Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Beam Tests of the BN-124 Target
3.2. Beam Tests of the BN-131 Target
3.3. Comparison of 11C Saturation Yield for the BN-124 and BN-131 Targets
3.4. BN-124 Gas-Only Target Operation
3.5. Evaluation of BNNT Nanomaterials from a Second Supplier
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Rubio, A.; Corkill, J.L.; Cohen, M.L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49, 5081–5084. [Google Scholar] [CrossRef] [Green Version]
- Weng-Sieh, Z.; Cherrey, K.; Chopra, N.G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M.L.; Louie, S.G.; Zettl, A.; Gronsky, R. Synthesis of BxCyNx nanotubules. Phys. Rev. B 1995, 51, 11229–11232. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.W.; Jordan, K.C.; Park, C.; Kim, J.W.; Lillehei, P.T.; Crooks, R.; Harrison, J.S. Very long single- and few-walled boron nitride nanotubes (BNNTs) via the pressurized vapor/condenser method. Nanotechnology 2009, 20, 505604. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, M.J.; Park, C.; Fay, C.C.; Chu, S.H.; Kingston, C.T.; Simard, B. Scalable manufacturing of boron nitride nanotubes and their assemblies: A review. Semicond. Sci. Technol. 2016, 32, 013003. [Google Scholar] [CrossRef]
- Jensen, M.; Eriksson, T.; Severin, G.; Parnaste, M.; Norling, J. Experimental yields of PET radioisotopes from a prototype 7.8 MeV cyclotron. In Proceedings of the 15th International Workshop on Targetry and Target Chemistry, Prague, Czech Republic, 18–21 August 2014; pp. 112–113. [Google Scholar]
- Khachaturian, M.; Bailey, J. The ABT Molecular Imaging biomarker generator Dose-on-DemandTM high flow tantalum 1.0 water target. In Proceedings of the 16th International Workshop on Targetry and Target Chemistry, Santa Fe, NM, USA, 29 August–1 September 2016; pp. 2–4. [Google Scholar]
- Smirnov, V.; Vorozhtsov, S.; Vincent, J. Design study of an ultra-compact superconducting cyclotron for isotope production. Nucl. Instr. Meth. Phys. Res. A 2014, 763, 6–12. [Google Scholar] [CrossRef]
- Podadera, I.; Ahedo, B.; Arce, P.; García-Tabarés, L.; Gavela, D.; Guirao, A.; Lagares, J.I.; Martínez, L.M.; Obradors-Campos, D.; Oliver, C.; et al. Beam diagnostics for commissioning and operation of a novel compact cyclotron for radioisotope production. In Proceedings of the International Beam Instrumentation Conference (IBIC2013), Oxford, UK, 16–19 September 2013; pp. 660–663. [Google Scholar]
- Koziorowski, J.; Larsen, P.; Gillings, N. A quartz-lined carbon-11 target: Striving for increased yield and specific activity. Nucl. Med. Biol. 2010, 37, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Savio, E.; García, O.; Trindade, V.; Buccino, P.; Giglio, J.; Balter, H.; Engler, H. Improving production of 11C to achieve high specific labelled radiopharmaceuticals. AIP Conf. Proc. 2012, 1509, 185–189. [Google Scholar] [CrossRef]
- Fonslet, J.; Itsenko, O.; Koziorowski, J. Indirect measurement of specific activity of [11C]CO2 and the effects of target volume fractionation. AIP Conf. Proc. 2012, 1509, 190–193. [Google Scholar] [CrossRef]
- Peeples, J.L.; Magerl, M.; O’Brien, E.M.; Doster, J.M.; Bolotnov, I.A.; Wieland, B.W.; Stokely, M.H. High current C-11 gas target design and optimization using multi-physics coupling. AIP Conf. Proc. 2017, 1845, 020016. [Google Scholar] [CrossRef]
- Firouzbakht, M.L.; Schlyer, D.J.; Wolf, A.P. Yield measurements for the 11B(p,n)11C and 10B(d,n)11C nuclear reactions. Nucl. Med. Biol. 1998, 25, 161–164. [Google Scholar] [CrossRef]
- Takacs, S.; Tarkanyi, F.; Hermanne, A.; Paviotti de Corcuera, R. Validation and upgrade of the recommended cross section data of charged particle reactions used for production PET radioisotopes. Nucl. Instrum. Methods Phys. Res. B 2003, 211, 169. [Google Scholar] [CrossRef]
- BNNT, LLC [US]. Available online: https://www.bnnt.com/products (accessed on 17 December 2018).
- Zhi, C.; Bando, Y.; Tang, C.; Golberg, D. Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition. Solid State Commun. 2012, 151, 183–186. [Google Scholar] [CrossRef]
- BNNano. Available online: https://www.bnnano.com/products (accessed on 17 December 2018).
- Pelowitz, D.B. (Ed.) MCNPX User’s Manual Version 2.7.0; LA-CP-11-00438; Los Alamos National Laboratory: Santa Fe, NM, USA, 2011.
- Jakubinek, M.B.; Niven, J.F.; Johnson, M.B.; Ashrafi, B.; Kim, K.S.; Simard, B.; White, M.A. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites. Phys. Status Solidi A 2016, 213, 2237–2242. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zou, J.; Campbell, S.J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430. [Google Scholar] [CrossRef] [Green Version]
Beam Current (μA) | Depth of Void (cm) | Depth of 11BNNT (cm) | Observations |
---|---|---|---|
0 | - | 6.0 | Gray color |
1 | - | 6.0 | Off-white color |
3 | 2.5 | 3.5 | White color, shrinkage |
5 | 2.5 | 3.5 | White color, shrinkage |
8 | 3.1 | 2.9 | Crystallization, powdery buildup coating walls |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peeples, J.; Chu, S.-H.; O’Neil, J.P.; Janabi, M.; Wieland, B.; Stokely, M. Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11. Instruments 2019, 3, 8. https://doi.org/10.3390/instruments3010008
Peeples J, Chu S-H, O’Neil JP, Janabi M, Wieland B, Stokely M. Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11. Instruments. 2019; 3(1):8. https://doi.org/10.3390/instruments3010008
Chicago/Turabian StylePeeples, Johanna, Sang-Hyon Chu, James P. O’Neil, Mustafa Janabi, Bruce Wieland, and Matthew Stokely. 2019. "Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11" Instruments 3, no. 1: 8. https://doi.org/10.3390/instruments3010008
APA StylePeeples, J., Chu, S. -H., O’Neil, J. P., Janabi, M., Wieland, B., & Stokely, M. (2019). Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11. Instruments, 3(1), 8. https://doi.org/10.3390/instruments3010008