Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets
Abstract
:1. Introduction
2. Quench Development in HTS Conductors
3. Non-Voltage Quench Detection Techniques
3.1. Magnetic Techniques
3.2. Optical Techniques
3.3. Acoustic Techniques
3.4. Capacitive Technique
3.5. RF-Based Techniques
4. Conductor Modification
5. Magnet Protection against Damage Caused by Quench
5.1. Protection Heaters
5.2. Coupling and AC Loss
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Breschi, M.; Cavallucci, L.; Ribani, P.L.; Gavrilin, A.V.; Weijers, H.W. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project. Supercond. Sci. Technol. 2016, 29, 055002. [Google Scholar] [CrossRef]
- Bai, H.; Abraimov, D.V.; Boebinger, G.S.; Bird, M.D.; Cooley, L.D.; Dixon, I.R.; Kim, K.L.; Larbalestier, D.C.; Marshall, W.S.; Trociewitz, U.P.; et al. The 40 T superconducting magnet project at the national high magnetic field laboratory. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Larbalestier, D.C.; Jiang, J.; Trociewitz, U.P.; Kametani, F.; Scheuerlein, C.; Dalban-Canassy, M.; Matras, M.; Chen, P.; Craig, N.C.; Lee, P.J.; et al. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. 2014, 13, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Anerella, M.; Joshi, P.; Higgins, J.; Lalitha, S.; Sampson, W.; Schmalzle, J.; Wanderer, P. Design, construction, and testing of a large-aperture high-field HTS SMES coil. IEEE Trans. Appl. Supercond. 2016, 26, 1–8. [Google Scholar] [CrossRef]
- Fleishman, L.S.; Volkov, E.P.; Malginov, V.A.; Malginov, A.V.; Kuntsevich, A.Y.; Sheynshteyn, A.S. Fault current limitation by a transformer type FCL based on the second generation HTS wires. IEEE Trans. Appl. Supercond. 2011, 21, 1263–1266. [Google Scholar] [CrossRef]
- Colangelo, D.; Dutoit, B. MV power grids integration of a resistive fault current limiter based on HTS-CCs. IEEE Trans. Appl. Supercond. 2013, 23, 5600804. [Google Scholar] [CrossRef] [Green Version]
- So, J.; Lee, S.; Kim, W.-S.; Lee, J.-K.; Choi, K. Design of an HTS fault current limiting module for an MVDC power grid. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Jin, J.X.; Islam, M.R.; Khan, A.G. Development of HTS cable-based transmission systems for renewables. In Renewable Energy and the Environment; Springer: Singapore, 2018; pp. 71–114. ISBN 9789811072864. [Google Scholar]
- Sytnikov, V.; Kashcheev, A.; Dubinin, M.; Karpov, V.; Ryabin, T. Test results of the full-scale HTS transmission cable line (2.4 km) for the st. Petersburg project. IEEE Trans. Appl. Supercond. 2021, 31, 540805. [Google Scholar] [CrossRef]
- Rossi, L.; Senatore, C. HTS accelerator magnet and conductor development in Europe. Instruments 2021, 5, 8. [Google Scholar] [CrossRef]
- Wang, X.; Gourlay, S.A.; Prestemon, S.O. Dipole magnets above 20 Tesla: Research needs for a path via high-temperature superconducting REBCO conductors. Instruments 2019, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Piekarz, H.; Hays, S.; Blowers, J.; Claypool, B.; Shiltsev, V. Record fast-cycling accelerator magnet based on HTS conductor. Nucl. Instrum. Methods Phys. Res. A 2019, 943, 162490. [Google Scholar] [CrossRef]
- Zlobin, A.V.; Novitski, I.; Barzi, E. Conceptual design of a HTS dipole insert based on Bi2212 Rutherford cable. Instruments 2020, 4, 29. [Google Scholar] [CrossRef]
- Todesco, E.; Bottura, L.; De Rijk, G.; Rossi, L. Dipoles for high-energy LHC. IEEE Trans. Appl. Supercond. 2014, 24, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Martinez, E.; Friend, C.; Yang, Y. Quench characteristics of HTS conductors at low temperatures. IEEE Trans. Appl. Supercond. 2008, 18, 1317–1320. [Google Scholar] [CrossRef]
