CT-Dose Measurement of the Spinal Cord Region Using XR-QA2 Radiochromic Films and TLD 100H Dosimeters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dosimeters
2.2. Calibration Dosimeter Procedures
2.3. CT Measurements
3. Results and Discussion
3.1. Dosimeter Dose Calibrations
3.2. Dose Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Report CEP08007. The imPACT Group 2009 Buyer’s Guided: Multi-Slice CT Scanners. St. George’s Healthcare Trust. March 2009. Available online: https://www.scribd.com/document/224289000/Cep-08007 (accessed on 3 July 2020).
- Brady, S.; Yoshizumi, T.; Toncheva, G.; Frush, D. Implementation of radiochromic film dosimetry protocol for volumetric dose assessments to various organs during diagnostic CT procedures. Med. Phys. 2010, 17, 4782–4792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purwaningsih, S.; Lubis, L.E.; Pawiro, S.A.; Soejoko, D.S. Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD). J. Phys. 2016, 694, 012046. [Google Scholar] [CrossRef] [Green Version]
- Tomic, N.; Quintero, C.; Whiting, B.; Aldelaijan, S.; Bekerat, H.; Liang, L.; Devic, S. Characterization of calibration curves and energy dependence GafchromicTM XR-QA2 model based radiochromic film dosimetry system. Med. Phys. 2014, 6, 062105. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.L.; Chu, T.C.; Lan, G.Y.; Wu, T.H.; Lin, Y.C.; Lee, J.S. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF: Mg, Cu, P thermoluminescence dosimeters for use in diagnostic radiology. Appl. Radiat. Isot. 2002, 57, 883–891. [Google Scholar] [CrossRef]
- Triolo, A.; Brai, M.; Bartolotta, A.; Marrale, M. Glow curve analysis of TLD-100H irradiated with radiation of different LET: Comparison between two theoretical method. Nucl. Instrum. Method. Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 560, 413–417. [Google Scholar] [CrossRef]
- Carinou, E.; Boziari, A.; Askounis, P.; Mikulis, A.; Kamenopoulou, V. Energy dependence of TLD 100 and MCP-N detectors. Radiat. Meas. 2008, 43, 599–602. [Google Scholar] [CrossRef]
- Tomic, N.; Devic, S.; DeBlois, F.; Seuntjens, J. Reference radiochromic film dosimetry in kilovoltage photon beams during CBCT image acquisition. Med. Phys. 2020, 37, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampado, O.; Garelli, E.; Ropolo, R. Computed tomography dose measurements with radiochromic films and a flatbed scanner. Med. Phys. 2010, 37, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Asero, G.; Greco, C.; Gueli, A.M.; Raffaele, L.; Spampinato, S. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry. J. Instrum. 2016, 11, P03024. [Google Scholar] [CrossRef]
- Pace, M.; Tonghi, L.B.; Mazzaglia, S.; Stella, G.; Tuvè, C.; Gueli, A.M. 3-D dose distribution for organ dose measurement in CT thoracic exams using Gafchromic™ XR-QA2 films. J. Instrum. 2019, 14, P09010. [Google Scholar] [CrossRef]
- Giaddui, T.; Cui, Y.; Galvin, J.; Chen, W.; Yu, Y.; Xiao, Y. Characteristics of Gafchromic XRQA2 films for kV image dose measurement. Med. Phys. 2012, 39, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Butson, M.J.; Peter, K.N.; Cheung, T.; Metcalfe, P. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R Rep. 2003, 41, 61–120. [Google Scholar] [CrossRef]
