97Mo(α,2p)99Mo | −13.7 |
98Mo(α,x)99Mo | −14.7 | ||||
100Mo(α,x)99Mo | −8.3 | ||||
95gTc | 20.0 h | EC (100) | 765.8 (93.82) | 92Mo(α,n)95gTc | −5.7 |
94Mo(α,x)95gTc | −14.9 | ||||
95Mo(α,x)95gTc | −22.3 | ||||
96Mo(α,x)95gTc | −31.4 | ||||
97Mo(α,x)95gTc | −38.3 | ||||
98Mo(α,x)95gTc | −46.9 | ||||
100Mo(α,x)95gTc | −61.1 | ||||
92Mo(α,n)95Ru→95gTc | −9.0 | ||||
94Mo(α,3n)95Ru→95gTc | −26.7 | ||||
95Mo(α,4n)95Ru→95gTc | −34.1 | ||||
96Mo(α,5n)95Ru→95gTc | −43.3 | ||||
97Mo(α,6n)95Ru→95gTc | −50.1 | ||||
98Mo(α,7n)95Ru→95gTc | −58.7 | ||||
100Mo(α,9n)95Ru→95gTc | −73.0 |
E [MeV] | natMo(α,x) Cross-Section [mb] | ||||
---|---|---|---|---|---|
97Ru | 89gZr | 95gTc | 96totTc | 99Mo | |
41.80(75) | 237(20) | ND* | 81(11) | 73(7) | 7.5(1.0) |
46.03(68) | 225(20) | ND | 127(14) | 89(8) | 10.1(1.2) |
50.00(64) | 199(18) | ND | 163(17) | 100(9) | 11.4(1.3) |
51.93(62) | 166(14) | ND | 170(16) | 101(9) | 12.8(1.3) |
55.30(60) | 159(13) | 3.6(9) | 177(17) | 109(9) | 13.5(1.4) |
58.51(56) | 176(15) | 11.7(1.6) | 205(17) | 119(10) | ND |
59.97(55) | 176(15) | 18(2) | 174(24) | 116(10) | 14.0(1.5) |
63.47(53) | 180(16) | 30(3) | 188(16) | 118(10) | 15.0(1.7) |
66.84(50) | 173(14) | 40(3) | 203(17) | 122(10) | 15.6(1.3) |
α energy | 30–15 MeV | 67–15 MeV | |||
---|---|---|---|---|---|
target | natMo | 95Mo (100%) | natMo | 96Mo (100%) | |
thickness | 100 mg/cm2 | 100 mg/cm2 | 540 mg/cm2 | 540 mg/cm2 | |
97Ru yield | 3.5 MBq/µAh | 14 MBq/µAh | 20 MBq/µAh | 31 MBq/µAh | |
irradiation | 1 h, 15 µA | 1 h, 15 µA | 1 h, 2.5 µA | 1 h, 2.5 µA | |
97Ru AEOB | 50 MBq (1.4 mCi) | 200 MBq (5.4 mCi) | 50 MBq (1.4 mCi) | 80 MBq (2.2 mCi) | |
SA at EOB | 350 GBq/µmol (9 kCi/mmol) | 1300 GBq/µmol (36 kCi/mmol) | 420 GBq/µmol (11 kCi/mmol) | 630 GBq/µmol (17 kCi/mmol) | |
relative activity [%] | 97Ru | 100 | 100 | 100 | 100 |
89gZr | 0 | 0 | 3 | 0.04 | |
95gTc | 95 | 1E−3 | 200 | 150 | |
96gTc | 4 | 0.2 | 25 | 34 | |
103Ru | 0.12 | 0 | 0.02 | 0 | |
reference | [3], [20] | TENDL-2017 | [3], [20] this work | TENDL-2017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitarz, M.; Nigron, E.; Guertin, A.; Haddad, F.; Matulewicz, T. New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator. Instruments 2019, 3, 7. https://doi.org/10.3390/instruments3010007
Sitarz M, Nigron E, Guertin A, Haddad F, Matulewicz T. New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator. Instruments. 2019; 3(1):7. https://doi.org/10.3390/instruments3010007
Chicago/Turabian StyleSitarz, Mateusz, Etienne Nigron, Arnaud Guertin, Férid Haddad, and Tomasz Matulewicz. 2019. "New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator" Instruments 3, no. 1: 7. https://doi.org/10.3390/instruments3010007
APA StyleSitarz, M., Nigron, E., Guertin, A., Haddad, F., & Matulewicz, T. (2019). New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator. Instruments, 3(1), 7. https://doi.org/10.3390/instruments3010007