- Haro, E.; Stenvall, A.; van Nugteren, J.; Kirby, G. Modeling of minimum energy required to quench an HTS magnet with a strip heater. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Caruso, A.R.; Breschi, M.; Zhang, G.; Trociewitz, U.P.; Weijers, H.W.; Schwartz, J. Normal zone initiation and propagation in Y-Ba-Cu-O coated conductors with Cu stabilizer. IEEE Trans. Appl. Supercond. 2005, 15, 2586–2589. [Google Scholar] [CrossRef]
- Zhong, Z.; Ruiz, H.S.; Lai, L.; Huang, Z.; Wang, W.; Coombs, T. Experimental study of the normal zone propagation velocity in double-layer 2G-HTS wires by thermal and electrical methods. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bonura, M.; Senatore, C. Temperature and field dependence of the quench propagation velocity in industrial REBCO coated conductors. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N. Thermally activated flux creep in strongly layered high-temperature superconductors. Phys. Rev. B Condens. Matter 1990, 42, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V. Critical Currents of YBa2Cu3O7-delta Tapes and Bi2Sr2CaCu2Ox Wires at Different Temperatures and Magnetic Fields. IEEE Trans. Appl. Supercond. 2011, 21, 3247–3250. [Google Scholar] [CrossRef]
- Wilson, M.N. Superconducting Magnets; Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Levin, G.A.; Novak, K.A.; Barnes, P.N. The effects of superconductor–stabilizer interfacial resistance on the quench of a current-carrying coated conductor. Supercond. Sci. Technol. 2010, 23, 014021. [Google Scholar] [CrossRef] [Green Version]
- Grüneisen, E. Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur. Ann. Phys. 1933. [Google Scholar] [CrossRef]
- Shen, T.; Ye, L.; Li, P. Feasible voltage-tap based quench detection in a Ag/Bi-2212 coil enabled by fast 3D normal zone propagation. Supercond. Sci. Technol. 2016, 29, 08LT01. [Google Scholar] [CrossRef] [Green Version]
- Trillaud, F.; Palanki, H.; Trociewitz, U.P.; Thompson, S.H.; Weijers, H.W.; Schwartz, J. Normal zone propagation experiments on {HTS} composite conductors. Cryogenics 2003, 43, 271–279. [Google Scholar] [CrossRef]
- Song, H.H.; Schwartz, J. Stability and Quench Behavior of YBa2Cu3O7-x Coated Conductor at 4.2 K, Self-Field. IEEE Trans. Appl. Supercond. 2009, 19, 3735–3743. [Google Scholar] [CrossRef]
- van Nugteren, J.; Dhallé, M.; Wessel, S.; Krooshoop, E.; Nijhuis, A.; ten Kate, H. Measurement and analysis of normal zone propagation in a ReBCO coated conductor at temperatures below 50 K. Phys. Procedia 2015, 67, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Ganetis, G.; Prodell, A. Results using active quench protection strip heaters on a reference design D SSC dipole magnet. IEEE Trans. Magn. 1987, 23, 499–502. [Google Scholar] [CrossRef]
- Ravaioli, E.; Datskov, V.I.; Kirby, G.; Maciejewski, M.; ten Kate, H.H.J.; Verweij, A.P. CLIQ-based quench protection of a chain of high-field superconducting magnets. IEEE Trans. Appl. Supercond. 2016, 26. [Google Scholar] [CrossRef]
- Kim, S.-C.; Ha, D.-W.; Oh, S.-S.; Song, K.-J.; Kim, S.-J.; Han, I.-Y.; Sohn, H.-S. Fabrication and properties of Bi2212 Rutherford superconducting cable. IEEE Trans. Appl. Supercond. 2009, 19, 3076–3079. [Google Scholar]
- Goldacker, W.; Grilli, F.; Pardo, E.; Kario, A.; Schlachter, S.I.; Vojenčiak, M. Roebel cables from REBCO coated conductors: A one-century-old concept for the superconductivity of the future. Supercond. Sci. Technol. 2014, 27, 093001. [Google Scholar] [CrossRef] [Green Version]
- Accelerator-Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2 5-T 40-mm Clear Aperture Magnet. IEEE Trans. Appl. Supercond. 2015, 25, 1–5.