- Alnawaf, H.; Butson, M.J.; Cheung, T.; Peter, K.N. Scanning orientation and polarization effects for XRQA radiochromic film. Phys. Med. 2010, 26, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, S.; Gueli, A.M.; Milone, P.; Raffaele, L.A. Dosimetric changes with computed tomography automatic tube-current modulation techniques. Radiol. Phys. Tech. 2018, 11, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Gueli, A.M.; Cavalli, N.; De Vincolis, R.; Raffaele, L.; Troja, S.O. Background fog subtraction methods in Gafchromic® dosimetry. Radiat. Meas. 2015, 72, 44–52. [Google Scholar] [CrossRef]
- Mahajna, S.; Yossian, D.; Horowitz, Y.S. The effect of thermal annealing on defect structure and thermoluminescence in LiF: Mg, Cu, P. Radiat. Meas. 1995, 24, 395–400. [Google Scholar] [CrossRef]
- Stella, G.; Mazzaglia, S.; Pace, M.; Tonghi, L.B.; Tuvè, C.; Gueli, A.M. QA for calibration procedures of TLDs 100H in low doses range. J. Instrum. 2019, 14, P06023. [Google Scholar] [CrossRef]
- Stella, G.; Fontana, D.; Gueli, A.; Troja, S. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 2013, 40, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Reshes, G.; Druzhyna, S.; Biderman, S.; Eliyahu, I.; Oster, L.; Horowitz, Y.S. Study of the effect of optical bleaching at selected photon energies on the optical absorption and thermoluminescence of LiF: Mg, Ti (TLD-100). Radiat. Meas. 2017, 106, 26–29. [Google Scholar] [CrossRef]
Emission Wavelength (nm) | Relative Energy Response | Size (mm3) | Sensitivity |
---|---|---|---|
400 | 0.98 | 3.2 3.2 0.89 | 1 pGy–10 Gy |
Tube Output (mGy/mAs) | Dose (mGy) |
---|---|
0.45 ± 0.01 | 9.11 ± 0.19 |
18.23 ± 0.38 | |
36.46 ± 0.77 | |
57.41 ± 1.03 | |
72.89 ± 1.37 | |
91.12 ± 1.80 |
XR-QA2 | |||
---|---|---|---|
Max Dose (mGy) | Min Dose (mGy) | Mean Dose (mGy) | |
17th slab | 25.82 ± 1.35 | 16.79 ± 0.88 | 21.52 ± 2.93 |
18th slab | 26.02 ± 1.36 | 17.41 ± 0.91 | 20.95 ± 2.77 |
19th slab | 24.05 ± 1.26 | 17.45 ± 0.91 | 20.55 ± 2.11 |
TLD 100H | |||
---|---|---|---|
Max Dose (mGy) | Min Dose (mGy) | Mean Dose (mGy) | |
17th slab | 27.01 ± 0.65 | 17.01 ± 0.62 | 22.50 ± 3.11 |
18th slab | 26.21 ± 0.68 | 18.81 ± 0.61 | 21.90 ± 2.65 |
19th slab | 25.35 ± 0.59 | 18.87 ± 0.58 | 21.86 ± 2.17 |
Max %Δ(TLD/GAF) | Min %Δ(TLD/GAF) | Mean %Δ(TLD/GAF) | |
---|---|---|---|
17th slab | 7.9 | 1.4 | 3.9 |
18th slab | 7.7 | 0.2 | 4.4 |
19th slab | 8.2 | 4 | 5.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pace, M.; Stella, G.; Tonghi, L.B.; Mazzaglia, S.; Gueli, A.M. CT-Dose Measurement of the Spinal Cord Region Using XR-QA2 Radiochromic Films and TLD 100H Dosimeters. Instruments 2020, 4, 19. https://doi.org/10.3390/instruments4030019
Pace M, Stella G, Tonghi LB, Mazzaglia S, Gueli AM. CT-Dose Measurement of the Spinal Cord Region Using XR-QA2 Radiochromic Films and TLD 100H Dosimeters. Instruments. 2020; 4(3):19. https://doi.org/10.3390/instruments4030019
Chicago/Turabian StylePace, Martina, Giuseppe Stella, Letizia Barone Tonghi, Stefania Mazzaglia, and Anna Maria Gueli. 2020. "CT-Dose Measurement of the Spinal Cord Region Using XR-QA2 Radiochromic Films and TLD 100H Dosimeters" Instruments 4, no. 3: 19. https://doi.org/10.3390/instruments4030019
APA StylePace, M., Stella, G., Tonghi, L. B., Mazzaglia, S., & Gueli, A. M. (2020). CT-Dose Measurement of the Spinal Cord Region Using XR-QA2 Radiochromic Films and TLD 100H Dosimeters. Instruments, 4(3), 19. https://doi.org/10.3390/instruments4030019