Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES
Abstract
:1. Introduction
2. Overview of the ARES Photoinjector
3. RF Conditioning of the Gun Cavity and RF Stability
4. Electron Beam Characterization
4.1. Bunch Charge
4.2. Beam Momentum and Momentum Spread
4.3. Transverse Spot Size
5. Beam-Based Alignment of the Gun Solenoid
6. Dark Current Characterization
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorda, U.; Marchetti, B.; Zhu, J.; Mayet, F.; Kuropka, W.; Vinatier, T.; Vashchenko, G.; Galaydych, K.; Walker, P.; Marx, D.; et al. Status and objectives of the dedicated accelerator R&D facility “SINBAD” at DESY. Nucl. Instrum. Methods Phys. Res. A 2018, 909, 239–242. [Google Scholar]
- Marchetti, B.; Assmann, R.; Brinkmann, R.; Burkart, F.; Dorda, U.; Floettmann, K.; Hartl, I.; Hillert, W.; Huening, M.; Jafarinia, F.; et al. SINBAD-ARES—A Photo-Injector for external Injection Experiments in novel Accelerators at DESY. J. Phys. Conf. Ser. 2020, 1596, 012036. [Google Scholar] [CrossRef]
- Marchetti, B.; Assmann, R.; Dorda, U.; Zhu, J. Conceptual and Technical Design Aspects of Accelerators for External Injection in LWFA. Appl. Sci. 2018, 8, 757. [Google Scholar] [CrossRef] [Green Version]
- Panofski, E.; Assmann, R.W.; Burkart, F.; Dorda, U.; Floettmann, K.; Huening, M.; Marchetti, B.; Marx, D.; Mayet, F.; Walker, P.A.; et al. Status report of the SINBAD-ARES RF photoinjector and linac commissioning. J. Phys. Conf. Ser. 2019, 1350, 012019. [Google Scholar] [CrossRef]
- Zhu, J.; Assmann, R.W.; Dohlus, M.; Dorda, U.; Marchetti, B. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane. Phys. Rev. Accel. Beams 2016, 19, 054401. [Google Scholar] [CrossRef] [Green Version]
- Marx, D.; Assmann, R.; Craievich, P.; Floettmann, K.; Grudiev, A.; Marchetti, B. Simulation studies for characterizing ultrashort bunches using novel polarizable X-band transverse deflection structures. Sci. Rep. 2019, 9, 19912. [Google Scholar] [CrossRef] [PubMed]
- Craievich, P.; Bopp, M.; Braun, H.H.; Citterio, A.; Fortunati, R.; Ganter, R.; Kleeb, T.; Marcellini, F.; Pedrozzi, M.; Prat, E.; et al. Novel X-band transverse deflection structure with variable polarization. Phys. Rev. Accel. Beams 2020, 23, 112001. [Google Scholar] [CrossRef]
- Marchetti, B.; Grudiev, A.; Craievich, P.; Assmann, R.; Braun, H.H.; Lasheras, N.C.; Christie, F.; D’Arcy, R.; Fortunati, R.; Ganter, R.; et al. Experimental demonstration of novel beam characterization using a polarizable X-band transverse deflection structure. Sci. Rep. 2021, 11, 3560. [Google Scholar] [CrossRef]
- Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; et al. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration. Nucl. Instrum. Methods Phys. Res. A 2016, 829, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Design Study for Generating Sub-Femtosecond to Femtosecond Electron Bunches for Advanced Accelerator Development at SINBAD. Ph.D. Thesis, Hamburg University, Hamburg, Germany, 2017. [Google Scholar]
- Mayet, F. Acceleration and Phase Space Manipulation of Relativistic Electron Beams in Nano- and Micrometer-Scale Dielectric Structures. Ph.D. Thesis, Hamburg University, Hamburg, Germany, 2019. [Google Scholar]
- Burkart, F. DESY News. Accelerate Smarter with Artifical Intelligence. Available online: https://www.desy.de/news (accessed on 6 November 2020).
- Accelerator Research and Innovation for European Science and Society. Available online: https://aries.web.cern.ch (accessed on 30 June 2021).