- Weiss, J.D.; van der Laan, D.C.; Hazelton, D.; Knoll, A.; Carota, G.; Abraimov, D.; Francis, A.; Small, M.A.; Bradford, G.; Jaroszynski, J. Introduction of the next generation of CORC® wires with engineering current density exceeding 650 A mm2 at 12 T based on SuperPower’s ReBCO tapes containing substrates of 25 μm thickness. Supercond. Sci. Technol. 2020, 33, 044001. [Google Scholar] [CrossRef]
- Wang, X.; Caspi, S.; Dietderich, D.R.; Ghiorso, W.B.; Gourlay, S.A.; Higley, H.C.; Lin, A.; Prestemon, S.O.; van der Laan, D.; Weiss, J.D. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications. Supercond. Sci. Technol. 2018, 31, 045007. [Google Scholar] [CrossRef] [Green Version]
- Takayasu, M.; Chiesa, L.; Minervini, J.V. Investigation of REBCO twisted stacked-tape cable conductor performance. J. Phys. Conf. Ser. 2014, 507, 022040. [Google Scholar] [CrossRef] [Green Version]
- Marchevsky, M.; Hafalia, A.R.; Cheng, D.; Prestemon, S.; Sabbi, G.; Bajas, H.; Chlachidze, G. Axial-field magnetic quench antenna for the superconducting accelerator magnets. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Leroy, D.; Krzywinski, J.; Remondino, V.; Walckiers, L.; Wolf, R. Quench observation in LHC superconducting one meter long dipole models by field perturbation measurements. IEEE Trans. Appl. Supercond. 1993, 3, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Ogitsu, T.; Devred, A.; Kim, K.; Krzywinski, J.; Radusewicz, P.; Schermer, R.I.; Kobayashi, T.; Tsuchiya, K.; Muratore, J.; Wanderer, P. Quench antenna for superconducting particle accelerator magnets. IEEE Trans. Magn. 1994, 30, 2273–2276. [Google Scholar] [CrossRef]
- Sasaki, K.; Ogitsu, T.; Ohuchi, N.; Tsuchiya, K. Study of quench propagation with quench antennas. Nucl. Instrum. Methods Phys. Res. A 1998, 416, 9–17. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Pukhov, A.A.; Rakhmanov, A.L.; Vysotsky, V.S. Current redistribution between strands and quench process in a superconducting cable. Cryogenics 1996, 36, 275–281. [Google Scholar] [CrossRef]
- Jongeleen, S.; Leroy, D.; Siemko, A.; Wolf, R. Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables. IEEE Trans. Appl. Supercond. 1997, 7, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Marchevsky, M.; Xie, Y.-Y.; Selvamanickam, V. Quench detection method for 2G HTS wire. Supercond. Sci. Technol. 2010, 23, 034016. [Google Scholar] [CrossRef]
- Teyber, R.; Marchevsky, M.; Prestemon, S.; Weiss, J.; van der Laan, D. CORC® cable terminations with integrated Hall arrays for quench detection. Supercond. Sci. Technol. 2020, 33, 095009. [Google Scholar] [CrossRef]
- Weiss, J.D.; Teyber, R.; Marchevsky, M.; van der Laan, D.C. Quench detection using Hall sensors in high-temperature superconducting CORC®-based cable-in-conduit-conductors for fusion applications. Supercond. Sci. Technol. 2020, 33, 105011. [Google Scholar] [CrossRef]
- Chiuchiolo, A.; Bajko, M.; Perez, J.C.; Bajas, H.; Guinchard, M.; Giordano, M.; Breglio, G.; Consales, M.; Cusano, A. Structural health monitoring of superconducting magnets at CERN using fiber Bragg grating sensors. In Proceedings of the EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Zhou, K.; Ren, L.; Shi, J.; Xu, Y.; Duan, P. Experimental Study of Fiber Bragg Grating Applied on Quench Detection of HTS Tapes. In Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 16–18 October 2020; pp. 1–2. [Google Scholar]
- Chiuchiolo, A.; Bajas, H.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J.C. Advances in Fiber Optic Sensors Technology Development for Temperature and Strain Measurements in Superconducting Magnets and Devices. IEEE Trans. Appl. Supercond. 2016, 26. [Google Scholar] [CrossRef]
