Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar
Abstract
:1. Introduction
2. Characteristics of Humans
2.1. Physical Characteristics
2.2. Radar Characteristics
2.2.1. Radar Cross Section of Humans
Gross Characteristics
Effects of Breathing and Heartbeat
Calibration Sphere for Mimicking Human Radar Cross Section
Human Radar Cross Section Emulation Considerations
3. Simulation of RCS of Sphere-Like Polyhedra
3.1. Simulation Parameters
3.2. Model Creation
3.3. Simulation Results
3.3.1. Simulation Results on Hexahedron
3.3.2. Simulation Results on Octahedron
3.3.3. Simulation Results on Other Shapes
3.3.4. Choice of Shape for Calibration Target
4. Prototype Design and Initial Measurement Results
4.1. Prototype Design Considerations
4.2. Prototype Construction Using 3D Printing and Coating
4.3. Radar Cross-Sectional Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Arai, I. Survivor search radar system for persons trapped under earthquake rubble. In Proceedings of the 2001 Asia-Pacific Microwave Conference (APMC 2001), Taipei, Taiwan, 3–6 December 2001; pp. 663–668. [Google Scholar]
- Harner, M.J.; Narayanan, R.M.; Brandsema, M.J.; Jendzurski, J.R.; Paulter, N.G. Theoretical considerations for a dynamic calibration target for through-wall and through-rubble motion-sensing Doppler radar. In Proceedings of the SPIE Conference on Radar Sensor Technology XXI, Anaheim, CA, USA, 10–12 April 2017. [Google Scholar] [CrossRef]
- Nezirovic, A.; Yarovoy, A.G.; Ligthart, L.P. Experimental study on human being detection using UWB radar. In Proceedings of the International Radar Symposium (IRS 2006), Krakow, Poland, 24–26 May 2006. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Fryar, C.D.; Gu, Q.; Ogden, C.L. Anthropometric Reference Data for Children and Adults: United States, 2007–2010; U.S. Department of Health and Human Services (DHHS): Hyattsville, MD, USA, 2012. [Google Scholar]
- Kiriazi, J.E. Human Cardiopulmonary Recognition Using Close-Range Doppler Radar. Ph.D. Thesis, University of Hawaiʻi at Mānoa, Honolulu, HI, USA, 2010. [Google Scholar]
- Stockman, H. Communication by means of reflected power. Proc. IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Schultz, F.V.; Burgener, R.C.; King, S. Measurement of the radar cross section of a man. Proc. IRE 1958, 46, 476–481. [Google Scholar] [CrossRef]
- Bufler, T.D.; Narayanan, R.M. Radar classification of indoor targets using support vector machines. IET Radar Sonar Navig. 2016, 10, 1468–1476. [Google Scholar] [CrossRef]
- Skolnik, M.I. Introduction to Radar Systems, 2nd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Nezirovic, A.; Tesfay, S.; Valavan, A.S.E.; Yarovoy, A. Experimental study on human breathing cross section using UWB impulse radar. In Proceedings of the European Radar Conference (EuRAD 2008), Amsterdam, The Netherlands, 27–31 October 2008; pp. 1–4. [Google Scholar]
- Kumar, A.; Liang, Q.; Li, Z.; Zhang, B.; Wu, X. Experimental study of through-wall human being detection using ultra-wideband (UWB) radar. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 1455–1459. [Google Scholar]
- Li, J.; Zeng, Z.; Sun, J.; Liu, F. Through-wall detection of human being’s movement by UWB radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1079–1083. [Google Scholar] [CrossRef]
- Aardal, Ø.; Hamran, S.E.; Berger, T.; Hammerstad, J.; Lande, T.S. Radar cross section of the human heartbeat and respiration. In Proceedings of the 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS), Paphos, Cyprus, 3–5 November 2010; pp. 53–57. [Google Scholar]