- Matlis, N.; Ahr, F.; Calendron, A.L.; Cankaya, H.; Cirmi, G.; Eichner, T.; Fallahi, A.; Fakhari, M.; Hartin, A.; Hemmer, M.; et al. Acceleration of electrons in THz driven structures for AXSIS. Nucl. Instrum. Methods Phys. Res. A 2018, 909, 27–32. [Google Scholar] [CrossRef]
- Hada, M.; Hirscht, J.; Zhang, D.; Manz, S.; Pichugin, K.; Mazurenko, D.; Bayesteh, S.; Delsim-Hashemi, H.; Floettmann, K.; Huening, M.; et al. REGAE: New Source for Atomically Resolved Dynamics. In Research in Optical Sciences; Optical Society of America: Washington, DC, USA, 2012; p. JT2A.47. [Google Scholar]
- Titberidze, M.; Felber, M.; Kozak, T.; Lamb, T.; Müller, J.; Schlarb, H.; Schulz, S.; Sydlo, C.; Zummack, F. First results on Femtosecond Level Photocathode Laser Synchronization at the SINBAD Facility. In Proceedings of the 8th International Beam Instrumentation Conferenc (IBIC’19), Malmo, Sweden, 8–12 September 2019; pp. 564–567. [Google Scholar] [CrossRef]
- Spicer, W.; Herrera-Gómez, A. Modern Theory and Applications of Photocathodes. In Proceedings of the SPIE’s 1993 Interantional Symposium on Optics, Imaging and Instrumentation, Beijing, China, 20 February 1993. [Google Scholar]
- Dowell, D.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia, C.; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W. Cathode R&D for future light sources. Nucl. Instrum. Methods Phys. Res. A 2010, 622, 685–697. [Google Scholar]
- Light Conversion, Pharos SP-06-200-PP. Available online: http://www.lightcon.com/Product/PHAROS.html (accessed on 30 June 2021).
- Wiebers, C.; Holz, M.; Kube, G.; Nölle, D.; Priebe, G.; Schröder, H.C. Scintillating Screen Monitors for Transverse Electron Beam Profile Diagnostics at the European XFEL. In Proceedings of the International Beam Instrumentation Conferenc (IBIC’13), Oxford, UK, 16–19 September 2013; pp. 807–810. [Google Scholar]
- Kube, G.; Liu, S.; Novokshonov, A.; Scholz, M. Identification and Mitigation of Smoke-Ring Effects in Scintillator-Based Electron Beam Images at the European XFEL. In Proceedings of the Free Electron Laser Conference (FEL’19); Hamburg, Germany, 26–29 August 2019; pp. 301–306. [Google Scholar]
- Marx, D.; Giner Navarro, J.; Cesar, D.; Maxson, J.; Marchetti, B.; Assmann, R.; Musumeci, P. Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids. Phys. Rev. Accel. Beams 2018, 21, 102802. [Google Scholar] [CrossRef] [Green Version]
- Marx, D. Characterization of Ultrashort Electron Bunches at the SINBAD-ARES Linac. Ph.D. Thesis, Hamburg University, Hamburg, Germany, 2019. [Google Scholar]
- Lipka, D.; Kleen, W.; Lund-Nielsen, J.; Nölle, D.; Vilcins, S.; Vogel, V. Dark Current Monitor for the European XFEL. In Proceedings of the 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (DIPAC 2011), Hamburg, Germany, 16–18 May 2011; pp. 572–574. [Google Scholar]
- Lipka, D.; Lund-Nielsen, J.; Seebach, M. Resonator for Charge Measurement at REGAE. In Proceedings of the 2nd International Beam Instrumentation Conference (IBIC’13), Oxford, UK, 16 September 2013; pp. 872–875. [Google Scholar]
- Goloborodko, S.; Grygiel, G.; Hensler, O.; Kocharyan, V.; Rehlich, K.; Shevtsov, P. DOOCS: An Object Oriented Control System as the Integrating Part for the TTF Linac. In Proceedings of the ICALEPCS. 1997 (ICALEPCS’97), Beijing, China, 3–7 November 1997. [Google Scholar]
- Fröhlich, L.; Bartkiewicz, P.; Walla, M. Magnet Server and Control System Database Infrastructure for the European XFEL. In Proceedings of the International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’15), Melbourne, Australia, 17–23 October 2015; pp. 701–704. [Google Scholar]
- Agababyan, A.; Asova, A.; Dimitrov, G.; Grygiel, G.; Fominykh, B.; Hensler, O.; Kammering, R.; Petrosyan, L.; Rehlich, K.; Rybnikov, V.; et al. Integrating a Fast Data Acquisition System into the DOOCS Control System. In Proceedings of the International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’05), Geneva, Switzerland, 10–14 October 2005. [Google Scholar]
- Reiser, M. Theory and Design of Charged Particle Beams; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Dowell, D.H.; Schmerge, J.F. Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. Spec. Top. Accel. Beams 2009, 12, 119901. [Google Scholar] [CrossRef] [Green Version]