- Liu, Y.; Badcock, R.A.; Fang, X.; Fang, J.; Yan, X.; Zhou, W. Selecting of FBG Coatings for Quench Detection in HTS Coils. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Salazar, E.E.; Badcock, R.A.; Bajko, M.; Castaldo, B.; Davies, M.; Estrada, J.; Fry, V.; Gonzales, J.T.; Michael, P.C.; Segal, M.; et al. Fiber optic quench detection for large-scale HTS magnets demonstrated on VIPER cable during high-fidelity testing at the SULTAN facility. Supercond. Sci. Technol. 2021, 34, 035027. [Google Scholar] [CrossRef]
- Chan, W.K.; Flanagan, G.; Schwartz, J. Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Oxmagnets using Rayleigh-scattering-based fiber optic distributed sensing. Supercond. Sci. Technol. 2013, 26, 105015. [Google Scholar] [CrossRef]
- Scurti, F.; Ishmael, S.; Flanagan, G.; Schwartz, J. Quench detection for high temperature superconductor magnets: A novel technique based on Rayleigh-backscattering interrogated optical fibers. Supercond. Sci. Technol. 2016, 29, 03LT01. [Google Scholar] [CrossRef]
- Scurti, F.; Schwartz, J. Optical fiber distributed sensing for high temperature superconductor magnets. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Jiang, J.; Wu, Z.; Liu, B.; Sheng, J.; Wang, L.; Li, Z.; Jin, Z.; Hong, Z. Thermal stability study of a solder-impregnated no-insulation HTS coil via a Raman-based distributed optical fiber sensor system. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Wang, F.; Liang, H.; Zhang, Y. Development of fully-distributed fiber sensors based on Brillouin scattering. Photonic Sens. 2011, 1, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Jung, A.; Oh, K. High-temperature sensitivity in stimulated Brillouin scattering of 1060 nm single-mode fibers. Sensors 2019, 19, 4731. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Zhu, Z.; Li, T.; Zhou, D.; Dong, Y. High-sensitivity distributed temperature sensor based on Brillouin scattering with double-coated single-mode fibers. IEEE Sens. J. 2021, 21, 6209–6216. [Google Scholar] [CrossRef]
- Lupi, C.; Felli, F.; Brotzu, A.; Caponero, M.A.; Paolozzi, A. Improving FBG sensor sensitivity at cryogenic temperature by metal coating. IEEE Sens. J. 2008, 8, 1299–1304. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Sinclair, M.W.; Steinhoff, M.F.; Iwasa, Y. Origins of acoustic emission in superconducting wires. Appl. Phys. Lett. 1981, 38, 718–720. [Google Scholar] [CrossRef]
- Ige, O.O.; McInturff, A.D.; Iwasa, Y. Acoustic emission monitoring results from a fermi dipole. Cryogenics 1986, 26, 131–151. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Iwasa, Y. Acoustic emission triangulation of disturbances and quenches in a superconductor and a superconducting magnet. Appl. Phys. Lett. 1982, 40, 538–540. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Maguire, J.F.; Bobrov, E.S.; Iwasa, Y. Identification of quench origins in a superconductor with acoustic emission and voltage measurements. Appl. Phys. Lett. 1981, 39, 172–174. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Iwasa, Y. Sources of acoustic emission in superconducting magnets. J. Appl. Phys. 1983, 54, 997–1007. [Google Scholar] [CrossRef]
- Iwasa, Y. Mechanical disturbances in superconducting magnets-a review. IEEE Trans. Magn. 1992, 28, 113–120. [Google Scholar] [CrossRef]
- Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S. Acoustic emission during quench training of superconducting accelerator magnets. Cryogenics 2015, 69, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Woźny, L.; Lubicki, P.; Mazurek, B. Acoustic emission from high Tc superconductors during current flow. Cryogenics 1993, 33, 825–827. [Google Scholar] [CrossRef]