- Aardal, Ø.; Hamran, S.E.; Berger, T.; Hammerstad, J.; Lande, T.S. Radar cross section of the human heartbeat and respiration in the 500MHz to 3GHz band. In Proceedings of the 2011 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, USA, 16–19 January 2011; pp. 422–425. [Google Scholar]
- Muth, L.A.; Sefcik, W. Uncertainties in dynamic sphere radar cross section data. In Proceedings of the Antenna Measurement Techniques Association Symposium (AMTA 2000), Philadelphia, PA, USA, 16–19 October 2000; pp. 382–386. [Google Scholar]
- Ahmad, F.; Narayanan, R.M. Conventional and emerging waveforms for detection and imaging of targets behind walls. In Through-the-Wall Radar Imaging; Amin, M.G., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 157–184. [Google Scholar]
- Laidlaw, D.H.; Trumbore, W.B.; Hughes, J.F. Constructive solid geometry for polyhedral. ACM SIGGRAPH Comput. Graph. 1986, 20, 161–170. [Google Scholar] [CrossRef]
- Harner, M.J.; Narayanan, R.M.; Jendzurski, J.R.; Paulter, N.G. A thorough analysis of various geometries for a dynamic calibration target for through-wall and through-rubble radar. In Proceedings of the SPIE Conference on Radar Sensor Technology XXII, Orlando, FL, USA, 16–18 April 2018. [Google Scholar] [CrossRef]
- Grace, M.I. Measure RCS with a handheld VNA. Electron. Des. 2012, 60, S16–S22. [Google Scholar]
- Wang, J.; Ge, J.; Zhang, Q.; Li, X.; Wei, M.; Yang, Z.; Liu, Y.A. Radar cross-section measurements of ice particles using vector network analyzer. AIP Adv. 2016, 6, 095310. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Narayanan, R.M.; Jendzurski, J.R.; Paulter, N.G. Simulation of the dynamic radar cross section variations of a human emulator calibration target for through-wall and through-rubble radar. In Proceedings of the SPIE Conference on Radar Sensor Technology XXIII, Baltimore, MD, USA, 15–17 April 2019. [Google Scholar] [CrossRef]
Subject No. | Age (y) | Gender | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|---|
10 | 22 | Male | 171.0 | 80.8 | 27.6 |
12 | 24 | Male | 180.3 | 86.1 | 26.5 |
15 | 75 | Female | 162.0 | 67.0 | 25.5 |
17 | 33 | Female | 178.0 | 84.8 | 26.8 |
Subject No. | Gender | Supine Condition | Prone Condition | Fetal-Like Side Condition | |||
---|---|---|---|---|---|---|---|
ERCS (m2) | Sphere Radius (cm) | ERCS (m2) | Sphere Radius (cm) | ERCS (m2) | Sphere Radius (cm) | ||
10 | Male | 0.003 | 3.1 | 0.045 | 12.0 | 0.002 | 2.5 |
12 | Male | n/a | n/a | 0.249 | 28.2 | 0.003 | 3.1 |
15 | Female | 0.03 | 9.8 | 0.008 | 5.0 | 0.0003 | 1.0 |
17 | Female | 0.112 | 18.9 | 0.018 | 7.6 | 0.013 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanan, R.M.; Harner, M.J.; Jendzurski, J.R.; Paulter, N.G. Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar. Instruments 2021, 5, 37. https://doi.org/10.3390/instruments5040037
Narayanan RM, Harner MJ, Jendzurski JR, Paulter NG. Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar. Instruments. 2021; 5(4):37. https://doi.org/10.3390/instruments5040037
Chicago/Turabian StyleNarayanan, Ram M., Michael J. Harner, John R. Jendzurski, and Nicholas G. Paulter. 2021. "Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar" Instruments 5, no. 4: 37. https://doi.org/10.3390/instruments5040037
APA StyleNarayanan, R. M., Harner, M. J., Jendzurski, J. R., & Paulter, N. G. (2021). Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar. Instruments, 5(4), 37. https://doi.org/10.3390/instruments5040037