- Bazarov, I.V.; Dunham, B.M.; Sinclair, C.K. Maximum Achievable Beam Brightness from Photoinjectors. Phys. Rev. Lett. 2009, 102, 104801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, E. Cs2Te Photocathode Performance in the AWA High-charge High-gradient Drive Gun. In Proceedings of the 6th International Particle Accelerator Conference (IPAC’15), Richmond, VI, USA, 3–8 March 2015; pp. 3283–3285. [Google Scholar]
- Floettmann, K. ASTRA—A Space Charge Tracking Algorithm; DESY: Hamburg, Germany, 2011. [Google Scholar]
- Krasilnikov, M.; Bahr, J.; Grabosch, H.J.; Han, J.; Miltchev, V.; Oppelt, A.; Petrosyan, B.; Staykov, L.; Stephan, F. Beam-Based Procedures for RF Guns. In Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA, 16–20 May 2005; pp. 967–969. [Google Scholar]
- Yamin, S.; Assmann, R.W.; Marchetti, B. Study for the alignment of focusing solenoid of ARES RF gun and effect of misalignment of solenoid on emittance of space charge dominated electron beam. J. Phys. Conf. Ser. 2019, 1350, 012014. [Google Scholar] [CrossRef]
- Burkart, F.; Aßmann, R.; Dorda, U.; Hauser, J.; Lederer, S.; Lemery, F.; Marchetti, B.; Mayet, F.; Panofski, E.; Wiesener, P. The Experimental Area at the ARES LINAC. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 867–870. [Google Scholar]
- England, R.J.; Noble, R.J.; Bane, K.; Dowell, D.H.; Ng, C.K.; Spencer, J.E.; Tantawi, S.; Wu, Z.; Byer, R.L.; Peralta, E.; et al. Dielectric laser accelerators. Rev. Mod. Phys. 2014, 86, 1337–1389. [Google Scholar] [CrossRef] [Green Version]
- Peralta, E.; Soong, K.; England, R.; Colby, E.; Wu, Z.; Montazeri, B.; Mcguinness, C.; Mcneur, J.; Leedle, K.; Walz, D.; et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 2013, 503, 91. [Google Scholar] [CrossRef] [PubMed]
- Breuer, J.; Hommelhoff, P. Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure. Phys. Rev. Lett. 2013, 111, 134803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayet, F.; Assmann, R.; Bödewadt, J.; Brinkmann, R.; Dorda, U.; Kuropka, W.; Lechner, C.; Marchetti, B.; Zhu, J. Simulations and plans for possible DLA experiments at SINBAD. Nucl. Instrum. Methods Phys. A 2018, 909, 213–216. [Google Scholar] [CrossRef]
- Lemery, F. Overview of the ARES Bunch Compressor at SINBAD. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 902–905. [Google Scholar]
- Jaster-Merz, S.; Assmann, R.W.; Burkart, F.; Dorda, U.; Dreyling-Eschweiler, J.; Huth, L.; Krämer, U.; Stanitzki, M. Development of a beam profile monitor based on silicon strip sensors for low-charge electron beams. J. Phys. Conf. Ser. 2020, 1596, 012047. [Google Scholar] [CrossRef]
Repetition Rate [Hz] | 1–50 |
Bunch Charge [pC] | 0.5–30 |
Beam Energy [MeV] | 54–155 |
Norm. Emittance (rms) [μm rad] | 0.1–1 |
Bunch Length (rms) [fs] | 0.2–10 |
Arrival time jitter (rms) [fs] | <10 |
Power [MW] | Momentum Measured with Steerer pc [MeV] | Momentum Measured with Spectrometer Dipole pc [MeV] |
---|---|---|
3.70 ± 0.19 | 4.63 ± 0.06 | 4.64 ± 0.04 |
3.26 ± 0.16 | 4.39 ± 0.06 | 4.39 ± 0.06 |
2.77 ± 0.14 | 4.05 ± 0.05 | 4.09 ± 0.05 |
Misalignment | Estimated Value |
---|---|
|dX| (mm) | 0.81 ± 0.16 |
|dX| (mrad) | 1.33 ± 0.27 |
|dY| (mm) | 0.38 ± 0.08 |
|dY| (mrad) | 1.98 ± 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panofski, E.; Assmann, R.; Burkart, F.; Dorda, U.; Genovese, L.; Jafarinia, F.; Jaster-Merz, S.; Kellermeier, M.; Kuropka, W.; Lemery, F.; et al. Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES. Instruments 2021, 5, 28. https://doi.org/10.3390/instruments5030028
Panofski E, Assmann R, Burkart F, Dorda U, Genovese L, Jafarinia F, Jaster-Merz S, Kellermeier M, Kuropka W, Lemery F, et al. Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES. Instruments. 2021; 5(3):28. https://doi.org/10.3390/instruments5030028
Chicago/Turabian StylePanofski, Eva, Ralph Assmann, Florian Burkart, Ulrich Dorda, Luca Genovese, Farzad Jafarinia, Sonja Jaster-Merz, Max Kellermeier, Willi Kuropka, Francois Lemery, and et al. 2021. "Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES" Instruments 5, no. 3: 28. https://doi.org/10.3390/instruments5030028
APA StylePanofski, E., Assmann, R., Burkart, F., Dorda, U., Genovese, L., Jafarinia, F., Jaster-Merz, S., Kellermeier, M., Kuropka, W., Lemery, F., Marchetti, B., Marx, D., Mayet, F., Vinatier, T., & Yamin, S. (2021). Commissioning Results and Electron Beam Characterization with the S-Band Photoinjector at SINBAD-ARES. Instruments, 5(3), 28. https://doi.org/10.3390/instruments5030028