- Stoev, P.I.; Papirov, I.I.; Finkel’, V.A. Acoustic emission of the HTS ceramic YBa2Cu3O7−δ in the vicinity of the superconducting transition. Low Temp. Phys. 1997, 23, 765–768. [Google Scholar] [CrossRef]
- Arai, K.; Iwasa, Y. Heating-Induced acoustic emission in an adiabatic high-temperature superconducting winding. Cryogenics 1997, 37, 473–475. [Google Scholar] [CrossRef]
- Ostrovskii, I.V.; Salivonov, I.N. Acoustic emission accompanying the superconducting transition in HTS ceramics TlBaCuO. Low Temp. Phys. 1998, 24, 50–52. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.M.; Jankowski, J.; Iwasa, Y. Detection of ‘Hot Spots’ in HTS Coils and Test Samples with Acoustic Emission Signals. IEEE Trans. Appl. Supercond. 2004, 14, 1298–1301. [Google Scholar] [CrossRef]
- Kim, K.J.; Song, J.B.; Kim, J.H.; Lee, J.H.; Kim, H.M.; Kim, W.S.; Na, J.B.; Ko, T.K.; Lee, H.G. Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system. Phys. C 2010, 470, 1883–1886. [Google Scholar] [CrossRef]
- Kim, H.M.; Park, K.B.; Lee, B.W.; Oh, I.S.; Sim, J.W.; Hyun, O.B.; Iwasa, Y.; Lee, H.G. A stability verification technique using acoustic emission for an HTS monofilar component for a superconducting fault current limiter. Supercond. Sci. Technol. 2007, 20, 506. [Google Scholar] [CrossRef]
- Ishigohka, T.; Tsukamoto, O.; Iwasa, Y. Method to detect a temperature rise in superconducting coils with piezoelectric sensors. Appl. Phys. Lett. 1983, 43, 317–318. [Google Scholar] [CrossRef]
- Ninomiya, A.; Sakaniwa, K.; Kado, H.; Ishigohka, T.; Higo, Y. Quench detection of superconducting magnets using ultrasonic wave. IEEE Trans. Magn. 1989, 25, 1520–1523. [Google Scholar] [CrossRef]
- Ninomiya, A.; Kanda, Y.; Ishigohka, T. Monitoring of a superconducting magnet using an ultrasonic technique. Fusion Eng. Des. 1993, 20, 305–309. [Google Scholar] [CrossRef]
- Krautkramer, J. Ultrasonic Testing of Materials; Springer: New York, NY, USA, 2014; ISBN 9783662022979. [Google Scholar]
- Ledbetter, H.M. Temperature behaviour of Young’s moduli of forty engineering alloys. Cryogenics 1982, 22, 653–656. [Google Scholar] [CrossRef]
- Georgi, H. The Physics of Waves; Pearson: Upper Saddle River, NJ, USA, 1992; ISBN 9780136656210. [Google Scholar]
- Snieder, R. The theory of coda wave interferometry. Pure Appl. Geophys. 2006, 163, 455–473. [Google Scholar] [CrossRef]
- Weaver, R.L.; Lobkis, O.I. Temperature dependence of diffuse field phase. Ultrasonics 2000, 38, 491–494. [Google Scholar] [CrossRef]
- Marchevsky, M.; Gourlay, S.A. Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks. Appl. Phys. Lett. 2017, 110, 012601. [Google Scholar] [CrossRef] [Green Version]
- Marchevsky, M.; Hershkovitz, E.; Wang, X.; Gourlay, S.A.; Prestemon, S. Quench Detection for High-Temperature Superconductor Conductors Using Acoustic Thermometry. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Seip, R.; VanBaren, P.; Cain, C.A.; Ebbini, E.S. Noninvasive real-time multipoint temperature control for ultrasound phased array treatments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1063–1073. [Google Scholar] [CrossRef]
- Wong, T.Y.; Tang, Y.; Zou, F.; Su, Z. An ultra-high accuracy temperature measurement method using acoustic waveguide. IEEE Sens. J. 2020, 21, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, F.; Cegla, F.B. Acoustic waveguides: An attractive alternative for accurate and robust contact thermometry. Sens. Actuators A Phys. 2018, 270, 84–88. [Google Scholar] [CrossRef]
- Kulczyk, K.; Perks, M.P.; Smith, G.W. Ultrasonic temperature sensors, and ultrasonic waveguide connectors for use therewith. J. Acoust. Soc. Am. 1994, 95, 3682. [Google Scholar] [CrossRef]
- Lobkis, O.; Larsen, C.; Roth, R., II. Separation of applied stress and temperature effects on ultrasonic guided wave phase. AIP Conf. Proc. 2015, 211, 1650. [Google Scholar]
- Ravaioli, E.; Martchevskii, M.; Sabbi, G.; Shen, T.; Zhang, K. Quench detection utilizing stray capacitances. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Ravaioli, E.; Davis, D.; Marchevsky, M.; Sabbi, G.L.; Shen, T.; Verweij, A.; Zhang, K. A new quench detection method for HTS magnets: Stray-capacitance change monitoring. Phys. Scr. 2020, 95, 015002. [Google Scholar] [CrossRef]
- National Aeronaut Administration (NASA). Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 mpa; Createspace Independent Publishing Platform: North Charleston, SC, USA, 2018; ISBN 9781723457319. [Google Scholar]
- Jensen, J.E.; Tuttle, W.A.; Stewart, R.B.; Brechna, H.; Prodell, A.G. Brookhaven National Laboratory Selected Cryogenic Data Notebook: Sections I–IX; Brookhaven National Laboratory: Upton, NY, USA, 1980. [Google Scholar]
- Chen, B.; Hu, Y.; Li, J.; Yu, B.; Fu, P. Research on quench detection method using radio frequency wave technology. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Lee, G.S.; Kwon, G.-Y.; Bang, S.S.; Lee, Y.H.; Chang, S.J.; Sohn, S.-H.; Park, K.; Shin, Y.-J. Time–frequency-based insulation diagnostic technique of high-temperature superconducting cable systems. IEEE Trans. Appl. Supercond. 2016, 26. [Google Scholar] [CrossRef]
- Bang, S.S.; Lee, G.S.; Kwon, G.-Y.; Lee, Y.H.; Ji, G.H.; Sohn, S.; Park, K.; Shin, Y.-J. Detection of local temperature change on HTS cables via time-frequency domain reflectometry. J. Phys. Conf. Ser. 2017, 871, 012100. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-K.; Kwon, G.-Y.; Lee, Y.H.; Lee, G.S.; Bang, S.S.; Shin, Y.-J. Insulation characteristics and fault analysis of HTS cable via stepped frequency waveform reflectometry. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Uglietti, D.; Marinucci, C. Design of a quench protection system for a coated conductor insert coil. IEEE Trans. Appl. Supercond. 2012, 22, 4702704. [Google Scholar] [CrossRef]
- Bae, J.H.; Jeong, Y.W.; Ha, D.W. Thermal characteristics of 2G HTS tape with anodized aluminum stabilizer for cryogen-free 2G HTS magnet. IEEE Trans. Appl. Supercond. 2015, 25, 1–4. [Google Scholar] [CrossRef]
- Ishmael, S.; Luo, H.; White, M.; Hunte, F.; Liu, X.T.; Mandzy, N.; Muth, J.F.; Naderi, G.; Ye, L.; Hunt, A.T.; et al. Enhanced quench propagation in Bi2Sr2CaCu2Ox and YBa2Cu3O7-x coils via a nanoscale doped-Titania-based thermally conducting electrical insulator. IEEE Trans. Appl. Supercond. 2013, 23, 7201311. [Google Scholar] [CrossRef]
- Lacroix, C.; Fournier-Lupien, J.-H.; McMeekin, K.; Sirois, F. Normal zone propagation velocity in 2G HTS coated conductor with high interfacial resistance. IEEE Trans. Appl. Supercond. 2013, 23, 4701605. [Google Scholar] [CrossRef]
- Giguere, J.; Lacroix, C.; Dupuis-Desloges, F.; Fournier Lupien, J.-H.; Sirois, F. High normal zone propagation velocity in copper-stabilized 2G HTS coated conductors. Supercond. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Hahn, S.; Park, D.K.; Bascunan, J.; Iwasa, Y. HTS pancake coils without turn-to-turn insulation. IEEE Trans. Appl. Supercond. 2011, 21, 1592–1595. [Google Scholar] [CrossRef]
- Kim, S.B.; Saitou, A.; Joo, J.H.; Kadota, T. The normal-zone propagation properties of the non-insulated HTS coil in cryocooled operation. Phys. C Supercond. 2011, 471, 1428–1431. [Google Scholar] [CrossRef]
- Uglietti, D.; Wesche, R.; Bruzzone, P. Construction and test of a non-insulated insert coil using coated conductor tape. J. Phys. Conf. Ser. 2014, 507, 032052. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, S.; Ito, S.; Nishijima, G.; Hashizume, H. Quench detection performance of low-temperature superconducting quench detectors for REBCO tape in magnetic fields. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar]
- Kim, H.-W.; Hur, J.; Kim, S.-W.; Kim, S.-B.; Ko, R.-K.; Ha, D.-W.; Kim, H.M.; Joo, J.-H.; Jo, Y.-S. Improvement in stability and operating characteristics of HTS coil using MIT material. IEEE Trans. Appl. Supercond. 2017, 27, 1–4. [Google Scholar] [CrossRef]
- Hyeon, C.J.; Kim, J.H.; Quach, H.L.; Kim, H.-W.; Kim, S.-W.; Jo, Y.-S.; Kim, H.M. Quench behavior of 2G HTS coils with polyimide film and MIT material under over pulse-current. IEEE Trans. Appl. Supercond. 2018, 28, 1–6. [Google Scholar] [CrossRef]
- Noyes, P.D.; Markiewicz, W.D.; Voran, A.J.; Sheppard, W.R.; Pickard, K.W.; Jarvis, J.B.; Weijers, H.W.; Gavrilin, A.V. Protection heater development for REBCO coils. IEEE Trans. Appl. Supercond. 2012, 22, 4704204. [Google Scholar] [CrossRef]
- Salmi, T.; Stenvall, A. Modeling quench protection heater delays in an HTS coil. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; ten Kate, H.H.J.; Verweij, A.P. New, coupling loss induced, quench protection system for superconducting accelerator magnets. IEEE Trans. Appl. Supercond. 2014, 24, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ravaioli, E.; Bajas, H.; Datskov, V.I.; Desbiolles, V.; Feuvrier, J.; Kirby, G.; Maciejewski, M.; ten Kate, H.H.J.; Verweij, A.P.; Willering, G. First implementation of the CLIQ quench protection system on a full-scale accelerator quadrupole magnet. IEEE Trans. Appl. Supercond. 2016, 26. [Google Scholar] [CrossRef]
- Rodriguez Mateos, F.; Balampekou, S.; Carrillo, D.; Dahlerup-Petersen, K.; Favre, M.; Mourao, J.; Panev, B. Design and manufacturing of the first industrial-grade CLIQ units for the protection of superconducting magnets for the high-luminosity LHC project at CERN. IEEE Trans. Appl. Supercond. 2018, 28, 1–4. [Google Scholar] [CrossRef]
- Prioli, M.; Segreti, M.; Fernandez, A.M.; Munilla, J.; Salmi, T.; Auchmann, B.; Bortot, L.; Maciejewski, M.; Verweij, A.; Caiffi, B.; et al. The CLIQ quench protection system applied to the 16 T FCC-hh dipole magnets. IEEE Trans. Appl. Supercond. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Seiler, E.; Frolek, L. AC loss of the YBCO coated conductor in high magnetic fields. J. Phys. Conf. Ser. 2008, 97, 012028. [Google Scholar] [CrossRef] [Green Version]
- van Nugteren, J. Normal Zone Propagation in a YBCO Superconducting Tape; University of Twente: Enschede, The Netherlands, 2012. [Google Scholar]
- Wakuda, T.; Ichiki, Y.; Park, M. A novel quench protection technique for HTS coils. IEEE Trans. Appl. Supercond. 2012, 22, 4703404. [Google Scholar] [CrossRef]
Magnetic Techniques | Quench Antennas |
---|---|
Hall Sensor Arrays | |
Optical techniques | Fiber Bragg grating sensors |
Rayleigh scattering | |
Raman scattering, Brillouin scattering and specialized fibers | |
Acoustic techniques | Passive (acoustic emission) |
Active (diffuse wave ultrasonics) | |
Capacitive techniques | Boiling of cryogenic liquids |
RF-based techniques | Impedance change |
Time–frequency domain reflectometry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchevsky, M. Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets. Instruments 2021, 5, 27. https://doi.org/10.3390/instruments5030027
Marchevsky M. Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets. Instruments. 2021; 5(3):27. https://doi.org/10.3390/instruments5030027
Chicago/Turabian StyleMarchevsky, Maxim. 2021. "Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets" Instruments 5, no. 3: 27. https://doi.org/10.3390/instruments5030027
APA StyleMarchevsky, M. (2021). Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets. Instruments, 5(3), 27. https://doi.org/10.3390/instruments5030027